2. TIPURI DE DATE SI DATE ELEMENTARE

2.1 Date si informatii

In practicd se face deosebire intre o datd si o informatie. Exemplele
oferite in cele mai multe cazuri sunt edificatoare. Exista si tendinte de a oferi
definitii pentru date si pentru informatii. Dilemele cand o informatie este
considerata data si cdnd o data este o informatie, sunt rezolvate pentru multi
specialisti, dar raman dileme pentru o alta categorie de specialisti.

Din punct de vedere al programatorului, ceea ce face obiectul prelucrarii
sunt de fapt siruri de biti care reprezintd date sau informatii, functie de
contextul in care sunt generate si de modul in care se interpreteaza
rezultatele. Pentru a nu complica si mai mult problematica, se considera ca in
activitatea de programare se opereaza cu date. Toate intrarile si iesirile
programelor sunt date. Sistemele de prelucrare, insa sunt intitulate 1in
continuare sisteme informationale sau sisteme informatice, in mod ornamental
din punctul de vedere al programatorilor.

In realitate, atunci cand acestea functioneaza corect, prelucreaza intr-
adevar informatii. Atunci cand, insa, fluxurile sunt greoaie si determina un
nivel de istorism costisitor, prelucrarile sunt ale unor date certe.

Pentru ca 1in literatura de specialitate capitolul detinut descrierii
operanzilor - informatii sau date - se numeste STRUCTURI DE DATE, in
continuare, nu se mai face deosebirea dintre informatie si data. Utilizatorii sunt
aceia care decid daca ofera spre prelucrare informatii sau date si daca
rezultatele prelucrarii sunt date sau sunt informatii.

2.2 Clasificari ale datelor

Exista numeroase puncte de vedere de abordare a gruparii datelor,
fiecare constituindu-se intr-un criteriu. Ceea ce este insa adevarat, este legat
de faptul ca fiecarei date i se ataseaza totalitatea atributelor ce rezultd din
multitudinea de clasificari care se iau in considerare.

a) Criteriul variabilitatii - grupeaza datele in:

- date constante, care nu se modifica intr-un interval de timp sau
pe durata executiei programului; in cazul in care pentru a face un
program lizibil constantele sunt puse in corespondenta cu anumiti
identificatori, in programe sunt vehiculati acestia din urma,
formand constantele simbolice.

- date variabile, ale caror niveluri se modifica fie intr-un interval de
timp, fie pe parcursul executiei unui program; intotdeauna se
vorbeste de o valoare initiala, valori intermediare si o valoare
finala; numarul valorilor intermediare determina mecanismele
necesare prelucrarilor, includerea in structuri repetitive sau
stocarea lor in fisiere;

b) Criteriul compunerii — diferentiaza datele astfel:

date simple sau elementare, fiecare avand o anumita semnificatie
si fiind independente de celelalte date care apar intr-un context
specificat; datele elementare se mai numesc atomi;

date compuse sau structurate, formate din date elementare sau
date la randul lor structurate; fiecare componenta are o anumita
pozitie in cadrul structurii si impreuna cu celelalte formeaza un
intreg; intre partile care alcatuiesc o data compusa exista legaturi
in primul rand de continut si numai toate la un loc caracterizeaza
un fenomen, un proces sau un individ dintr-o colectivitate:
apartenenta si pozitia fiecarei componente se precizeaza explicit
la descrierea datei structurate;

c) Criteriul semnificatiei continutului conduce la:

date care fac obiectul operatiilor de prelucrare, adica participa ca
operanzi in expresii, se initializeaza prin atribuiri sau operatii de
intrare, se stocheaza pe suporti, se afiseaza sau se transmit ca
parametri;

date care permit adresarea operanzilor si care au valori cuprinse
intre limite precizate, care prin calcule de adrese localizeaza
corect fie operanzi, fie alte date de adresare, fie functii de
prelucrare;

date care efectueaza prelucrarea, care apar ca succesiuni de
instructiuni direct executabile daca fisierul care le apartine este
incarcat in memoria unui calculator si se comanda lansarea in
executie a acestuia;

d) Criteriul naturii datelor — genereaza tipurile de date urmatoare:

date de tip intreg, ale caror elemente apartin multimii Z;

date de tip real, ale caror elemente apartin multimii R;

date de tip complex, ale caror elemente apartin multimii C, iar
coeficientii care desemneaza partea realda si partea imaginara
apartin multimii R;

date de tip boolean, ale caror elemente apartin multimii {TRUE,
FALSE} sau {0, 1};

