7. ARTICOLUL - STRUCTURA DE DATE NEOMOGENA
SI CONTIGUA

7.1 Structuri de date pozitionale

Exista o diversitate de date cu care se caracterizeaza indivizii unei
colectivitati. Dupa efectuarea unei analize detaliate, se conchide ca un
numar g de _caracteristici sunt suficiente pentru descrierea elementelor
colectivitatii. In continuare numim sablon de descriere o anumita ordine in
care sunt insirate caracteristicile, ordine absolut necesara a fi respectata la
descrierea fiecarui element al colectivitatii.

Fie caracteristicile Cy, Cy, ..., C, dispuse in ordinea care se constituie
in sablonul asociat descrierii indivizilor colectivitatii considerate.

De exemplu, pentru descrierea materialelor existente in stoc, se
considera caracteristicile:

C; - numele materialului;

C, - unitatea de masura;

Cs - cantitatea existenta in stoc la inceputul perioadei;
C4 - pretul unitar;

Cs - data ultimei aprovizionari;

Ce¢ - intrarile de materiale;

C; - iesirile de materiale;

Cs - codul materialului;

Cy - stocul final.

deci g = 8. Sablonul pentru introducerea datelor are elementele:
CsC;C,C4C5C5Cs G (7.1)

Caracteristica Co nu e necesara pentru ca rezulta din calcule.

Aceste caracteristici sunt pozitionale, in sensul ca Cg este prima
caracteristica in sablon, Cs; este a 5-a caracteristica in sablon, iar C, este
ultima caracteristica a sablonului.

La introducerea datelor, sirurile de constante se constituie in
campuri. Astfel, se identifica campul pentru codul materialului, format dintr-
un numar fix de cifre, campul numele materialului, ce are un numar de
caractere care nu depasesc o valoare prestabilita etc.

Sablonul se descrie prin tabelul 7.1, unde lungimea este calculata ca
numar de caractere.

Tabelul nr. 7.1 Sablon de descriere a cAmpurilor

Caracteristica Natura data Lungimea
Cg - cod material numar 5
C; - nume material sir caractere 20
C, — unitate masura sir caractere 3
Cs - cantitate existenta in stoc | numar 6
C, — pret unitar numar real 4+2
Cs — data ultimei aprovizionari sir caractere 9
Ce — intrari numar 6
C; - iegiri numar 6
Co - stoc final numar 9

Se observa ca cele opt caracteristici difera ca natura, ca lungime a
sirului de simboluri ce compun campurile si ocupa in cadrul sablonului pozitii
distincte.

Datele grupate in sablon cu pozitia fiecareia specificata, formeaza o
structura de date de tip articol.

Modelul grafic asociat articolului este prezentat in figura 7.1.

nume articol

primul element. al 2-lea elem. ultimul elem.
din sablon din sablon T din sablon

Figura 7.1 Model grafic asociat sablonului de articol

Se observa ca pe ultimul nivel se afla date elementare specificate prin
nume si tip. Structura, in ansamblul ei, are un nume si se defineste distinct,
ceea ce urmeaza reprezentand componentele de la nivelul al doilea.

typedef struct material
{
int cod;
char nume[20];
char um[3];
float pret;
int cont;
int intrari;
int iesiri;

};

Ig(material) = Ig(cod) + Ig(nume) + Ig(um) + + Ig(pret) + Ig(cont) +
Ig(intrari) + Ig(iesiri) +6 (7.2)

In cazul in care compilatorul face o alocare neoptimald 0 reprezint3
numarul bitilor impusi de alinierea ceruta de fiecare camp precedent care
are un alt tip decat intreg sau caracter. in cazul in care are loc optimizare in
faza de compilare, 6 devine nul.

n—1
adr(camp,) =adr(camp,) +) lg(camp j)+ 6 (7.3)

J=!

unde:

(7.4)

{1 reprezint a baitul cerut de alinierea campului j+1
j —

0 in cazul in care campj +1 nu cere alinierea

Daca datele de la nivelul al doilea le regasim sub numele de campuri
elementare, la nivelul superior data este numita data de grup.

In unele situatii fiecarui nivel j se asociaza un numar, numit numar de
nivel. Pentru nivelele inferioare se asociaza numere naturale mai mari decat
cel asociat nivelelor superioare. Unui nivel i se ataseaza un numar sau un
interval de numere. Descrierea in orice situatie ramane pozitionala.

Astfel, pentru exemplul dat se folosesc descrieri cu numere de nivel:

01 material
02 cod
02 nume
02 um
02 pret
02 cantitate
02 intrari
02 iesiri

Terminarea descrierii structurii, este marcata de aparitia unui numar
de nivel care delimiteaza inceputul altei structuri, sau o instructiune de

program, proprie limbajului, care vine sa marcheze inceputul unei alte
secvente program.

O alta descriere este:

7 material

8 cod

9 nume

10 um

8 pret

10 cantitate
9 intrari
9 iesiri

unde, pentru primul nivel se utilizeaza numerele 4, 5, 6 sau 7, iar pentru al
doilea nivel, sunt utilizate numerele 8, 9 sau 10.

La acest nivel de descriere a articolelor putem observa ca o data
elementara este un articol cu campuri de acelasi tip.

Astfel:

typedef struct a
{

int b;
}i

typedef struct c
{
int cl;
int c2;
int c3;

int c4;
int c5;

Si

a Xy

cw,y;

conduc la aceleasi rezervari de zone de memorie pentru x si y ca definitiile:

int u;
int t[5],v[5];

adr(c4) = adr(cl) + Ig(cl) + Ig(c3) = adr(cl) + (4-1) * Ig(int) (7.5)
iar
adr(v[4]) = adr(v[1]) + (4-1) * Ig(int) (7.6)

Campurile unui articol se numesc membrii articolului, iar referirea lor
se face folosind operatorul de referire ,,.”.

