
7. ARTICOLUL – STRUCTURĂ DE DATE NEOMOGENĂ
ŞI CONTIGUĂ

7.1 Structuri de date poziţionale

Există o diversitate de date cu care se caracterizează indivizii unei

colectivităţi. După efectuarea unei analize detaliate, se conchide că un
număr q de caracteristici sunt suficiente pentru descrierea elementelor
colectivităţii. În continuare numim şablon de descriere o anumită ordine în
care sunt înşirate caracteristicile, ordine absolut necesară a fi respectată la
descrierea fiecărui element al colectivităţii.

Fie caracteristicile C1, C2, ..., Cq dispuse în ordinea care se constituie
în şablonul asociat descrierii indivizilor colectivităţii considerate.

De exemplu, pentru descrierea materialelor existente în stoc, se
consideră caracteristicile:

C1 – numele materialului;
C2 – unitatea de măsură;
C3 – cantitatea existentă în stoc la începutul perioadei;
C4 – preţul unitar;
C5 – data ultimei aprovizionări;
C6 – intrările de materiale;
C7 – ieşirile de materiale;
C8 – codul materialului;
C9 – stocul final.

deci q = 8. Şablonul pentru introducerea datelor are elementele:

C8 C1 C2 C4 C3 C5 C6 C7 (7.1)

Caracteristica C9 nu e necesară pentru că rezultă din calcule.
Aceste caracteristici sunt poziţionale, în sensul că C8 este prima

caracteristică în şablon, C3 este a 5-a caracteristică în şablon, iar C7 este
ultima caracteristică a şablonului.

La introducerea datelor, şirurile de constante se constituie în
câmpuri. Astfel, se identifică câmpul pentru codul materialului, format dintr-
un număr fix de cifre, câmpul numele materialului, ce are un număr de
caractere care nu depăşesc o valoare prestabilită etc.

Şablonul se descrie prin tabelul 7.1, unde lungimea este calculată ca
număr de caractere.

Tabelul nr. 7.1 Şablon de descriere a câmpurilor
Caracteristică Natură dată Lungimea

C8 – cod material număr 5
C1 – nume material şir caractere 20
C2 – unitate măsură şir caractere 3
C3 – cantitate existentă în stoc număr 6
C4 – preţ unitar număr real 4+2
C5 – data ultimei aprovizionări şir caractere 9
C6 – intrări număr 6
C7 – ieşiri număr 6
C9 – stoc final număr 9

Se observă că cele opt caracteristici diferă ca natură, ca lungime a

şirului de simboluri ce compun câmpurile şi ocupă în cadrul şablonului poziţii
distincte.

Datele grupate în şablon cu poziţia fiecăreia specificată, formează o
structură de date de tip articol.

Modelul grafic asociat articolului este prezentat în figura 7.1.

nume articol

primul element.
din şablon

al 2-lea elem.
din şablon

ultimul elem.
din şablon . . .

Figura 7.1 Model grafic asociat şablonului de articol

Se observă că pe ultimul nivel se află date elementare specificate prin

nume şi tip. Structura, în ansamblul ei, are un nume şi se defineşte distinct,
ceea ce urmează reprezentând componentele de la nivelul al doilea.

typedef struct material
{
 int cod;
 char nume[20];
 char um[3];
 float preţ;
 int cont;
 int intrări;
 int ieşiri;
 };

lg(material) = lg(cod) + lg(nume) + lg(um) + + lg(pret) + lg(cont) +

lg(intrari) + lg(iesiri) + (7.2)

În cazul în care compilatorul face o alocare neoptimală  reprezintă

numărul biţilor impuşi de alinierea cerută de fiecare câmp precedent care
are un alt tip decât întreg sau caracter. În cazul în care are loc optimizare în
faza de compilare,  devine nul.

 j) lg(câmp)adr(câmp)adr(câmp
1

1
1i  





n

j

 (7.3)

unde:









aliniereacerenucâmpjcareîncazulîn

jcâmpuluialiniereadecerutbaitulăreprez
j 10

1int1
 (7.4)

Dacă datele de la nivelul al doilea le regăsim sub numele de câmpuri

elementare, la nivelul superior data este numită dată de grup.
În unele situaţii fiecărui nivel i se asociază un număr, numit număr de

nivel. Pentru nivelele inferioare se asociază numere naturale mai mari decât
cel asociat nivelelor superioare. Unui nivel i se ataşează un număr sau un
interval de numere. Descrierea în orice situaţie rămâne poziţională.

Astfel, pentru exemplul dat se folosesc descrieri cu numere de nivel:

01 material
 02 cod
 02 nume
 02 um
 02 preţ
 02 cantitate
 02 intrări
 02 ieşiri
01

Terminarea descrierii structurii, este marcată de apariţia unui număr

de nivel care delimitează începutul altei structuri, sau o instrucţiune de
program, proprie limbajului, care vine să marcheze începutul unei alte
secvenţe program.

O altă descriere este:

7 material
 8 cod
 9 nume
 10 um
 8 preţ
 10 cantitate
 9 intrări
 9 ieşiri
4

unde, pentru primul nivel se utilizează numerele 4, 5, 6 sau 7, iar pentru al
doilea nivel, sunt utilizate numerele 8, 9 sau 10.

La acest nivel de descriere a articolelor putem observa că o dată
elementară este un articol cu câmpuri de acelaşi tip.