date de tip caracter, ale caror elemente apartin multimii
caracterelor ce sunt definite prin combinatie de biti la nivelul unui
bait; din cele 256 de combinatii unele sunt grupate pentru litere,
altele pentru cifre, altele pentru caractere speciale si pentru
caractere de control; corespunzator, sunt definite date de tip
alfabetic, de tip numeric, date de tip caractere de control etc.;
aceste date au cate un singur element din multimea care fi
defineste tipul;

date de tip sir de caractere - reprezintd o compunere prin
concatenare a datelor de tip caracter; datele acestea au un
delimitator al sfarsitului de sir, fie o constanta de tip intreg la
inceput, precizdnd numarul de caractere care intra in alcatuirea
sirului;

e) Criteriul construirii tipurilor conduce la:

date de tip fundamental - care apartin unui tip implementat in
fiecare limbaj de programare, precum tipurile intreg, real,

caracter, boolean, complex; programatorul are posibilitatea
definirii constantelor simbolice si variabilelor proprii specificand
tipurile fundamentale si alege prelucrarile compatibile acestora;
date de tip derivat - care se obtin prin includerea in cadrul unor
structuri a componentelor avand unul din tipurile fundamentale
implementate in limbaj; rezultatul obtinut este un tip de data
derivat care se pune in corespondenta cu un identificator si care
este folosit de programator pentru a defini variabilele in program
avand respectivul tip;

f) Criteriul dispunerii in memoria interna, grupeaza datele in:

date dispuse in zone contigue - care permit localizarea uneia
dintre ele cunoscand o adresa si o deplasare; in cazul in care
zonele de memorie ocupate au aceeasi lungime, adresa fiecarei
date se constituie ca termen al unei progresii aritmetice si este
calculata cunoscénd adresa primei date si pozitia in sirul datelor
contigue a elementului cautat;

date dispersate in memoria interna - se obtin in cazul alocarii
dinamice a memoriei necesare, ceea ce impune stocarea si
conservarea adresei zonei de memorie asociata fiecarei date;
daca datele dispuse in zone contigue, au realizata proiectarea
alocarii in faza de compilare, datelor dispersate li se aloca
memorie efectiv in faza de executie si nu exista posibilitatea ca in
mod direct sa se construiasca modele de calcul a adreselor fizice
pe care datele le ocupa, mai ales daca alocarea memoriei este un
proces ce depinde de testarea unor conditii din program;

g) Criteriul campului de actiune, imparte datele in:

date cu caracter global - care se definesc o singura data, dar care
sunt utilizate din orice punct al programului sau a functiilor si
procedurilor care intra in componenta lui; aceste date se definesc
si li se aloca memorie o singura data si au campul de actiune cel
mai cuprinzator;

date cu caracter local - sunt in fiecare procedura si li se aloca
memorie dinamic, automat, la apelarea fiecarei proceduri sau
functii; odata cu revenirea in secventa apelata — deci la iesirea din
functie sau din procedura - are loc eliberarea memoriei alocate
(dealocarea memoriei); variabilele locale nu sunt folosite decéat in
procedura sau functia unde au fost definite;

date de tip registru - au rolul de a pune la dispozitie
programatorului in limbaje evoluate, accesul la registrele
calculatorului; Tn cazul unei folosiri judicioase exista posibilitatea
cresterii vitezei de prelucrare, iar in cazul folosirii abuzive a
registrelor se obtine fenomenul invers;

h) Criteriul definirii domeniului presupune:

date al caror domeniu este specificat prin limita inferioara, limita
superioara si forma de prezentare generica a elementelor;

date al caror domeniu este definit odata cu enumerare
elementelor care 1i formeaza.

i) Criteriul alocarii memoriei, grupeaza datele in:

- date statice - calcule de alocare a memoriei se efectueaza in faza
de compilare, iar inainte de executie, alocarea este efectiva;
- date dinamice a caror memorie este alocata si dealocata in timpul
. executiei programului, prin functii de biblioteca apelate.
Intr-un program, o anumita data este astfel definita incat se incadreaza
intr-una din subgrupele fiecarui criteriu. Astfel, definirea:

// PROGRAM definire:
#include<....... >
#include<....... >

dintr-un program C/C++ se interpreteaza astfel:

-k este o data variabila (criteriul variabilitatii);

- Kk este o data elementara (criteriul compunerii);

-k este o data de tip operand (criteriul semnificatiei);

-k este o data de tip intreg (criteriul naturii datelor);

-k este o data de tip fundamental (criteriul construirii tipurilor);

- k este o data dispusa intr-o zona contigua (criteriul dispunerii

in memoria internad);

- k este o data globala (criteriul campului de actiune).

Deci, k este un operand, variabila elementara, globala, de tipul
fundamental intreg, dispus intr-o zona contigua.