In exemplul considerat, w si y sunt variabile de tip ¢, iar t si v sunt
masive, fiecare avand 5 elemente. Prin w.C; se refera campul C; al
variabilei w, iar prin y.C; se refera campul C; al variabilei y.

Daca se ia in considerare tipul de variabila articol material si se face
definirea:

material m;

m.cod, m.pret sunt referiri ale campurilor ce alcatuiesc variabila m definita
ca avand tipul material.

Se observa ca articolul este un tip de data generic, pe care prin forma
de definire a campurilor il putem folosi pentru a obtine tipuri derivate de
date.

Astfel, material si C sunt tipuri derivate de date corespunzatoare
tipului generic struct.

Definirea acestui tip pune in evidenta:

- componentele, campurile care-| alcatuiesc;

- natura cadmpurilor;

- pozitia campurilor.

Altfel spus, se evidentiaza structura sau sablonul datelor.

Variabilele definite pentru un tip derivat ocupa atadta memorie cat
rezulta din lungimile cdmpurilor insumate si corectate cu alinierea si au in
componenta exact aceleasi elemente folosite la descrierea tipului, ca
membri ai fiecarei variabile.

Descrierea unui tip derivat nu inseamna rezervare de memorie, ci
stocare de informatie privind elementele care il definesc.

Definirea variabilelor de tipul derivat descris anterior, efectueaza
rezervare de memorie.

7.2 Structuri de date ierarhizate

Datele de tip articol sunt ierarhizate pe doua sau mai multe nivele.
Pentru a obtine descrierea mai multor nivele este necesar ca la fiecare nivel
inferior sa fie posibila enumerarea de date elementare sau date de grup.
Datele de grup e necesar sa fie descrise deja inainte de a le folosi, dar in
unele cazuri particulare descrierea lor se efectueaza ulterior folosirii.

Astfel, se definesc tipurile:

struct data

{
int zi;
int luna;
int an;

};

struct adresa

{
data data_stabilirii;
char strada[30];

int numar;
char telefon|[8];
char oras[30];

};

struct persoana

{
data data nasterii ;
adresa locul nasterii;
int varsta;
data data_angajarii;
adresa adresa_actuala;

Definirea ulterioara specificarii datelor de
exemplul:

01 persoana
02 data_stabilirii
03 zi
03 luna
03 an
02 locul_nasterii
03 data_nasterii
04 zi
04 luna
04 an
03 strada
03 numar

grup,

se face

Ca

03 telefon
03 oras
02 varsta
02 data_angajarii
03 zi
03 luna
03 an
02 adresa_actuala
03 data_stabilirii
04 zi
04 luna
04 an
03 strada
03 numar
03 telefon
03 oras

Oricare ar fi modalitatea de descriere a structurii arborescente,
aceasta trebuie sa ramana in continuare neambigua.
Daca se accepta ca definitie a lungimii elementului de la nivelul j:

lg(x, i)=Y (y.j.i+1)
=0 (7.7)
unde prin x; intelegem elementul y; de pe nivelul j+1, astfel incat:
cont(x), adr(y;) (7.8)

rezultd ca adresa unui element y; de pe nivelul i apartinand datei de grup k
dintr-o structura de tip articol, se obtine prin relatia:

=

-1 j—1

adr(y ,0)= adr(y,,i)+ Y (g(v,.i)+6,)+Y. (g(y,.i)+6,)

1

.

o~
I

=
i

(7.9)

De exemplu, pentru articolul definit prin:

struct student

{
char nume[21];
data data_nasterii;
data data_admiterii;

adresa campului data_admiterii.an se obtine urmarind modelul grafic din
figura 7.2

student

T

nume data nasterii data_admiterii

zi luna an zi luna an

Figura 7.2 Modelul grafic al structurii articolului student
si dupa formula:

adr(student.data_admiterii.an,3)=adr(student.nume,2)+
+ Ig(student.nume,2)+ 61+
+ Ig(student.data_nasterii,2)+ 62+
+ Ig(student.data_nasterii.zi)+ 63+
+ Ig(student.data_nasterii.luna)+ ¢4+
+ lg(student.nume,2)+ 21+ 61+4+4+4+
+R2+4+03+4+M=41+1=42 (7.10)

pentru ca 6, = 3= 04 = 0.
Daca se considera punctul operator ca orice alt operator, atunci
constructia:

a.b.c.d (7.11)

este o expresie care se evalueaza ca orice alta expresie aritmetica, logica
sau rationald. O astfel de expresie o numim expresie referentiala.

Expresia referentiala se evalueaza de la stdnga la dreapta, pentru ca
in final trebuie sa se obtina o adresa. Referirea oricarui operand se face fie
prin numele sau, daca abordarea este la nivel de limbaj, fie prin adresa,
daca analiza este din punctul de vedere al programatorului interesat sa
cunoasca mecanismele proprii executiei programelor.

Interpretarea expresiei 7.11 este:

e d este membru in structura de tip articol ¢

e ¢ este membru in structura de tip articol b

e b este membru in structura de tip articol a
ceea ce ca model grafic ii corespunde:

adr(a.b.c.d) = adr(a.b) + adr(b.c) + adr(c.d) - 2*adr(a)

adr(a.b.c.d) = adr(a) + adr(a.b) + adr(b.c) + adr(c.d)- 3*adr(a)
adr(a.b.c.d) = adr(a) + [adr(a.b) - adr(a)] + [adr(b.c)-
adr(a)]+[adr(c.d)-adr(a)] (7.12)

Punerea corect in corespondenta a baitilor ocupati de o structura de
tip articol cu cdmpurile acesteia, mai ales in cazul in care exista diferente

generate de alocarea neoptimizata a memoriei si de aparitia variabilelor ¢,
permite interpretarea riguroasa a continutului fiecarui camp. Problematica
devine cu atat mai importanta cu cat variabilele de tip articol se utilizeaza
pentru partitionarea memoriei alocate unor buffere utilizate in operatii de
intrare/iesire.