Astfel:

typedef struct a
{
 int b;
};

typedef struct c
{
 int c1;
 int c2;
 int c3;

 int c4;
 int c5;
};

şi

a x;
c w,y;

conduc la aceleaşi rezervări de zone de memorie pentru x şi y ca definiţiile:

 int u;

 int t[5],v[5];

adr(c4) = adr(c1) + lg(c1) + lg(c3) = adr(c1) + (4-1) * lg(int) (7.5)

iar

adr(v[4]) = adr(v[1]) + (4-1) * lg(int) (7.6)

Câmpurile unui articol se numesc membrii articolului, iar referirea lor

se face folosind operatorul de referire „.”.
În exemplul considerat, w şi y sunt variabile de tip c, iar t şi v sunt

masive, fiecare având 5 elemente. Prin w.C4 se referă câmpul C4 al
variabilei w, iar prin y.C1 se referă câmpul C1 al variabilei y.

Dacă se ia în considerare tipul de variabilă articol material şi se face
definirea:

material m;

m.cod, m.preţ sunt referiri ale câmpurilor ce alcătuiesc variabila m definită
ca având tipul material.

Se observă că articolul este un tip de dată generic, pe care prin forma
de definire a câmpurilor îl putem folosi pentru a obţine tipuri derivate de
date.

Astfel, material şi C sunt tipuri derivate de date corespunzătoare
tipului generic struct.

Definirea acestui tip pune în evidenţă:
- componentele, câmpurile care-l alcătuiesc;
- natura câmpurilor;
- poziţia câmpurilor.
Altfel spus, se evidenţiază structura sau şablonul datelor.
Variabilele definite pentru un tip derivat ocupă atâta memorie cât

rezultă din lungimile câmpurilor însumate şi corectate cu alinierea şi au în
componenţă exact aceleaşi elemente folosite la descrierea tipului, ca
membri ai fiecărei variabile.

Descrierea unui tip derivat nu înseamnă rezervare de memorie, ci
stocare de informaţie privind elementele care îl definesc.

Definirea variabilelor de tipul derivat descris anterior, efectuează
rezervare de memorie.

7.2 Structuri de date ierarhizate

Datele de tip articol sunt ierarhizate pe două sau mai multe nivele.

Pentru a obţine descrierea mai multor nivele este necesar ca la fiecare nivel
inferior să fie posibilă enumerarea de date elementare sau date de grup.
Datele de grup e necesar să fie descrise deja înainte de a le folosi, dar în
unele cazuri particulare descrierea lor se efectuează ulterior folosirii.

Astfel, se definesc tipurile:

struct data
{
 int zi;
 int luna;
 int an;
};

struct adresa
{
 data data_stabilirii;
 char strada[30];
 int numar;
 char telefon[8];
 char oras[30];
};

struct persoana
{
 data data_nasterii ;
 adresa locul_nasterii;
 int varsta;
 data data_angajarii;
 adresa adresa_actuala;
 };

Definirea ulterioară specificării datelor de grup, se face ca în
exemplul:

01 persoana
 02 data_stabilirii
 03 zi
 03 luna
 03 an
02 locul_nasterii
 03 data_nasterii
 04 zi
 04 luna
 04 an
 03 strada
 03 numar

 03 telefon
 03 oras
02 varsta
02 data_angajarii
 03 zi
 03 luna
 03 an
02 adresa_actuala
 03 data_stabilirii
 04 zi
 04 luna
 04 an
 03 strada
 03 numar
 03 telefon
 03 oras

Oricare ar fi modalitatea de descriere a structurii arborescente,

aceasta trebuie să rămână în continuare neambiguă.
Dacă se acceptă ca definiţie a lungimii elementului de la nivelul i:

)1,,(),lg(
0




ijyix
ni

j (7.7)

unde prin xj înţelegem elementul yj de pe nivelul i+1, astfel încât:

cont(x) ‚ adr(y1) (7.8)

rezultă că adresa unui element yj de pe nivelul i aparţinând datei de grup k
dintr-o structură de tip articol, se obţine prin relaţia:

         kh

j

h
kk

k

k
j iyiyiyadryadr   









,lg,lg,0,
1

1

1

1
1

 (7.9)

De exemplu, pentru articolul definit prin:

struct student
{
 char nume[21];
 data data_nasterii;
 data data_admiterii;
};

adresa câmpului data_admiterii.an se obţine urmărind modelul grafic din
figura 7.2

student

nume data_nasterii data_admiterii

zi luna an zi luna an

Figura 7.2 Modelul grafic al structurii articolului student

şi după formula:

adr(student.data_admiterii.an,3)=adr(student.nume,2)+
 + lg(student.nume,2)+1+
 + lg(student.data_nasterii,2)+ 2+
 + lg(student.data_nasterii.zi)+ 3+
 + lg(student.data_nasterii.luna)+ 4+
 + lg(student.nume,2)+ 21+1+4+4+4+
 +2+4+3+4+4=41+1=42 (7.10)

pentru că 2 = 3 = 4 = 0.

Dacă se consideră punctul operator ca orice alt operator, atunci
construcţia:

a.b.c.d (7.11)

este o expresie care se evaluează ca orice altă expresie aritmetică, logică
sau raţională. O astfel de expresie o numim expresie referenţială.

Expresia referenţială se evaluează de la stânga la dreapta, pentru că
în final trebuie să se obţină o adresă. Referirea oricărui operand se face fie
prin numele său, dacă abordarea este la nivel de limbaj, fie prin adresă,
dacă analiza este din punctul de vedere al programatorului interesat să
cunoască mecanismele proprii execuţiei programelor.