2.3 Modele de prezentare a datelor

Intre forma de reprezentare naturald sau externd a datelor si forma de
reprezentare internd a acestora, exista mari diferente.

Reprezentarea interna a datelor, se realizeaza utilizand algoritmi de
codificare, care pun in corespondenta datele cu siruri de biti. Pentru fiecare tip
de data se defineste lungimea zonei de memorie si algoritmul de codificare,
precum si codurile operatiilor care utilizeaza operanzii in concordanta cu
caracteristicile de tip ale acestora.

a) Modelul de verificare a concordantei tip-continut-adresa

Modele de reprezentare a datelor au in componenta lor:

e LSUP,LIMF; - valori care precizeaza limita inferioara si limita superioara a
intervalului careia i apartine data de tip i specificat;

o A - indicatorul algoritmului de realizare a reprezentarii interne
pentru datele de tip J;

o f() - functia de apartenenta a datei la un anumit tip;

M - multimea functiilor de conversie;

on - numarul de tipuri de date;

o k - cerinte de aliniere a adresei de inceput a zonei de memorie, k
{1, 2, 4,8},

o T; - natura /i a datei;

e adr() - functia de determinare a adresei unei zone de memorie pusa
in corespondenta cu un identificator specificat:

adr:J->N (2.1)
unde:
e J - multimea identificatorilor;
e N - submultime a numerelor naturale cu care se localizeaza fiecare bait al
zonei de memorie la dispozitia programatorului;
e N=[a,b]n N - delimiteaza posibilitati hardware de dispunere in memorie a

programului, unde a, b e N, a < b;
e cont() - functia continut a zonei de memorie:

cont : JxT, —>(ZD1. (2.2)

e tip() - functia de identificare a tipului variabilei:
tip:J ->T (2.3)

Multimea T; a naturii datelor fundamentale implementate in limbajul de
programare L;, se defineste prin:

Tj= { Tl/ T2/ "'/Tn} (24)
Daca j este C, atunci:
Tc = {int, bool, float, char, string} (2.5)

deci n = 5, fara a fi luate in considerare variantele pentru datele intregi, reale
si posibilitatea de a specifica seturi de valori.

Pentru datele de natura boolean, LSUP, este 1 sau TRUE si LINF, este 0
sau FALSE.

Pentru datele de natura real A3, corespunde modului de construire a

mantisei si caracteristicii precum si dispunerea acestora pe cei 6 baiti.
Pentru datele intregi H, multimea functiilor de conversie are elementele:

H = {fi1, fi2, f13, f14, f15} (2.6)
Dintre acestea numai f;; si f14 sunt inversabile, deci tabloul functiilor:

fi() i=1,2,34,5sij=1,2,3,4,5 (2.7)

demonstreaza ca se efectueaza conversii in toate directiile cu o anumita
pierdere a unor simboluri din descrierea initiala.

Cerintele de aliniere sunt specifice particularitatii hardware a sistemelor
de calcul. In cazul in care la compilare nu este realizata optimizarea alocarii
memoriei, apar zone neutilizabile cu efecte ce sunt interpretate mai dificil.

Declararea:

char a;
float b;
char c;
char d;

in absenta optimizarii alocarii de memorie, conduce la rezervarea:

a b c d

i,
))))

A:8 A+8 A+16 A+20

Figura 2.1 Alocarea in memorie a variabilelor a, b, c si d

In cazul optimizarii, secventei de program i corespunde:

b d a ¢

A:8 A+8
Figura 2.2 Alocarea optimizata in memorie a variabilelor a, b, c si d
Este posibila optimizarea datorita comunicativitatii dispunerii operanzilor
intr-o secventa, atunci cand acestia sunt elementari si nu apare problema
redefinirii.
Functia de apartenenta a datelor la un anumit tip se defineste prin:

f:UxD;->{ FALSE, TRUE} (2.8)

unde:

e U - multimea sirurilor ce se genereaza cu simbolurile alfabetului
nstruit pentru un limbaj;

e D; - intervalul sau multimea elementelor specifice tipului de date i.