Neoptimizarea prelucrarilor este benefica cu conditia ca interpretarea
grupului de baiti sa fie controlata de programator, chiar daca citirea lor are
un alt sablon decét cel utilizat la scriere.

7.3 Vectori de structuri si structuri de vectori

Vectorii de structurii sunt masive omogene, in sensul ca fiecare
element al masivului nu difera de celalalt, chiar daca in alcatuirea lor intra
campuri de naturi diferite.

Constructia:

typedef struct student
{
char nume[30];
int varsta;
char facult[20];
int an_studiu;
};
student x[20];

defineste un vector x avand 20 de componente; fiecare componenta este un
articol ce contine campurile nume, facult, an_studiu. Modelul grafic al
acestui tip de data derivat este reprezentat in figura 7.3.

x[19]

nume | varsta | facult | an studiu | --- | nume | varsta | facult | an_studiu

Figura 7.3 Modelul grafic asociat structurii vectorului de articole x

Masivul x este unul unidimensional omogen, pentru ca toate cele 20
de componente au aceeasi structura.

Referirea varstei corespunzatoare studentului al cincisprezecelea
dintr-o grupa se realizeaza prin:

x[14] .varsta

In cazul in care cAmpurile unui articol sunt elemente ale unui masiv
unidimensional, definim o structura de vectori. De exemplu:

typedef struct student
{
char nume[30];
int note[10];
};
student x;

Daca se doreste aflarea notei a 4-a a studentului x, referirea se
efectueaza prin:

x.nota[3]

Se definesc vectori de structuri care contin vectori, respectiv
vectori de structuri de vectori:

stud y[20];

Pentru a referi nota a 5-a a studentului al 17-lea se face referirea:

y[16] .nota[4]

Lucrurile iau amploare daca se definesc structuri de matrice si
matrice de structuri.

Astfel, daca intr-o sectie sunt 20 de muncitori si intreprinderea are
30 de sectii si pentru fiecare muncitor trebuie cunoscut: timpul lucrat,
salariul orar, numele, definind:

typedef struct muncitor

{
char nume[20];
long int salariu;
int ore;

};
long int salariu total;
muncitor muncit[30] [20];

se calculeaza salariul total pentru muncitorul 15 din sectia a 4-a astfel:
salariu_total: = muncit[3][14].salariu*muncit[3][14].ore; (7.13)

Daca matricea este privita ca vectori de vectori, extensiile sunt facute
pentru masivele tridimensionale ca vectori de matrice sau matrice de
vectori, iar pentru masivele cu patru dimensiuni, ca masive bidimensionale
de masive bidimensionale, sau vectori de masive tridimensionale sau
masive tridimensionale de vectori.

Generalizarile decurg din posibilitatea de a construi structuri de
structuri si uneori de a introduce aspectul recursiv al descrierii. Secventa:

typedef int a[5];
typedef a b[5];
b c[5];

corespunde descrierii:

int c[5][5]1[5];

iar:

typedef int x[5][5];
x y[51[5]1;

corespunde descrierii:

int z[5][5][5][5];
Referirea elementelor se efectueaza dupa aceleasi requli, specificand

valori intre paranteze patrate, in numar egal cu dimensiunea atribuita
masivului, ca de exemplu:

clill[jilk] — (7.14)
y[igifkithl — (7.15)

Atributele sunt comutative in raport cu operatorul de referire. Un
element din vectorul de structura se refera prin:

nume_vector[i].nume_membru (7.16)
iar un element din structura de vectori se refera prin:
nume_structura.nume_membrul[i] (7.17)

Se considera spre exemplificare urmatorul program care gestioneaza
actionarii unei societati comerciale.

#include <windows.h>
#include <process.h>
#include <ctype.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>

struct data

{

int da_year,da_day,da mon;

};

struct adresa

{

char str[25];
int nr;

char bloc[3];
char sc;

int ap;

int sect;

long codp;
char loc[25];
char jud[20];

};

struct ID
{
char seria[3]:;
long nr;
data datak;
int circa;

};

struct actionar
{
char cod[6];
char nume[30];
struct adresa adr;
data dataN;
struct ID BI;
char reprez[6];
int nr_act;

};

struct ind

{
char cheie[6];
long poz;

};

struct nod

{
char sir[6];
nod *st;
nod *dr;

};
ind index[1000];

char *mes[40]={
"Data trebuie sa fie numerica!'",
"Ziua trebuie sa fie intre 1 si 31!'",
"Luna trebuie sa fie intre 1 si 12!'",
"Anul trebuie sa fie intre 1900 si 2001!'",
"Data trebuie sa fie cuprinsa intre 0 si 1!'",
"Serie incorecta!"

};

long 1g_fis()
{
long lung;
FILE *pf;
pf=fopen ("actionar.dat","rb") ;
fseek (pf, 0, SEEK_END) ;

lung=ftell (pf) ;
fclose (pf) ;
return lung;

}

void insnod(nod *& rad,char *s,int &vb)
{
if (rad==NULL)
{
rad=new nod;
strncpy (rad->sir,s,6) ;
rad->st=rad->dr=NULL;
}
else if(strncmp(s,rad->sir,6) < 0) insnod(rad->st,s,vb);
else if(strncmp(s,rad->sir,6) > 0) insnod(rad->dr,s,vb);
else vb=1l;

}

void del_arb(struct nod *T)
{
if (T!=NULL)
{
del arb(T->st);
del arb(T->dr);
delete T;

}

int indexare()