Interpretarea expresiei 7.11 este:
 d este membru în structura de tip articol c
 c este membru în structura de tip articol b
 b este membru în structura de tip articol a

ceea ce ca model grafic îi corespunde:

adr(a.b.c.d) = adr(a.b) + adr(b.c) + adr(c.d) – 2*adr(a)
adr(a.b.c.d) = adr(a) + adr(a.b) + adr(b.c) + adr(c.d)– 3*adr(a)
adr(a.b.c.d) = adr(a) + [adr(a.b) - adr(a)] + [adr(b.c)–
adr(a)]+[adr(c.d)-adr(a)] (7.12)

Punerea corect în corespondenţă a baiţilor ocupaţi de o structură de

tip articol cu câmpurile acesteia, mai ales în cazul în care există diferenţe

generate de alocarea neoptimizată a memoriei şi de apariţia variabilelor k,
permite interpretarea riguroasă a conţinutului fiecărui câmp. Problematica
devine cu atât mai importantă cu cât variabilele de tip articol se utilizează
pentru partiţionarea memoriei alocate unor buffere utilizate în operaţii de
intrare/ieşire.

Neoptimizarea prelucrărilor este benefică cu condiţia ca interpretarea
grupului de baiţi să fie controlată de programator, chiar dacă citirea lor are
un alt şablon decât cel utilizat la scriere.

7.3 Vectori de structuri şi structuri de vectori

Vectorii de structurii sunt masive omogene, în sensul că fiecare

element al masivului nu diferă de celălalt, chiar dacă în alcătuirea lor intră
câmpuri de naturi diferite.

Construcţia:

typedef struct student
{
 char nume[30];
 int varsta;
 char facult[20];
 int an_studiu;
};
student x[20];

defineşte un vector x având 20 de componente; fiecare componentă este un
articol ce conţine câmpurile nume, facult, an_studiu. Modelul grafic al
acestui tip de dată derivat este reprezentat în figura 7.3.

x

x[2] · · · x[14] · · · x[1] x[19] x[0]

· · · an_studiu · · · varsta facult nume varsta facult an_studiunume

Figura 7.3 Modelul grafic asociat structurii vectorului de articole x

Masivul x este unul unidimensional omogen, pentru că toate cele 20

de componente au aceeaşi structură.
Referirea vârstei corespunzătoare studentului al cincisprezecelea

dintr-o grupă se realizează prin:

x[14].varsta

În cazul în care câmpurile unui articol sunt elemente ale unui masiv

unidimensional, definim o structură de vectori. De exemplu:

typedef struct student
{
 char nume[30];
 int note[10];
};
student x;

Dacă se doreşte aflarea notei a 4-a a studentului x, referirea se

efectuează prin:

x.nota[3]

Se definesc vectori de structuri care conţin vectori, respectiv

vectori de structuri de vectori:

stud y[20];

Pentru a referi nota a 5-a a studentului al 17-lea se face referirea:

y[16].nota[4]

Lucrurile iau amploare dacă se definesc structuri de matrice şi

matrice de structuri.
Astfel, dacă într-o secţie sunt 20 de muncitori şi întreprinderea are

30 de secţii şi pentru fiecare muncitor trebuie cunoscut: timpul lucrat,
salariul orar, numele, definind:

typedef struct muncitor
{
 char nume[20];
 long int salariu;
 int ore;
 };
long int salariu_total;
muncitor muncit[30][20];

se calculează salariul total pentru muncitorul 15 din secţia a 4-a astfel:

salariu_total: = muncit[3][14].salariu*muncit[3][14].ore; (7.13)

Dacă matricea este privită ca vectori de vectori, extensiile sunt făcute

pentru masivele tridimensionale ca vectori de matrice sau matrice de
vectori, iar pentru masivele cu patru dimensiuni, ca masive bidimensionale
de masive bidimensionale, sau vectori de masive tridimensionale sau
masive tridimensionale de vectori.

Generalizările decurg din posibilitatea de a construi structuri de
structuri şi uneori de a introduce aspectul recursiv al descrierii. Secvenţa:

typedef int a[5];
typedef a b[5];
b c[5];

corespunde descrierii:

int c[5][5][5];

iar:

typedef int x[5][5];

x y[5][5];

corespunde descrierii:

int z[5][5][5][5];

Referirea elementelor se efectuează după aceleaşi reguli, specificând
valori între paranteze pătrate, în număr egal cu dimensiunea atribuită
masivului, ca de exemplu:

c[i][j][k] (7.14)

y[i][j][k][h] (7.15)

Atributele sunt comutative în raport cu operatorul de referire. Un

element din vectorul de structură se referă prin:

nume_vector[i].nume_membru (7.16)

iar un element din structura de vectori se referă prin:

nume_structură.nume_membru[i] (7.17)

Se consideră spre exemplificare următorul program care gestionează

acţionarii unei societăţi comerciale.

#include <windows.h>
#include <process.h>
#include <ctype.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>

struct data
{
 int da_year,da_day,da_mon;
};

struct adresa
{

 char str[25];
 int nr;
 char bloc[3];
 char sc;
 int ap;
 int sect;
 long codp;
 char loc[25];
 char jud[20];
};

struct ID
{
 char seria[3];
 long nr;
 data dataE;
 int circa;
};

struct actionar
{
 char cod[6];
 char nume[30];
 struct adresa adr;
 data dataN;
 struct ID BI;
 char reprez[6];
 int nr_act;
};

struct ind
{
 char cheie[6];
 long poz;
};

struct nod
{
 char sir[6];
 nod *st;
 nod *dr;
};

ind index[1000];

char *mes[40]={
 "Data trebuie sa fie numerica!",
 "Ziua trebuie sa fie intre 1 si 31!",
 "Luna trebuie sa fie intre 1 si 12!",
 "Anul trebuie sa fie intre 1900 si 2001!",
 "",
 "Data trebuie sa fie cuprinsa intre 0 si 1!",
 "Serie incorecta!"
};

long lg_fis()
{
 long lung;
 FILE *pf;
 pf=fopen("actionar.dat","rb");
 fseek(pf, 0, SEEK_END);