(2.9)

Fi)= FALSE dacax ¢ Di
» 7 \TRUE dacax € Di

De exemplu:
f(13, int) =TRUE (2.10)
pentru ca 13 € [-32768, 32767] n Z, Diy fiind domeniul intregilor, in timp ce
f(- 4, bool) = FALSE ~ (2.11)

pentruAcé -4 nu apartine multimii {FALSE, TRUE?}.
In secventa:

int x;

X = 20:

presupunand ca in compilare si editare de legaturi, variabilei x i se asociaza
zona de memorie:

’ A ' A
r N\ e ~
‘ 00 \‘ 00 \‘ 00 \‘ 14 \‘ ‘ 14 \ 00 \ 00 \‘ 00 \‘
07AA0 07AA0
a b

Figura 2.3 Zona de memorie asociata variabilei x
(a — microprocesoare MOTOROLA, b — microprocesoare INTEL)

adr(x) = 07AA0
cont(x) = (00000014);6

f(cont(x), int) = TRUE
tip (x) = int

Deci:
f(cont(x), tip(x)) = TRUE (2.12)
Functia de aliniere:

K: adresa x tip; -> TRUE (2.13)

TRUE daca adresaMk;

(2.14)
FALSE daca adresa +k;

K(adresa,T,) = {

unde k; este factorul de aliniere cerut prin constructie pentru tipul de date T;.
K(07AAO0, int) = TRUE (2.15)
pentru ca 07AA0M
K(adr(x), tip (x)) = TRUE (2.16)

Se spune ca variabila x este:
- corect alocata;
- corect initializata;

daca si numai daca:

f (cont(x), tip(x)) AND K(adr(x), tip(x)) = TRUE (2.17)

b) Modelul de generare a constantelor pentru un tip specificat de
date
Folosind conventii si simboluri, se definesc reguli, mecanisme de
generare a constantelor. Astfel, se noteaza:

c - cifra
a
) [-asaub
b
[] - constructie optionala

Figura 2.4 Notatiile utilizate in generarea constantelor

Constantelor intregi li se asociaza modelul de generare:

(1) e

Figura 2.5 Modelul de generare a constantelor

Putem verifica daca sirurile:

- 125

+- 60
44 -

sunt sau nu constante intregi. Cu usurinta ne dam seama ca sirurile . 3 + - 60
si 44 - nu indeplinesc cerintele impuse de sablonul model.
Pentru constantele de tip real se prezinta modelul de generare:

HfH [ce.c] [] [ec..c] HeH HiH]

Figura 2.6 Modelul de generare a constantelor reale

Sirurile:
+1.2e-4
-.3E2
2.e-1
le +4

sunt constante reale intrucat respecta regulile de generare incluse in sablon.

c) Modele de descriere a datelor folosind grafuri.

Intrucat grafurile permit punerea in evidenta a interdependentelor dintre
elemente omogene sau neomogene, se considera utilizarea lor ca fiind
sugestiva in cazul structurilor de date.

Prin conventie, se stabilesc ca nodurile care prezintda numai arce
incidente spre interior corespund datelor elementare, iar nodurile care au arce
incidente spre interior si spre exterior corespund datelor de grup.

Astfel, graful:

Figura 2.7 Graful de reprezentare a datei compuse a

este interpretat ca: data compusa a are in alcatuirea ei datele elementare b, ¢
si d.
Graful:

0-->0-->0-->0
a b c d (2.18)

corespunde datelor interdependente, in care b urmeaza lui a, ¢ urmeaza lui b si
d urmeaza lui c. Nodurile a, b, ¢, d sunt fie date elementare, fie date compuse,
iar pentru stabilirea relatiei de precedenta este necesara memorarea unor
adrese.

Pentru realizarea in cadrul programelor a definirii structurilor complexe
de date este necesara reprezentarea acestora folosind grafuri si dupa aceea
scrierea in program a unei forme liniarizate neambigue.

De exemplu, pentru structura de tip arborescent, se utilizeaza scrierea
parantetica, ce presupune ca elementele de pe acelasi nivel sa fie separate prin
virgula, iar pentru trecerea la nivel inferior, utilizarea unei paranteze rotunde
deschise.

Revenirea la nivelul precedent se marcheaza cu o paranteza inchisa.
Astfel grafului:

i .
J
Figura 2.8 Graful de reprezentare a datei complexe a

ii corespunde liniarizarea:

a(b(d,e,f,g), c(h(i,j))) (2.19)

d) Modele care permit implementarea recursivitatii in descrierea
datelor
Se face deosebire intre modelele recursive de descriere a datelor
precum:

<semn>:@:!=+/-
<cifra> ::=0 /1/2/3/4/5/6/7/8/9
<intreg f&rd semn> : : = <cifra> |/ <intreg fard semn><cifra> |

<cifra><intreg fara semn>
<intreg> : : = <intreg fara semn> |/ <semn><intreg fara semn>

si modelele care implementeaza, recursivitatea in descrierea datelor. Astfel,
constructia:

tip_de_data a = p(y_intreg,s_a) (2.20)

pune in evidenta ca data p contine doua date elementare si anume y care are
tipul intreg si & care are tipul a.