{
FILE *pf;
actionar act;

if ((pf=fopen("actionar.dat","rb"))==NULL)
{
printf ("Fiserul cu date despre actionari nu existal!");
getch() ;
exit(1l);
}
int k=0;
long pozitie;
while (fread (&act,sizeof (struct actionar),1,pf))
{
pozitie=ftell (pf)-sizeof (struct actionar);
strncpy (index[k] .cheie,act.cod, 6) ;
index[k] .poz=pozitie;
k++;
}
fclose (pf) ;
return k;

}

void sortare(int n)
{
struct ind temp;
for(int i=0;i<n-1;i++)
for (int j=i;j<n;j++)
if (strcmp(index[i] .cheie,index[j] .cheie) >0)
{

temp=index[i];

index[i]=index[j];
index[j]=temp;

}

int cautare(int n,int &poz,char *key)
{
int s,m,d;
s=0;
d=n;
while (s<=d)
{
m=(s+d) /2;
if (!'strncmp (key,index[m].cheie,6))
{
poz=m;
return m;
}
else
if (strncmp (key,index[m].cheie, 6)<0)
d=m-1;
else
s=m+1;
}

return -1;

void sortareN()
{
struct actionar act,actl;
FILE *pf, *pt;
if ((pf=fopen("actionar.dat", "rb+"))==NULL)
{
printf ("Fisierul cu date despre actionari nu exista!");
getch() ;
return;
}
pt=fopen ("temp.dat","wb") ;
int vb,na=1lg fis()/sizeof (struct actionar);
for (int i=0;i<na;i++)
{
fread(&act,sizeof (struct actionar),1,pf);
fwrite (&act,sizeof (struct actionar),1,pt);
}
fclose (pt) ;
fclose (pf) ;
pt=fopen ("temp.dat", "rb+") ;
do
{
vb=0;
fseek (pt,0,0) ;
for(int i=0;i<na-1;i++)
{
fread(&act,sizeof (struct actionar),1l,pt);
fread(&actl,sizeof (struct actionar),1l,pt);
if (stricmp(act.nume,actl.nume)>0)
{
fseek (pt,ftell (pt) -2*sizeof (struct
actionar),0);
fwrite (&actl,sizeof (struct actionar),1,pt);

fwrite (&act,sizeof (struct actionar),1l,pt);

vb=1;
}

fseek (pt,ftell (pt) -sizeof (struct actionar),0);

}
}
while (vb==1) ;
fclose (pt) ;
}

void eroare(int cod)

{
printf ("\a%s" ,mes[cod-1]) ;
Sleep (500) ;

}

void valid nr_1l(long &val,int cod)
{

int i,VB=0;

do

{
VB=0;

char tab[255];
fflush (stdin) ;
gets (tab) ;
if (strlen(tab)==0)
VB=1;
else
{
i=0;
while (VB==0&&i<strlen (tab))
{
if (isdigit(tab[i]))
i++;
else
VB=1;
}
}
if (VB==0)
sscanf (tab, "%1d", &val) ;
else
eroare (cod) ;
}
while (VB!=0) ;
}

void valid nr f(float &val,int cod)

{
int i,VB=0;
do

{
VB=0;

char tab[255];

fflush(stdin) ;

gets(tab) ;

if (strlen(tab)==0)
VB=1;

else

{

i=0;
while (VB==0&&i<strlen (tab))
{
if (isdigit(tab[i]))
i++;
else
VB=1;
}
}
if (VB==0)
sscanf (tab,"%f", &val) ;
else
eroare (cod) ;

}
while (VB!'=0) ;
}

void valid nr i(int &val,int cod)
{
int i,VB=0;
do
{
VB=0;

char tab[255];

fflush(stdin) ;
gets(tab) ;
if (strlen(tab)==0)
VB=1;
else
{
i=0;
while (VB==0&&i<strlen (tab))
{
if (isdigit(tab[i]))
i++;
else
VB=1;
}
}
if (VB==0)

sscanf (tab, "%d", &val) ;
else
eroare (cod) ;

}
while (VB!=0) ;
}

void valid ab_sb(char val[],int cod)
{
int i,VB=0;
do
{
VB=0;
char tab[255];
fflush(stdin) ;
gets(tab) ;
if (strlen(tab)==0]| |strlen(tab) '=2)
VB=1;
else

{

i=0;
while (VB==0&&i<2)
{
if (isalpha(tab[i]))

i++;
else
VB=1;
}
}
if (VB==0)
strncpy (val, tab, 3) ;
else

eroare (cod) ;
}
while (VB!'=0) ;
}

void sortareA()
{
struct actionar act,actl;
FILE *pf, *pt;
if ((pf=fopen("actionar.dat", "rb+"))==NULL)
{
printf ("Fisierul cu date despre actionari nu exista!");
getch() ;
return;
}
pt=fopen ("temp.dat","wb") ;
int vb,na=lg_fis()/sizeof(struct actionar);
for (int i=0;i<na;i++)
{
fread(&act,sizeof (struct actionar),1,pf);
fwrite (&act,sizeof (struct actionar),1,pt);
}
fclose (pt) ;
fclose (pf) ;
pt=fopen ("temp.dat", "rb+") ;
do
{
vb=0;
fseek (pt,0,0) ;
for(int i=0;i<na-1;i++)
{
fread(&act,sizeof (struct actionar),1l,pt);
fread(&actl,sizeof (struct actionar),1,pt);
if ((unsigned)act.nr_act<(unsigned)actl.nr_act)
{
fseek (pt, ftell (pt) -2*sizeof (struct
actionar),0) ;
fwrite (&actl,sizeof (struct actionar),1,pt);
fwrite (&act,sizeof (struct actionar),1l,pt);
vb=1;
}
fseek (pt,ftell (pt) -sizeof (struct actionar),0);
}
}
while (vb==1) ;
fclose (pt) ;
}
void creare()

{

int v;

char c,key[6];

FILE *pf;

actionar act;

nod *RAD=NULL;

if ((pf=fopen("actionar.dat","rb")) !=NULL)