 lung=ftell(pf);
 fclose(pf);
 return lung;
}

void insnod(nod *& rad,char *s,int &vb)
{
 if(rad==NULL)
 {
 rad=new nod;
 strncpy(rad->sir,s,6);
 rad->st=rad->dr=NULL;
 }
 else if(strncmp(s,rad->sir,6) < 0) insnod(rad->st,s,vb);
 else if(strncmp(s,rad->sir,6) > 0) insnod(rad->dr,s,vb);
 else vb=1;
}

void del_arb(struct nod *T)
{
 if (T!=NULL)
 {
 del_arb(T->st);
 del_arb(T->dr);
 delete T;
 }
}

int indexare()
{
 FILE *pf;
 actionar act;

 if ((pf=fopen("actionar.dat","rb"))==NULL)
 {
 printf("Fiserul cu date despre actionari nu exista!");
 getch();
 exit(1);
 }
 int k=0;
 long pozitie;
 while(fread(&act,sizeof(struct actionar),1,pf))
 {
 pozitie=ftell(pf)-sizeof(struct actionar);
 strncpy(index[k].cheie,act.cod,6);
 index[k].poz=pozitie;
 k++;
 }
 fclose(pf);
 return k;

}

void sortare(int n)
{
 struct ind temp;
 for(int i=0;i<n-1;i++)
 for(int j=i;j<n;j++)
 if(strcmp(index[i].cheie,index[j].cheie)>0)
 {
 temp=index[i];

 index[i]=index[j];
 index[j]=temp;
 }
}

int cautare(int n,int &poz,char *key)
{
 int s,m,d;
 s=0;
 d=n;
 while(s<=d)
 {
 m=(s+d)/2;
 if (!strncmp(key,index[m].cheie,6))
 {
 poz=m;
 return m;
 }
 else
 if (strncmp(key,index[m].cheie,6)<0)
 d=m-1;
 else
 s=m+1;
 }
 return -1;
}

void sortareN()
{
 struct actionar act,act1;
 FILE *pf,*pt;
 if((pf=fopen("actionar.dat","rb+"))==NULL)
 {
 printf("Fisierul cu date despre actionari nu exista!");
 getch();
 return;
 }
 pt=fopen("temp.dat","wb");
 int vb,na=lg_fis()/sizeof(struct actionar);
 for(int i=0;i<na;i++)
 {
 fread(&act,sizeof(struct actionar),1,pf);
 fwrite(&act,sizeof(struct actionar),1,pt);
 }
 fclose(pt);
 fclose(pf);
 pt=fopen("temp.dat","rb+");
 do
 {
 vb=0;
 fseek(pt,0,0);
 for(int i=0;i<na-1;i++)
 {
 fread(&act,sizeof(struct actionar),1,pt);
 fread(&act1,sizeof(struct actionar),1,pt);
 if (stricmp(act.nume,act1.nume)>0)
 {
 fseek(pt,ftell(pt)-2*sizeof(struct
actionar),0);
 fwrite(&act1,sizeof(struct actionar),1,pt);

 fwrite(&act,sizeof(struct actionar),1,pt);
 vb=1;
 }
 fseek(pt,ftell(pt)-sizeof(struct actionar),0);
 }
 }
 while(vb==1);
 fclose(pt);
}

void eroare(int cod)
{
 printf("\a%s",mes[cod-1]);
 Sleep(500);
}

void valid_nr_l(long &val,int cod)
{
 int i,VB=0;
 do
 {
 VB=0;

 char tab[255];
 fflush(stdin);
 gets(tab);
 if (strlen(tab)==0)
 VB=1;
 else
 {
 i=0;
 while(VB==0&&i<strlen(tab))
 {
 if(isdigit(tab[i]))
 i++;
 else
 VB=1;
 }
 }
 if(VB==0)
 sscanf(tab,"%ld",&val);
 else
 eroare(cod);
 }
 while(VB!=0);
}

void valid_nr_f(float &val,int cod)
{
 int i,VB=0;
 do
 {
 VB=0;

 char tab[255];
 fflush(stdin);
 gets(tab);
 if (strlen(tab)==0)
 VB=1;
 else
 {

 i=0;
 while(VB==0&&i<strlen(tab))
 {
 if(isdigit(tab[i]))
 i++;
 else
 VB=1;
 }
 }
 if(VB==0)
 sscanf(tab,"%f",&val);
 else
 eroare(cod);
 }
 while(VB!=0);
}

void valid_nr_i(int &val,int cod)
{
 int i,VB=0;
 do
 {
 VB=0;

 char tab[255];
 fflush(stdin);
 gets(tab);
 if (strlen(tab)==0)
 VB=1;
 else
 {
 i=0;
 while(VB==0&&i<strlen(tab))
 {
 if(isdigit(tab[i]))
 i++;
 else
 VB=1;
 }
 }
 if(VB==0)
 sscanf(tab,"%d",&val);
 else
 eroare(cod);
 }
 while(VB!=0);
}

void valid_ab_sb(char val[],int cod)
{
 int i,VB=0;
 do
 {
 VB=0;
 char tab[255];
 fflush(stdin);
 gets(tab);
 if (strlen(tab)==0||strlen(tab)!=2)
 VB=1;
 else
 {

 i=0;
 while(VB==0&&i<2)
 {
 if(isalpha(tab[i]))
 i++;
 else
 VB=1;
 }
 }
 if(VB==0)
 strncpy(val,tab,3);
 else
 eroare(cod);
 }
 while(VB!=0);
}