Aceste modele permit descrierea structurilor de date autoreferite: liste,
stive si arbori.

e) Modele grafice

Sunt utilizate reprezentari grafice pentru locatiile de memorie asociate
variabilelor si constantelor unui program. Prin arce se stabilesc legaturile
dintre locatii. Acest model de descriere a datelor este sugestiv si fara
ambiguitate.

Constructia:

1 7 10 nil

Figura 2.9 Modelul locatiilor de memorie asociate variabilelor si constantelor

reprezinta o lista, fiecare componenta avand doua elemente: primul reprezinta
informatia utila avand valorile 1, 7 si 10, iar al doilea contine adrese. Arcele
orientate indica locatia a carei adresa este memorata in componenta
precedenta.

f) Modelul vectorial

Se considerda un vector avand un numar dat de componente. Fiecare
componenta are o semnificatie precizata, iar componentele luate in ansamblu
lor descriu complet si corect structurile de date.

Se observa ca pentru datele elementare, multe dintre componentele
vectorului sunt nule. Zerourile, arata lipsa dependentelor in aval si in amonte
sau marimea distantei dintre doua componente.

Functia distanta se defineste astfel:

d(x,y) = adr (y) - adr (x) (2.21)

Definim /g(x,T;), functia lungime a zonei de memorie asociata
operandului x. De exemplu, pentru secventa de program:

X : extended;
y - comp;
z - shortint;
w I word;

Ig(x, extended) = 10 baiti
Ig (y, comp) = 8 baiti

Ig (z, shortint) = 1 baiti
Ig(w, word) = 4 baiti

unde:

Programul care pune in evidenta lungimile tipurilor de date

C/C++ este:

lg:IxT->{1,2,4,68,10F (2.22)

ale limbajului

//program

dimensiune_tip

#include <iostream.h>
#include <malloc.h>

main()

cout<<'"\n
cout<<'\n
cout<<'\n
cout<<'"\n
cout<<'"\n
cout<<'\n
cout<<'\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'\n
cout<<'\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<'"\n
cout<<"\n
cout<<'"\n
cout<<'"\n

3

char: ''<< sizeof(char)<<" octet";

unsigned char: "<< sizeof(unsigned char)<<" octet";

int: << sizeof(int)<<" octet';

unsigned int: << sizeof(unsigned int)<<" octet";
signed int: '<< sizeof(signed int)<<" octeti';
short int: "<<sizeof(short int)<<" octeti";

long int: "<< sizeof(long int)<<" octeti";

float: '"<< sizeof(float)<<" octeti'';
double: "<<sizeof(double)<<" octeti';
long double: "<<sizeof(long double)<<" octeti";

boolean: ''<< sizeof(bool)<<" octet";

Daca variabilele x si y sunt contigue:

In cazul vectorilor si matricelor, apare posibilitatea punerii in evidentd a

d(x,y) =1lg (x,T) (2.23)

contiguitatii. Pentru un vector x cu n componente:

d(x[j], x [j+1]) = 1g (x[1],T;) (2.24)

oricare j apartine multimii {1, 2, . . ., n}.
In cazul in care variabilele ocupa zone de memorie necontigue:

dix,y) > 1g (x,T;) (2.25)

inegalitatea depinzdnd de modalitatea in care s-a facut alocarea memoriei.
Redefinirile sau reacoperirile, corespund unor distante fie nule, fie mai
mici decat lungimea campului considerat reper.

>

\l/ 11

Te—12 ——

y

Figura 2.10 Modelul de reacoperire a locatiilor de memorie
dix,y) <lg (x) =11 (2.26)
lg (y) =12 (2.27)
adr(x) < adr(y) < adr(x) + 11 (2.28)

Uniunile de date apar drept cazuri particulare in acest model de
descriere a datelor.

union a: T;, b:T,,c :T3; (2.29)
dist(a,b) = dist(a,c) = dist(b,c) = 0 (2.30)
Lungimea zonei de memorie ocupata de variabilele “union” este:
1= max {lg(a,T1),I9(b,T2),lg (c,T5)) (2.31)

g) Modelul obiectelor generice

Datele apartinand unui anumit tip apar in expresii precedate sau urmate
de anumiti operatori. De asemenea, ele sunt parametrii pentru anumite functii.

Modelul include:

- forma generica de construire a datei de un tip specificat

- operatorii si functiile care utilizeaza datele definite pentru tipul

respectiv, precum si exceptiile de utilizare.

Acest model permite descrierea corecta a secventelor de program, cu
construirea de obiecte acolo unde limbajele de programare implementeaza
cerintele programarii orientate pe obiect.