{

}

printf ("ATENTIE\n") ;

printf ("Fiserul cu date despre actionari exista!\n");

printf ("Datele existente se vor pierde!\n");
printf ("Doriti sa-1 rescrieti?[D/N]: ");

do

c=getch() ;

while(c!='D'&&c!='N") ;

if (c=='N")

{

return;

}

if ((pf=fopen ("actionar.dat","wb"))==NULL)

{

else

exista!");

printf ("Eroare la creare!");
exit(1l);

printf ("Cod: ") ;
while (scanf ("%$6s" ,key) !'=0)
{
v=0;
insnod (RAD, key, V) ;
if (v)
{

printf ("\n\aArticolul cu aceasta

Sleep (500) ;
fflush(stdin) ;
continue;
}
strncpy (act.cod, key, 6) ;
fflush (stdin) ;
printf ("Nume: ") ;
gets (act.nume) ;
fflush(stdin) ;
printf ("Adresa actionaruluil\n");
printf ("\tStrada: ");
gets (act.adr.str) ;
printf ("\tNumarul: ");
valid nr i(act.adr.nr,1);
printf ("\tBloc: ");
scanf ("%$s" ,act.adr.bloc) ;
fflush(stdin) ;
printf ("\tScara: ");
scanf ("%c", &act.adr.sc);
printf ("\tApartament: ");

valid nr_ i(act.adr.ap,1);
printf ("\tSector: ");
valid nr_i(act.adr.sect,1l);
printf ("\tCod postal: ");
valid nr 1(act.adr.codp,1);

cheie

fflush (stdin) ;
printf ("\tLocalitatea: ");
gets (act.adr.loc) ;
printf ("\tJudetul: ");
gets (act.adr. jud) ;
do
{
printf ("Data nasterii\n");
printf ("\tZiua:");
valid nr i(act.dataN.da day,1l):;
if (act.dataN.da day<l||act.dataN.da day>31)
eroare (2) ;
}
while(act.dataN.da day<l||act.dataN.da day>31);
printf ("\tLuna:");
do
{
valid nr i(act.dataN.da mon,1l);
1f(act dataN.da mon<1||act dataN.da mon>12)
eroare (3) ;
}
while (act.dataN.da mon<l||act.dataN.da mon>12);
printf ("\tAnul:");
do

{
valid nr_i(act.dataN.da year,1);

if (act.dataN.da year<1900| |act.dataN.da year>2001)
eroare (4) ;

}

while (act.dataN.da year<1900| |act.dataN.da_ year>2001) ;
printf ("Buletin de identitate\n");
printf ("\tSeria:");
valid ab _sb(act.BI.seria,7);
prlntf("\tNumarul ")
valid nr 1l(act.BI.nr,1l);
printf ("Data eliberarii\n");
printf ("\tZiua:");

do

{
valid nr i(act.BI.dataE.da day,1);

if (act.BI.dataE.da_day<l||act.BI.dataE.da_day>31)
eroare(2) ;

}
while (act.BI.dataE.da_day<l||act.BI.dataE.da _day>31);

printf ("\tLuna:");
do

{
valid nr i(act.BI.dataE.da mon,l);

if (act.BI.dataE.da_mon<l| |act.BI.dataE.da mon>12)
eroare (3) ;

}
while (act.BI.dataE.da mon<l||act.BI.dataE.da mon>12) ;

printf ("\tAnul: ");
do
{

valid nr i(act.BI.dataE.da year,l);

if (act.BI.dataE.da year<1900| |act.BI.dataE.da year>2001)
eroare (4) ;

}

while (act.BI.dataE.da_year<1900| |act.BI.dataE.da_year>2001);
printf ("\tCirca de politie: ");

valid nr i(act.BI.circa,l);
printf ("Numarul de actiuni detinute: ");

valid nr_ i(act.nr_act,1);

printf ("\n") ;
fwrite (&act,sizeof (struct actionar),1l,pf);
printf("Cod: ");
}

}

del arb(RAD);

fclose (pf) ;

}

void creare_date()
{
char c;
float ksoc,pfn,cota;
long int val A;
FILE *pd;
if ((pd=fopen("date.dat","rb")) !=NULL)
{
printf ("ATENTIE\n") ;
printf ("Fiserul cu date despre profit exista!\n");
printf ("Datele existente se vor pierde!\n");
printf ("Doriti sa-1 rescrieti?[D/N]: ");
do
c=getch() ;
while(c!='D'&&c!="'N") ;
if (c=="'N")
{
return;
}
}
if ((pd=fopen("date.dat","wb"))==NULL)
{
printf ("Eroare la creare!");
getch();
return;
}
printf ("DATE PRIVIND CAPITALUL SOCIAL SI PROFITUL\n") ;
printf ("Valoarea unei actiuni:");
valid nr 1(val A,1);
fwrite (&val_A,sizeof(long int),1,pd);
printf ("Capital Social:");
valid nr_f (ksoc,1);
fwrite (&ksoc,sizeof (float) ,1,pd) ;
printf ("Profit net:");
valid nr f(pfn,1);
fwrite (&pfn,sizeof (float),1,pd) ;
do
{

printf ("Cota din profit repartizata la dividende
[subunitaral:");
scanf ("$£f", &cota) ;
if (cota>l||cota <0)
eroare (6) ;
}
while (cota>l| |cota <0);
fwrite (&cota,sizeof (float) ,1,pd) ;
fclose (pd) ;
}

void afis_date(const actionar &act)
{

printf ("\n\nCod: %s\n",act.cod) ;

printf ("Nume: "); puts(act.nume);

printf ("Adresa actionaruluil\n");

printf ("\tStrada:"); puts(act.adr.str);

printf ("\tNumarul: %d\n",act.adr.nr);

printf ("\tBloc: %s ",act.adr.bloc);