void sortareA()
{
 struct actionar act,act1;
 FILE *pf,*pt;
 if((pf=fopen("actionar.dat","rb+"))==NULL)
 {
 printf("Fisierul cu date despre actionari nu exista!");
 getch();
 return;
 }
 pt=fopen("temp.dat","wb");
 int vb,na=lg_fis()/sizeof(struct actionar);
 for(int i=0;i<na;i++)
 {
 fread(&act,sizeof(struct actionar),1,pf);
 fwrite(&act,sizeof(struct actionar),1,pt);
 }
 fclose(pt);
 fclose(pf);
 pt=fopen("temp.dat","rb+");
 do
 {
 vb=0;
 fseek(pt,0,0);
 for(int i=0;i<na-1;i++)
 {
 fread(&act,sizeof(struct actionar),1,pt);
 fread(&act1,sizeof(struct actionar),1,pt);
 if ((unsigned)act.nr_act<(unsigned)act1.nr_act)
 {
 fseek(pt,ftell(pt)-2*sizeof(struct
actionar),0);
 fwrite(&act1,sizeof(struct actionar),1,pt);
 fwrite(&act,sizeof(struct actionar),1,pt);
 vb=1;
 }
 fseek(pt,ftell(pt)-sizeof(struct actionar),0);
 }
 }
 while(vb==1);
 fclose(pt);
}
void creare()
{

 int v;
 char c,key[6];
 FILE *pf;
 actionar act;
 nod *RAD=NULL;
 if ((pf=fopen("actionar.dat","rb"))!=NULL)
 {
 printf("ATENTIE\n");
 printf("Fiserul cu date despre actionari exista!\n");
 printf("Datele existente se vor pierde!\n");
 printf("Doriti sa-l rescrieti?[D/N]: ");
 do
 c=getch();
 while(c!='D'&&c!='N');
 if (c=='N')
 {
 return;
 }
 }
 if ((pf=fopen("actionar.dat","wb"))==NULL)
 {
 printf("Eroare la creare!");
 exit(1);
 }
 else
 {
 printf("Cod: ");
 while(scanf("%6s",key)!=0)
 {
 v=0;
 insnod(RAD,key,v);
 if (v)
 {
 printf("\n\aArticolul cu aceasta cheie
exista!");
 Sleep(500);
 fflush(stdin);
 continue;
 }
 strncpy(act.cod,key,6);
 fflush(stdin);
 printf("Nume: ");
 gets(act.nume);
 fflush(stdin);
 printf("Adresa actionarului\n");
 printf("\tStrada: ");
 gets(act.adr.str);
 printf("\tNumarul: ");
 valid_nr_i(act.adr.nr,1);
 printf("\tBloc: ");
 scanf("%s",act.adr.bloc);
 fflush(stdin);
 printf("\tScara: ");
 scanf("%c",&act.adr.sc);
 printf("\tApartament: ");

 valid_nr_i(act.adr.ap,1);
 printf("\tSector: ");
 valid_nr_i(act.adr.sect,1);
 printf("\tCod postal: ");
 valid_nr_l(act.adr.codp,1);

 fflush(stdin);
 printf("\tLocalitatea: ");
 gets(act.adr.loc);
 printf("\tJudetul: ");
 gets(act.adr.jud);
 do
 {
 printf("Data nasterii\n");
 printf("\tZiua:");
 valid_nr_i(act.dataN.da_day,1);
 if(act.dataN.da_day<1||act.dataN.da_day>31)
 eroare(2);
 }
 while(act.dataN.da_day<1||act.dataN.da_day>31);
 printf("\tLuna:");
 do
 {
 valid_nr_i(act.dataN.da_mon,1);
 if(act.dataN.da_mon<1||act.dataN.da_mon>12)
 eroare(3);
 }
 while(act.dataN.da_mon<1||act.dataN.da_mon>12);
 printf("\tAnul:");
 do
 {
 valid_nr_i(act.dataN.da_year,1);

 if(act.dataN.da_year<1900||act.dataN.da_year>2001)
 eroare(4);
 }
 while(act.dataN.da_year<1900||act.dataN.da_year>2001);
 printf("Buletin de identitate\n");
 printf("\tSeria:");
 valid_ab_sb(act.BI.seria,7);
 printf("\tNumarul:");
 valid_nr_l(act.BI.nr,1);
 printf("Data eliberarii\n");
 printf("\tZiua:");

 do
 {
 valid_nr_i(act.BI.dataE.da_day,1);

 if(act.BI.dataE.da_day<1||act.BI.dataE.da_day>31)
 eroare(2);
 }
 while(act.BI.dataE.da_day<1||act.BI.dataE.da_day>31);

 printf("\tLuna:");
 do
 {
 valid_nr_i(act.BI.dataE.da_mon,1);

 if(act.BI.dataE.da_mon<1||act.BI.dataE.da_mon>12)
 eroare(3);
 }
 while(act.BI.dataE.da_mon<1||act.BI.dataE.da_mon>12);

 printf("\tAnul: ");
 do
 {

 valid_nr_i(act.BI.dataE.da_year,1);

 if(act.BI.dataE.da_year<1900||act.BI.dataE.da_year>2001)
 eroare(4);
 }

 while(act.BI.dataE.da_year<1900||act.BI.dataE.da_year>2001);
 printf("\tCirca de politie: ");

 valid_nr_i(act.BI.circa,1);
 printf("Numarul de actiuni detinute: ");

 valid_nr_i(act.nr_act,1);

 printf("\n");
 fwrite(&act,sizeof(struct actionar),1,pf);
 printf("Cod: ");
 }
 }
 del_arb(RAD);
 fclose(pf);
}