Exista multe alte modalitati de descriere riguroasa a datelor, toate insa
se subordoneaza unor obiecte dintre care cel mai important este crearea
premiselor analizei semantice, pentru punerea in evidenta mai intai a
corectitudinii descrierilor de date si mai apoi a corectitudinii programelor.

2.4 Cerinte de definire a datelor

In toate programele scrise apar variabile simple. Acestea definesc fie
variabile de control, fie variabile in care se regasesc totaluri sau rezultate
independente de alte evaluari ale programului. Fiecare datd pe care un
programator o specifica are caracteristici proprii, care determina tipul si locul in
care este definita, modul de alocare a memoriei, modalitatea de initializare si
felul in care este folosit in final continutul sau.

Vom considera spre exemplificare un program P in care se utilizeaza
variabilele i de tip intreg si s de tip real.

Variabila i este o variabila de control folosita in regasirea elementelor
vectorului definit prin:

float x[100];
Variabila s este definita astfel:
float s;

Pentru variabilele independente, definirea in secventa este comutativa
fara a influenta rezultatul prelucrarii.

Secventele:
variabile variabile
S14 inti; S2.4 floats; (2.32)
float s; int 1;

sunt echivalente, rezultatele prelucrarii unui program care contine una din cele
doua secvente sunt identice.

Daca programului P i se ataseaza o secventa S la stdnga, se obtine
programul P;:

P;=S||P (2.33)
unde || este operatorul de concatenare.
Daca programului P i se ataseaza o secventa S la dreapta, se obtine
programul Py:

P>=P||S (2.34)

Se spune ca secventa S de instructiuni este comutativa in raport cu
operatorul || daca:

rez(S||P;,d)=rez(P||S, d) (2.35)

unde rez() este functia rezultat definita:

rezzPXC->C (2.36)

unde:

P - multimea programelor;

C - multimea constantelor elementare, vectoriale, matricele si de alte
structuri.

In cazul secventelor S;, S, dacé:
rez(S; || P,d) = rez(S; || P, d) (2.37)
se spune ca cele doua secvente sunt echivalente, adica:
(S: U S2) || P (2.38)

Se observa ca in programul P, variabila de control j trebuie initializata cu
valoarea 1 si atinge cel mult valoarea 100, domeniul acesteia fiind:

Dom (i) = [1,100] N N (2.39)

Definirea cu tipul integer determina:
Dom(int) = [-37768, 32767] N N (2.40)

deci Dom (i) ¢ Dm (int) unde Dom este functia domeniu:
Dom :J->D (2.41)

Aceasta functie permite tratarea tipurilor fundamentale int, float, bool ca
identificatori cu caracteristici prefixate prin constructia limbajului C/C++.

Daca presupunem ca cele 100 de componente ale vectorului x au valori
cuprinse intre 1 si 200 suma lor nu depaseste 200 * 100 = 20000. Deci:

Dom (s) = [100,20000] NN (2.42)

Dom (float) = [2.9E - 39,1.7E38] (2.43)

Dom (s) ¢ Dom (float) (2.44)

Faptul ca domeniile variabilelor i si s, sunt incluse in domeniile definite
tipurilor, determina excluderea situatiei obtinerii de rezultate trunchiate si deci
de pierdere a controlului continutului lor.

Oportunitatea alegerii tipului intreg sau real, este pusa in evidenta de
ponderea functiilor de conversie care se activeaza la executie.

Pentru un programator care a lucrat intr-un limbaj de asamblare,
secventele:

int 1; int 1;

float s; float s;
i =1.; i = 1;
s = 0; s = 0.;

sunt diferite pentru ca:

- In prima secventa se genereaza constanta 1, ca avand tip float; deci
ocupa o zona de memorie de 4 bytes (constante de maxim 7 - 8
cifre). Zona este structuratd pentru caracteristica si mantisa.
Constanta 0 se genereaza intr-o zona de memorie de 2 sau 4 bytes
corespunzatoare tipului int;

- In modul obiect generat la compilare, i = 1 si s = 0, se concretizeaza
prin copieri (mutari) ale continutului zonelor de memorie care
corespund operanzilor din dreapta semnului egal, in alte zone de
memorie care corespund operanzilor din stdnga semnului egal;

- instructiunile de copiere (mutare) presupun operanzi omogeni; daca
operandul receptor este de tip intreg, atunci operandul emitator
trebuie sa fie tot de tip intreg; daca operandul receptor este de tip
real, atunci si operandul emitator trebuie sa fie de tip real; in caz de
neomogenitate, compilatorul genereaza secvente de apelare a
functiilor de conversie;

- secventa S; necesita 2 apeluri de functii de conversie si anume:
conversie de la real la intreg, f13 si conversie de la real la intreg f31;

rezl = f13(1.)
copiere rezl -> i
rez2 = f31 (0)
copiere rez2 -> s

- intrucat in secventa S,, exista concordanta intre tipurile constantelor
generate ca operanzi emitatori si operanzi receptori, nu mai sunt
necesare apelari ale functiilor de conversie.