printf ("Scara: %c Apartament: %d Sector:
%d\n" ,act.adr.sc,act.adr.ap,act.adr.sect) ;

printf ("\tCod postal: %1d\n",act.adr.codp) ;

printf ("\tLocalitatea: ") ;puts(act.adr.loc);

printf ("\tJudetul: "); puts(act.adr.jud);

printf ("Data nasterii:
$d/%d/%d\n" ,act.dataN.da_day,act.dataN.da_mon,act.dataN.da_year) ;

printf ("Buletin de identitate\n");

printf ("\tSeria: %s",act.BI.seria);

printf (" Numarul: %1d\n",act.BI.nr);

printf ("\tData eliberarii:
$d/%d/%d\n" ,act.BI.dataE.da_day,act.BI.dataE.da _mon,act.BI.dataE.da ye
ar) ;

printf ("\tCirca de politie: %d\n",act.BI.circa);

printf ("Numarul de actiuni detinute: %u\n",act.nr_act);
printf ("\n") ;

}

void cons()
{
int n;
char key|[6];
int vb,i,c;
actionar act;
n=indexare() ;
sortare(n) ;
FILE *pf=fopen("actionar.dat","rb");
while (printf ("\nCod actionar:"), (c=scanf ("%$6s",6key)) !=0)
{

vb=cautare (n,i, key) ;

if (vb==-1)

{

printf ("\n\aArticolul cu aceasta cheie nu exista!\n");
Sleep (500) ;

fflush(stdin) ;

}

else

{

fseek (pf,index[i] .poz,0) ;
fread(&act,sizeof (struct actionar),1l,pf);

afis date(act);
getch() ;
}
}
fclose (pf) ;
}

void modif ()
{
int n;
char key|[6];
int vb,i,nr;
actionar act;
n=indexare() ;
sortare(n) ;
FILE *pf=fopen("actionar.dat","rb+");
while (printf ("\nCod actionar:") , scanf ("%6s", key) !=EOF)
{

vb=cautare (n,i, key) ;

if (vb==-1)
{
printf ("\n\aArticolul cu aceasta cheie nu exista!");
Sleep (500) ;
}
else
{
fseek (pf,index[i] .poz,0) ;
fread(&act,sizeof (struct actionar),1l,pf);
afis date(act);
printf ("Noul numar:");
valid nr_i(nr,1);
act.nr_act=nr;
fseek (pf,index[i] .poz,0) ;
fwrite (&act,sizeof (struct actionar),1l,pf);
}
}
fclose (pf) ;

}

void listA()
{

FILE *pt, *ptxt;

unsigned int tot a=0;

long int val_a;

float ksoc;

actionar act;

sortareA() ;

FILE *pd=fopen("date.dat","rb");

fread(&val_a,sizeof(long int),1,pd);

fread (&ksoc,sizeof (float) ,1,pd) ;

fclose (pd) ;

pt=fopen ("temp.dat","rb") ;

while (fread (&act,sizeof (struct actionar),1,pt))

tot_at+=act.nr_act;

rewind (pt) ;

ptxt=fopen ("listal.txt","w");

fprintf (ptxt, "\n\n\n\t\tlLista actionarilor dupa numarul de
actiuni\n");

fprintf (ptxt, "\t\t**\n\n

")

fprintf(ptxt,"**
*********************\n");

fprintf (ptxt,"* Cod * Nume Prenume * Numar *
Ponderea actiunilor*\n");
fprintf (ptxt,"* * * actiuni *

in capitalul social*\n");
fprintf(ptxt,"**
*********************\n");

while (fread (&act,sizeof (struct actionar) ,h1,pt))
{
fprintf (ptxt, "*%6s *%$-30s*%8u *%18.3f
$%$*\n" ,act.cod,act.nume,act.nr_act, (float) (unsigned)act.nr_act*val a/k
soc*100) ;

fprintf(ptxt,"**
*********************\n")-
’

fprintf(ptxt,"**
*********************\n");

fclose (pt) ;
fclose (ptxt) ;
}

void listD()
{

FILE *pt,*ptxt;

SYSTEMTIME data;

float pfn,cota;

float div;

actionar act;

sortareA() ;

unsigned int tot a=0;

FILE *pd=fopen("date.dat","rb");

fseek (pd,sizeof (long int)+sizeof (float),0) ;

fread (&pfn,sizeof (float) ,1,pd) ;

fread (&cota,sizeof (float) ,1,pd) ;

fclose (pd) ;

pt=fopen ("temp.dat","rb") ;

while (fread (&act,sizeof (struct actionar) ,h1,pt))

tot_at+=act.nr_act;

div=(pfn*cota)/tot_a;

rewind (pt) ;

ptxt=fopen ("lista2.txt","w");

GetSystemTime (&data) ;

fprintf (ptxt,"\n\t\t\t\tDividende cuvenite actionarilor la data
%d.%d.%d\n" ,data.wDay,data.wMonth,data.wYear) ;

fprintf(ptxt,"\t\t\t\t**
******\n\n");

fprintf (ptxt,"Profit net:%.0f lei\n",pfn);

fprintf (ptxt, "Cota de profit repartizata la
dividende:%.2£f\n",cota) ;

fprintf (ptxt, "Total actiuni:%u\n", tot a);

fprintf (ptxt, "Dividende per actiune:%.2f lei/act\n\n",div);
FPrintf (PEXt, "kkkkkkkkkkkkhkhhkhhhhhhhhkhkhhkhhkkhhkkkhkkhkkhkkkk*

hhkkhkkkhkkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhxkkx

\n");

fprintf (ptxt,"* Nume Prenume * Data *
Adresa *Buletin de * Numar * Dividende
*\n") ;

fprintf (ptxt,"* * nasterii *

*jidentitate * actiuni* *\n") ;