void creare_date()
{
 char c;
 float ksoc,pfn,cota;
 long int val_A;
 FILE *pd;
 if ((pd=fopen("date.dat","rb"))!=NULL)
 {
 printf("ATENTIE\n");
 printf("Fiserul cu date despre profit exista!\n");
 printf("Datele existente se vor pierde!\n");
 printf("Doriti sa-l rescrieti?[D/N]: ");
 do
 c=getch();
 while(c!='D'&&c!='N');
 if (c=='N')
 {
 return;
 }
 }
 if ((pd=fopen("date.dat","wb"))==NULL)
 {
 printf("Eroare la creare!");
 getch();
 return;
 }
 printf("DATE PRIVIND CAPITALUL SOCIAL SI PROFITUL\n");
 printf("Valoarea unei actiuni:");
 valid_nr_l(val_A,1);
 fwrite(&val_A,sizeof(long int),1,pd);
 printf("Capital Social:");
 valid_nr_f(ksoc,1);
 fwrite(&ksoc,sizeof(float),1,pd);
 printf("Profit net:");
 valid_nr_f(pfn,1);
 fwrite(&pfn,sizeof(float),1,pd);
 do
 {

 printf("Cota din profit repartizata la dividende
[subunitara]:");
 scanf("%f",&cota);
 if (cota>1||cota <0)
 eroare(6);
 }
 while(cota>1||cota <0);
 fwrite(&cota,sizeof(float),1,pd);
 fclose(pd);
}

void afis_date(const actionar &act)
{
 printf("\n\nCod: %s\n",act.cod);
 printf("Nume: "); puts(act.nume);
 printf("Adresa actionarului\n");
 printf("\tStrada:"); puts(act.adr.str);
 printf("\tNumarul: %d\n",act.adr.nr);
 printf("\tBloc: %s ",act.adr.bloc);
 printf("Scara: %c Apartament: %d Sector:
%d\n",act.adr.sc,act.adr.ap,act.adr.sect);
 printf("\tCod postal: %ld\n",act.adr.codp);
 printf("\tLocalitatea: ");puts(act.adr.loc);
 printf("\tJudetul: "); puts(act.adr.jud);
 printf("Data nasterii:
%d/%d/%d\n",act.dataN.da_day,act.dataN.da_mon,act.dataN.da_year);
 printf("Buletin de identitate\n");
 printf("\tSeria: %s",act.BI.seria);
 printf(" Numarul: %ld\n",act.BI.nr);
 printf("\tData eliberarii:
%d/%d/%d\n",act.BI.dataE.da_day,act.BI.dataE.da_mon,act.BI.dataE.da_ye
ar);
 printf("\tCirca de politie: %d\n",act.BI.circa);

 printf("Numarul de actiuni detinute: %u\n",act.nr_act);
 printf("\n");

}

void cons()
{
 int n;
 char key[6];
 int vb,i,c;
 actionar act;
 n=indexare();
 sortare(n);
 FILE *pf=fopen("actionar.dat","rb");
 while(printf("\nCod actionar:"),(c=scanf("%6s",key))!=0)
 {
 vb=cautare(n,i,key);
 if(vb==-1)
 {
 printf("\n\aArticolul cu aceasta cheie nu exista!\n");
 Sleep(500);
 fflush(stdin);
 }
 else
 {
 fseek(pf,index[i].poz,0);
 fread(&act,sizeof(struct actionar),1,pf);

 afis_date(act);
 getch();
 }
 }
 fclose(pf);
}

void modif()
{
 int n;
 char key[6];
 int vb,i,nr;
 actionar act;
 n=indexare();
 sortare(n);
 FILE *pf=fopen("actionar.dat","rb+");
 while(printf("\nCod actionar:"),scanf("%6s",key)!=EOF)
 {
 vb=cautare(n,i,key);
 if(vb==-1)
 {
 printf("\n\aArticolul cu aceasta cheie nu exista!");
 Sleep(500);
 }
 else
 {
 fseek(pf,index[i].poz,0);
 fread(&act,sizeof(struct actionar),1,pf);
 afis_date(act);
 printf("Noul numar:");
 valid_nr_i(nr,1);
 act.nr_act=nr;
 fseek(pf,index[i].poz,0);
 fwrite(&act,sizeof(struct actionar),1,pf);
 }
 }
 fclose(pf);
}

void listA()
{
 FILE *pt,*ptxt;
 unsigned int tot_a=0;
 long int val_a;
 float ksoc;
 actionar act;
 sortareA();
 FILE *pd=fopen("date.dat","rb");
 fread(&val_a,sizeof(long int),1,pd);
 fread(&ksoc,sizeof(float),1,pd);
 fclose(pd);
 pt=fopen("temp.dat","rb");
 while(fread(&act,sizeof(struct actionar),1,pt))
 tot_a+=act.nr_act;
 rewind(pt);
 ptxt=fopen("lista1.txt","w");
 fprintf(ptxt,"\n\n\n\t\tLista actionarilor dupa numarul de
actiuni\n");
 fprintf(ptxt,"\t\t**\n\n
");

 fprintf(ptxt,"**
*********************\n");
 fprintf(ptxt,"* Cod * Nume Prenume * Numar *
Ponderea actiunilor*\n");
 fprintf(ptxt,"* * * actiuni *
in capitalul social*\n");
 fprintf(ptxt,"**
*********************\n");
 while(fread(&act,sizeof(struct actionar),1,pt))
 {
 fprintf(ptxt,"*%6s *%-30s*%8u *%18.3f
%%*\n",act.cod,act.nume,act.nr_act,(float)(unsigned)act.nr_act*val_a/k
soc*100);

 fprintf(ptxt,"**
*********************\n");
 }
 fprintf(ptxt,"**
*********************\n");
 fclose(pt);
 fclose(ptxt);
}