Ca o cerinta in alegerea tipului, este realizarea unui nivel cat mai redus

al apelurilor functiilor de conversie.

Posibilitatea definirii la utilizare a variabilelor elementare, conduce
uneori la realizarea unei ocupari a memoriei cu operanzi cu grad redus de
folosire.

Exista limbaje, ca de exemplu Fortran si Basic, care nu necesita
definirea explicita a variabilelor, ci acestea se definesc la prima utilizare, tipul
fiind precizat odata cu respectarea unei reguli de construire a identificatorilor.

Gradul de utilizare este marcat prin numarul de instructiuni in care
variabilele apar, sau prin frecventa de modificare a continutului lor. Un
program devine cu atat mai bun cu cat imprastierea variabilelor elementare
este mai redusa.

Astfel, daca in secventa S; apare variabila /i, iar in secventa S, apare
variabila j si programul:

P=5S5:1|S: (2.45)

se observa ca domeniile celor doua variabile care au acelasi tip sunt disjuncte,
deci este definita o singura variabila care este utilizata de ambele secvente.

Daca:
rez (Sz; rez (Si; i), j) = rez (Sz; rez(S;;i), i) (2.46)
secventa:
int i;
int j;
Sl -(i);
Sz -(i);

va fi modificatd obtindndu-se secventa:

int i;
S, (i)
S, (i):

Caracterul local sau global, dinamic sau static, este dat de contextul in
care se utilizeaza fiecare variabila. Important este ca programul sa realizeze
pentru un exemplu de test din specificatiile de programare, acelasi continut
pentru toate punctele de control.

Daca pentru valorile 1, 2, 3, 4, 5 ale vectorului x de 5 componente, la
iteratia a treia, in specificatiile de programare se indica pentru variabila s
valoarea 6 si daca prin:

rez (S; S; Si; s, 1) (2.47)

cont(s) este 6, inseamna ca definirea s este corectd. Daca insa in locul asociat
structurii repetitive, este definit s si este initializat:

rez (51 S: Si; s, I) (248)

conduce la cont (s) cu valoarea 3, pentru ca celelalte valori se pierd la fiecare
activare a blocului, se conchide ca definirea locala determina erori asupra
rezultatului.

2.5 Cerinte de initializare si utilizare

Variabilele elementare se initializeaza sub control de catre programator.
Ele au semnificatii precum:

- definesc dimensiunile problemei de rezolvat;

- definesc precizia rezultatelor;

- definesc optiuni ale utilizatorului care determina functii care se

activeaza;

- contin rezultate cu grad de cuprindere diferentiat;

- controleaza executia repetitiva a secventelor;

- specifica limite de valori pe care le iau unele variabile;

- contin niveluri puse in corespondenta cu tipuri de erori, tipuri de
rezultate sau evenimente in prelucrare.

Compilatoarele moderne pun in evidenta situatiile in care se definesc si
se utilizeaza variabile elementare, fara ca in prealabil sa fie initializate.
Initializarea unei variabile elementare se efectueaza:

- la definire; exista limbaje care permit definirea si initializarea
variabilei (de exemplu, in limbajul C, constructiile int s = 0, i = 0;
sunt frecvente);

- printr-o functie de citire;

- prin atribuire, variabila elementara aflandu-se in membrul stang.

O variabila elementara se defineste pentru a i se utiliza continutul cel
putin o singura data intr-o expresie, ca parametru intr-o functie sau intr-o
expresie indiciala.

Afisarea rezultatului continut de o variabila elementara apare ca o
utilizare a acesteia sub forma de parametru in functii precum writein(),
printin().

Se spune ca variabila elementara i este corect definita si corect utilizata
daca:

cont_spcf (i,n) = = cont_prg (i,m) (2.49)

unde:
cont_spcf () - functia de continut a variabilei /i dupa efectuarea pasului n al
algoritmului precizat in specificatiile de programare;
cont_ prg () - functia de continut a variabilei /i dupa executarea
instructiunii m din program, instructiune care delimiteaza
sfarsitul pasului n al algoritmului descris in specificatii.
Daca:

cont_prg (i, m) = = cont_prg(i, m+1)(2.50)

oricare ar fi m € [1, M] N N, unde M este numarul de instructiuni executabile
care formeaza programul, se spune ca i nu isi modifica continutul, este deci o
constanta si ori este defectuos utilizata, ori trebuia definita nu ca variabila ci ca
o constanta simbolica.