fprintf(ptxt,"**
khkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkhkhkhkkhkhkkkk
\n") ;
while (fread (&act,sizeof (struct actionar) ,h1,pt))
{
fprintf (ptxt, "*%$-30s*%2d.%2d.%d*Str:%-29s Nr:%$-5d*%-2s
%$81d*%8u*%1l1l.2f
*\n",act.nume,act.dataN.da_day,act.dataN.da_mon,act.dataN.da_year,act.
adr.str,act.adr.nr,act.BI.seria,act.BI.nr,act.nr_act, (unsigned)act.nr__
act*div) ;
fprintf (ptxt,"* *
*Bl:%c%c%c Sc:%c Ap:%-3d Sect:%-2d Cod p:%-81d * * *
*\n" ,act.adr.bloc[0] ,act.adr.bloc[l] ,act.adr.bloc[2],act.adr.sc,act.ad
r.ap,act.adr.sect,act.adr.codp) ;
fprintf (ptxt,"* *
*Loc:%-20s * * *
*\n" ,act.adr.loc) ;

fprintf(ptxt,"**
hhkkhkkhkkhkkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhxkkx

\n") ;
}

fprintf (PtXt, Ak kkkkkkkkkkkkkkkkkkkkkkhkhkkkhkhhhhhhhhhhhhhhhhhx
hhkkhkkhkhkkkhkhkkhkhkkhkhkkhhkkhhkkhhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhhkhkhkhkkhhkkhhkkhkhkkhkhkkhkkkx
\n") ;

fclose (pt) ;

fclose (ptxt) ;
}

void listAB()

{
FILE *pt, *ptxt;

actionar act;

sortareN() ;

pt=fopen ("temp.dat","rb") ;

ptxt=fopen ("lista3.txt","w");

fprintf (ptxt, "\n\n\n\t\t\tLista actionarilor in ordine
alfabetica\n") ;

fprintf (ptxt, "\t\E\t**kkkkkkdkhhkhkkhkkkkkkkkkkkkkkkkkkkkkkxk*\n\n"
X Fprintf (Ptxt, "\t\br*kkhkdkhkhkkhkhkhhhhhhhkhkhhhkhhhhhhhhkhhhkkhhkkx
*kkkx\n") ;

fprintf (ptxt,"\t\t* Nr. * Nume Prenume *
Numar *\n");
fprintf (ptxt, "\t\t* crt. * *

actiuni *\n");

fprintf (Ptxt, "\t\Er*kkkkkkhhkhhkhhkhkhhhkkhkkkhhkhkhhhhkhhkkkkhkhkx
*%k*k\n") ;

int i=0;

while (fread (&act,sizeof (struct actionar),1,pt))

{

fprintf (ptxt,"\t\t*%6d *%-30s*%8u

*\n",++i,act.nume,act.nr_act);

Fprintf (Ptxt, "\t\tr*kkdkdkhkhkkhkhkkhhhkhhkhkhhhkhhhkhhhhkhhkhkkhhkkk
*kkkxk\n") ;

}

fprintf(ptxt,"\t\t**

*kkkxk\n") ;

fclose (pt) ;
fclose (ptxt) ;

}

void do_sterg()
{
int n,c;
int vb,i;
actionar act;
n=indexare() ;
sortare(n) ;
char key|[6];
FILE *pf=fopen("actionar.dat","rb");
while (printf ("\nCod actionar:"),h scanf ("%6s", 6key) !=0)
{
vb=cautare (n,i, key) ;
if (vb==-1)
{
printf ("\n\aArticolul cu aceasta cheie nu exista!\n");
Sleep (500) ;
fflush(stdin) ;
continue;
}
else
{
fseek (pf,index[i] .poz,0) ;
fread(&act,sizeof (struct actionar),1l,pf);
afis date(act);
printf ("Doriti sa stergeti acest articol?[D/N]: ");
do
{
c=getch() ;
}
while(c!'='D'&&c!="'N") ;
if (c=='N'")
{
continue;
}
}
//rescriere fisier
FILE *ptmp=fopen("tmp.dat",6"wb");
rewind (pf) ;
for(int j=0;]j<index[i] .poz/sizeof (struct actionar) ;j++)
{
fread(&act,sizeof (struct actionar),1l,pf);
fwrite (&act,sizeof (struct actionar) ,1,ptmp) ;
}
fread(&act,sizeof (struct actionar),1,pf);
while (fread (&act,sizeof (struct actionar),1l,pf))
fwrite (&act,sizeof (struct actionar) ,1,ptmp) ;
fclose (pf) ;
fclose (ptmp) ;
unlink ("actionar.dat") ;
rename ("tmp.dat","actionar.dat") ;
n=indexare() ;
sortare (n) ;
pf=fopen ("actionar.dat","rb") ;

}

fclose (pf) ;

void adaug()
{
int v;
char key|[6];
actionar act;
nod *RAD=NULL;
FILE *pf;
if ((pf=fopen("actionar.dat", "rb+"))==NULL)
{
printf ("Fiserul cu date despre actionari nu existal!");
return;

else

strncpy (act.reprez,"” ",6);
while (fread (&act,sizeof (struct actionar),1l,pf))
insnod (RAD,act.cod,v) ;
//fseek (p£f,0,2);
printf ("Cod:\n") ;
while (scanf ("%$6s",key) !'=0)
{
v=0;
insnod (RAD, key, V) ;
if (v)
{

printf ("\n\aArticolul cu aceasta cheie exista!\n");
Sleep (500) ;

fflush(stdin) ;

continue;