void listD()
{
 FILE *pt,*ptxt;
 SYSTEMTIME data;
 float pfn,cota;
 float div;
 actionar act;
 sortareA();
 unsigned int tot_a=0;
 FILE *pd=fopen("date.dat","rb");
 fseek(pd,sizeof(long int)+sizeof(float),0);
 fread(&pfn,sizeof(float),1,pd);
 fread(&cota,sizeof(float),1,pd);
 fclose(pd);
 pt=fopen("temp.dat","rb");
 while(fread(&act,sizeof(struct actionar),1,pt))
 tot_a+=act.nr_act;
 div=(pfn*cota)/tot_a;
 rewind(pt);
 ptxt=fopen("lista2.txt","w");
 GetSystemTime(&data);
 fprintf(ptxt,"\n\t\t\t\tDividende cuvenite actionarilor la data
%d.%d.%d\n",data.wDay,data.wMonth,data.wYear);
 fprintf(ptxt,"\t\t\t\t**
******\n\n");
 fprintf(ptxt,"Profit net:%.0f lei\n",pfn);
 fprintf(ptxt,"Cota de profit repartizata la
dividende:%.2f\n",cota);
 fprintf(ptxt,"Total actiuni:%u\n",tot_a);
 fprintf(ptxt,"Dividende per actiune:%.2f lei/act\n\n",div);
 fprintf(ptxt,"**
**
\n");
 fprintf(ptxt,"* Nume Prenume * Data *
Adresa *Buletin de * Numar * Dividende
*\n");
 fprintf(ptxt,"* * nasterii *
*identitate * actiuni* *\n");

 fprintf(ptxt,"**
**
\n");
 while(fread(&act,sizeof(struct actionar),1,pt))
 {
 fprintf(ptxt,"*%-30s*%2d.%2d.%d*Str:%-29s Nr:%-5d*%-2s
%8ld*%8u*%11.2f
*\n",act.nume,act.dataN.da_day,act.dataN.da_mon,act.dataN.da_year,act.
adr.str,act.adr.nr,act.BI.seria,act.BI.nr,act.nr_act,(unsigned)act.nr_
act*div);
 fprintf(ptxt,"* *
*Bl:%c%c%c Sc:%c Ap:%-3d Sect:%-2d Cod p:%-8ld * * *
*\n",act.adr.bloc[0],act.adr.bloc[1],act.adr.bloc[2],act.adr.sc,act.ad
r.ap,act.adr.sect,act.adr.codp);
 fprintf(ptxt,"* *
*Loc:%-20s * * *
*\n",act.adr.loc);

 fprintf(ptxt,"**
**
\n");
 }
 fprintf(ptxt,"**
**
\n");
 fclose(pt);
 fclose(ptxt);
}

void listAB()
{
 FILE *pt,*ptxt;

 actionar act;

 sortareN();
 pt=fopen("temp.dat","rb");
 ptxt=fopen("lista3.txt","w");
 fprintf(ptxt,"\n\n\n\t\t\tLista actionarilor in ordine
alfabetica\n");
 fprintf(ptxt,"\t\t\t***************************************\n\n"
);
 fprintf(ptxt,"\t\t**
****\n");
 fprintf(ptxt,"\t\t* Nr. * Nume Prenume *
Numar *\n");
 fprintf(ptxt,"\t\t* crt. * *
actiuni *\n");
 fprintf(ptxt,"\t\t**
****\n");
 int i=0;
 while(fread(&act,sizeof(struct actionar),1,pt))
 {
 fprintf(ptxt,"\t\t*%6d *%-30s*%8u
*\n",++i,act.nume,act.nr_act);

 fprintf(ptxt,"\t\t**
****\n");
 }
 fprintf(ptxt,"\t\t**
****\n");

 fclose(pt);
 fclose(ptxt);
}

void do_sterg()
{
 int n,c;
 int vb,i;
 actionar act;
 n=indexare();
 sortare(n);
 char key[6];
 FILE *pf=fopen("actionar.dat","rb");
 while(printf("\nCod actionar:"),scanf("%6s",key)!=0)
 {
 vb=cautare(n,i,key);
 if(vb==-1)
 {
 printf("\n\aArticolul cu aceasta cheie nu exista!\n");
 Sleep(500);
 fflush(stdin);
 continue;
 }
 else
 {
 fseek(pf,index[i].poz,0);
 fread(&act,sizeof(struct actionar),1,pf);
 afis_date(act);
 printf("Doriti sa stergeti acest articol?[D/N]: ");
 do
 {
 c=getch();
 }
 while(c!='D'&&c!='N');
 if (c=='N')
 {
 continue;
 }
 }
 //rescriere fisier
 FILE *ptmp=fopen("tmp.dat","wb");
 rewind(pf);
 for(int j=0;j<index[i].poz/sizeof(struct actionar);j++)
 {
 fread(&act,sizeof(struct actionar),1,pf);
 fwrite(&act,sizeof(struct actionar),1,ptmp);
 }
 fread(&act,sizeof(struct actionar),1,pf);
 while(fread(&act,sizeof(struct actionar),1,pf))
 fwrite(&act,sizeof(struct actionar),1,ptmp);
 fclose(pf);
 fclose(ptmp);
 unlink("actionar.dat");
 rename("tmp.dat","actionar.dat");
 n=indexare();
 sortare(n);
 pf=fopen("actionar.dat","rb");
 }

 fclose(pf);
}

void adaug()
{
 int v;
 char key[6];
 actionar act;
 nod *RAD=NULL;
 FILE *pf;
 if ((pf=fopen("actionar.dat","rb+"))==NULL)
 {
 printf("Fiserul cu date despre actionari nu exista!");
 return;
 }
 else
 {
 strncpy(act.reprez," ",6);
 while(fread(&act,sizeof(struct actionar),1,pf))
 insnod(RAD,act.cod,v);
 //fseek(pf,0,2);
 printf("Cod:\n");
 while(scanf("%6s",key)!=0)
 {
 v=0;
 insnod(RAD,key,v);
 if (v)
 {