Urma programului se obtine prin:

cout<<m<<” ”<<cont_prg(i, m);

undem = 1, 2, ..., Msau numai pentru valori modificate:

if (cont_prg (i,m) != cont_prg(i,m+l))
cout<<M+1<<” ’<<cont_prg(i,m+1);

In cazul in care datele elementare se definesc numai pentru seturi de
valori dintr-o multime, se utilizeaza functia de apartenentd, care pune in
evidenta corectitudinea reinitializarii unei variabile sau a rezultatelor din
calcule.

Daca:

f (cont_prg (x, m), T;) = = FALSE (2.51)

inseamna ca la instructiunea a m - a a programului, valoarea variabilei
elementare x nu corespunde setului de valori T atasat acesteia.

De exemplu, daca pentru marcarea erorilor de executie se atribuie
codurile:

e 0, daca executia s-a desfasurat normal;

e 1, daca exista tentativa impartirii prin zero;

e 2, daca matricea este singulara;

e 3, daca valorile unei expresii indiciale depasesc limitele pentru care

este definit operandul de tip masiv:

Ti=40,1,2, 3} (2.52)

Daca intr-o functie de inversare a matricei, variabila ierr este definita pe
multimea T; si daca intr-un punct k al functiei i se atribuie valoarea 7, atunci:

f (cont_prg (ierr, k), T;) = = FALSE (2.53)

inseamna ca s-a Iinregistrat o eroare, o indepartare de specificatiile de
programare. Este posibil ca uneori specificatiile de programare sa suporte
modificari, care reflecta cerinte de finete realizate in program. Multimea
tipurilor de erori este diversificata si atunci se obtine:

Ti=TiU{4,5, 6, 7} (2.54)

unde codurile 4, 5, 6, 7 corespund unor noi situatii care conduc la intreruperea
executiei. In acest caz:

f(cont_prg(ierr, k), T;) = = TRUE (2.55)
Cerintele de initializare pentru date de acelasi tip, conduc la trecerea de

la variabile elementare, la variabile de tip masiv.
Constructiei:

inta, b, c, d, e, F;

| I
o o

=D QO O T Q ¢
I n 1
o O

ii corespunde secventa compacta:

int x[6];
int i;

%o; &i:O; i<6; i++)
x[i] = O;

sau secventa:

int x[6] = {0, 0, 0, 0, O, O};

Alegerea dintre date elementare si date compuse, este legata in primul
rand de modul de calcul a adreselor si de obiectivul urmarit prin prelucrare iar
in al doilea rand, de compactitatea programului.

Datele elementare, se constituie ca o multime de noduri ale unui graf in
care multimea arcelor este vida. Adresele variabilelor elementare au caracter
aleator. In general, nu se stabileste o relatie de calcul a adreselor unor
elemente din multimea de date elementare, avand ca reper un element
apartinand de asemenea acestei multimi.

2.6 Cerinte de lizibilitate a programului

Datele elementare sunt puse in corespondenta cu identificatori sugestivi.
Astfel, pentru calculul volumului unei prisme paralelipipedice se definesc:

int lungime, latime, inaltime, volum;
cin>>lungime>>inaltime>>latime;
volum=lungime*latime*inaltime;
cout<<’volum = “<< volum;

In cazul definirii unei variabile compuse omogene, secventa echivalenta
este:

ini §[4];
cin>>x[0]>>x[1]>>x[2];
X[31=x[0]*x[11*x[2];

cout<<” volum = “<<x[3];

Lizibilitatea programului ?nAacest caz, este crescuta numai ca posibilitate
de urmarire a sintaxei acestuia. In prima forma se intelege exact semnificatia
prelucrdrii. Iin plus, dacd se acceptd utilizarea variabilelor de stare globale, care
sunt 1n totalitate variabile elementare, dupa apelarea functiilor, se fac teste si
se continua prelucrarea numai daca acestea au nivelul pus in corespondenta cu
executia ceruta.

Aceasta este de fapt cauza necesitatii standardizarii raspunsului pe care

il ofera functiile in domeniul valorilor de stare pe care le returneaza.

Secventa:

ilustreaza

controlul

int stare;

stare = f1(p1 - - - Pn);
if (stare 1= 0)
return(stare);
stare=f, (P1- - - - -pPn);
if (stare 1= 0)
return(stare);

permanent al programatorului

prelucrarii folosind variabila elementara stare.

asupra

rezultatelor