}

strncpy (act.cod, key, 6) ;
fflush(stdin) ;

printf ("Nume: ");

gets (act.nume) ;
fflush(stdin) ;

printf ("Adresa actionarului\n");
printf ("\tStrada: ");

gets (act.adr.str) ;

printf ("\tNumarul: ");
valid nr_ i(act.adr.nr,1);
printf ("\tBloc: ");

scanf ("%$s" ,act.adr.bloc) ;
fflush (stdin) ;

printf ("\tScara: ");

scanf ("%c", &act.adr.sc);
printf ("\tApartament: ");
valid nr i(act.adr.ap,1);
printf ("\tSector: ");
valid nr_i(act.adr.sect,l);
printf ("\tCod postal: ");
valid nr 1l(act.adr.codp,1);
fflush(stdin) ;

printf ("\tLocalitatea: ");
gets (act.adr.loc) ;

printf ("\tJudetul: ");

gets (act.adr. jud) ;

do

{

printf ("Data nasterii\n");

printf ("\tZiua:");

valid nr i(act.dataN.da day,1);

if (act.dataN.da_day<l| |act.dataN.da_day>31)
eroare (2) ;

}
while(act.dataN.da day<l||act.dataN.da day>31);

printf ("\tLuna:");
do
{

valid nr i(act.dataN.da mon,l);
if (act.dataN.da_mon<l| |act.dataN.da_mon>12)

eroare (3) ;

}
while(act.dataN.da mon<l||act.dataN.da mon>12);

printf ("\tAnul:");
do

{
valid nr i(act.dataN.da year,1l);

if (act.dataN.da year<1900| |act.dataN.da year>2001)
eroare (4) ;
}
while(act.dataN.da year<1900]||act.dataN.da_ year>2001) ;
printf ("Buletin de identitate\n");
printf ("\tSeria:");
valid ab sb(act.BI.seria,7);
printf ("\tNumarul:") ;
valid nr 1l(act.BI.nr,1);
printf ("Data eliberariil\n");
printf ("\tZiua:");
do

{
valid nr i(act.BI.dataE.da_day,l);

if (act.BI.dataE.da day<l||act.BI.dataE.da day>31)
eroare (2) ;

}
while (act.BI.dataE.da_day<l||act.BI.dataE.da_day>31);

printf ("\tLuna:");
do
{

valid nr i(act.BI.dataE.da mon,l);

if (act.BI.dataE.da mon<l||act.BI.dataE.da mon>12)
eroare (3) ;
}
while (act.BI.dataE.da_mon<l| |act.BI.dataE.da_mon>12) ;
printf ("\tAnul: ");
do

{
valid nr i(act.BI.dataE.da_year,1l);

if (act.BI.dataE.da_year<1900| |act.BI.dataE.da_year>2001)
eroare (4) ;
}
while (act.BI.dataE.da_year<1900| |act.BI.dataE.da year>2001) ;
printf ("\tCirca de politie: ");

valid nr i(act.BI.circa,l);
printf ("Numarul de actiuni detinute: ");

valid nr_i(act.nr_act,l);

printf ("\n") ;
fwrite (&act,sizeof (struct actionar),1l,pf);
printf ("Cod: ") ;
}

}

del arb(RAD);

fclose (pf) ;

}

void men fis()
{
int rasp,cont=1l;
while (cont)
{
do
{
printf ("MENIUL FISIERE\n\n");
printf ("1.CREARE FISIER ACTIONARI\n") ;
printf ("2.CREARE FISER CU DATE PRIVIND PROFITUL\n");
printf ("3 .ADAUGARE ACTIONARI\n") ;
printf ("4 .MODIFICARE NUMAR DE ACTIUNI\n") ;
printf ("5.STERGERE ACTIONARI DIN FISIER\n") ;
printf ("6.REVENIRE LA MENIUL PRINCIPAL\n\n") ;
printf ("Optiunea:");
valid nr i(rasp,5);//scanf("%d", &rasp) ;
}
while (rasp<1l| |rasp>6) ;
switch (rasp)

{

case l:creare() ;break;

case 2:creare_ date() ;break;
case 3:adaug() ;break;

case 4:modif () ;break;

case 5:do_sterg() ;break;
case 6:cont=0;break;

}
}

void men sit()
{
int rasp,cont=1;
while (cont)
{
do
{
printf ("MENIUL SITUATII DE IESIRE\n\n");
printf ("1.LISTA ACTIONARILOR IN ORDINEA NUMARULUI DE
ACTIUNI\n") ;
printf ("2.LISTA ACTIONARIILOR IN ORDINE
ALFABETICA\n") ;
printf ("3.LISTA DIVIDENDELOR CUVENITE FIECARUI
ACTIONAR\n") ;
printf ("4 .CONSULTARE FISIER DUPA COD ACTIONAR\n") ;
printf ("5.REVENIRE LA MENIUL PRINCIPAL\n\n");
printf ("Optiunea:") ;

valid nr i(rasp,5);//scanf("%d", &rasp);
}
while (rasp<1l| |rasp>5) ;
switch (rasp)

{

case 1l:1listA() ;break;
case 2:1istAB() ;break;
case 3:1istD() ;break;
case 4:cons () ;break;
case 5:cont=0;break;

}
}

void main ()
{
int rasp,cont=1l;
while (cont)
{
do
{
printf ("MENIUL PRINCIPAL\n\n");
printf ("1.FISIERE\n") ;
printf ("2.SITUATII DE IESIRE\n") ;
printf ("3.TERMINARE PROGRAM\n\n") ;
printf ("Optiunea:") ;
valid nr_i(rasp,5);//scanf("%d", &rasp) ;
}
while (rasp<1| |rasp>3) ;
switch (rasp)
{
case l:men fis() ;break;
case 2:men_sit() ;break;
case 3:cont=0;break;

}

Programatorul trebuie sa realizeze un echilibru intre cresterea
numarului de dimensiuni, reducerea gradului de umplere si complexitatea
expresiilor asociate calculelor de deplasare, pentru a localiza fiecare
element al structurii pe care o defineste. Acest echilibru conduce in final la
reducerea duratei de prelucrare si la obtinerea lizibilitdtii bune a
programului.