 printf("\n\aArticolul cu aceasta cheie exista!\n");
 Sleep(500);
 fflush(stdin);
 continue;
 }
 strncpy(act.cod,key,6);
 fflush(stdin);
 printf("Nume: ");
 gets(act.nume);
 fflush(stdin);
 printf("Adresa actionarului\n");
 printf("\tStrada: ");
 gets(act.adr.str);
 printf("\tNumarul: ");
 valid_nr_i(act.adr.nr,1);
 printf("\tBloc: ");
 scanf("%s",act.adr.bloc);
 fflush(stdin);
 printf("\tScara: ");
 scanf("%c",&act.adr.sc);
 printf("\tApartament: ");
 valid_nr_i(act.adr.ap,1);
 printf("\tSector: ");
 valid_nr_i(act.adr.sect,1);
 printf("\tCod postal: ");
 valid_nr_l(act.adr.codp,1);
 fflush(stdin);
 printf("\tLocalitatea: ");
 gets(act.adr.loc);
 printf("\tJudetul: ");
 gets(act.adr.jud);
 do
 {
 printf("Data nasterii\n");

 printf("\tZiua:");
 valid_nr_i(act.dataN.da_day,1);
 if(act.dataN.da_day<1||act.dataN.da_day>31)
 eroare(2);
 }
 while(act.dataN.da_day<1||act.dataN.da_day>31);

 printf("\tLuna:");
 do
 {
 valid_nr_i(act.dataN.da_mon,1);
 if(act.dataN.da_mon<1||act.dataN.da_mon>12)
 eroare(3);
 }
 while(act.dataN.da_mon<1||act.dataN.da_mon>12);

 printf("\tAnul:");
 do
 {
 valid_nr_i(act.dataN.da_year,1);

 if(act.dataN.da_year<1900||act.dataN.da_year>2001)
 eroare(4);
 }
 while(act.dataN.da_year<1900||act.dataN.da_year>2001);
 printf("Buletin de identitate\n");
 printf("\tSeria:");
 valid_ab_sb(act.BI.seria,7);
 printf("\tNumarul:");
 valid_nr_l(act.BI.nr,1);
 printf("Data eliberarii\n");
 printf("\tZiua:");
 do
 {
 valid_nr_i(act.BI.dataE.da_day,1);

 if(act.BI.dataE.da_day<1||act.BI.dataE.da_day>31)
 eroare(2);
 }
 while(act.BI.dataE.da_day<1||act.BI.dataE.da_day>31);

 printf("\tLuna:");
 do
 {
 valid_nr_i(act.BI.dataE.da_mon,1);

 if(act.BI.dataE.da_mon<1||act.BI.dataE.da_mon>12)
 eroare(3);
 }
 while(act.BI.dataE.da_mon<1||act.BI.dataE.da_mon>12);
 printf("\tAnul: ");
 do
 {
 valid_nr_i(act.BI.dataE.da_year,1);

 if(act.BI.dataE.da_year<1900||act.BI.dataE.da_year>2001)
 eroare(4);
 }
while(act.BI.dataE.da_year<1900||act.BI.dataE.da_year>2001);
 printf("\tCirca de politie: ");

 valid_nr_i(act.BI.circa,1);
 printf("Numarul de actiuni detinute: ");

 valid_nr_i(act.nr_act,1);

 printf("\n");
 fwrite(&act,sizeof(struct actionar),1,pf);
 printf("Cod: ");
 }
 }
 del_arb(RAD);
 fclose(pf);
}

void men_fis()
{
 int rasp,cont=1;
 while(cont)
 {
 do
 {
 printf("MENIUL FISIERE\n\n");
 printf("1.CREARE FISIER ACTIONARI\n");
 printf("2.CREARE FISER CU DATE PRIVIND PROFITUL\n");
 printf("3.ADAUGARE ACTIONARI\n");
 printf("4.MODIFICARE NUMAR DE ACTIUNI\n");
 printf("5.STERGERE ACTIONARI DIN FISIER\n");
 printf("6.REVENIRE LA MENIUL PRINCIPAL\n\n");
 printf("Optiunea:");
 valid_nr_i(rasp,5);//scanf("%d",&rasp);
 }
 while(rasp<1||rasp>6);
 switch(rasp)
 {
 case 1:creare();break;
 case 2:creare_date();break;
 case 3:adaug();break;
 case 4:modif();break;
 case 5:do_sterg();break;
 case 6:cont=0;break;
 }
 }
}

void men_sit()
{
 int rasp,cont=1;
 while(cont)
 {
 do
 {
 printf("MENIUL SITUATII DE IESIRE\n\n");
 printf("1.LISTA ACTIONARILOR IN ORDINEA NUMARULUI DE
ACTIUNI\n");
 printf("2.LISTA ACTIONARILOR IN ORDINE
ALFABETICA\n");
 printf("3.LISTA DIVIDENDELOR CUVENITE FIECARUI
ACTIONAR\n");
 printf("4.CONSULTARE FISIER DUPA COD ACTIONAR\n");
 printf("5.REVENIRE LA MENIUL PRINCIPAL\n\n");
 printf("Optiunea:");

 valid_nr_i(rasp,5);//scanf("%d",&rasp);
 }
 while(rasp<1||rasp>5);
 switch(rasp)
 {
 case 1:listA();break;
 case 2:listAB();break;
 case 3:listD();break;
 case 4:cons();break;
 case 5:cont=0;break;
 }
 }
}

void main()
{
 int rasp,cont=1;
 while(cont)
 {
 do
 {
 printf("MENIUL PRINCIPAL\n\n");
 printf("1.FISIERE\n");
 printf("2.SITUATII DE IESIRE\n");
 printf("3.TERMINARE PROGRAM\n\n");
 printf("Optiunea:");
 valid_nr_i(rasp,5);//scanf("%d",&rasp);
 }
 while(rasp<1||rasp>3);
 switch(rasp)
 {
 case 1:men_fis();break;
 case 2:men_sit();break;
 case 3:cont=0;break;
 }
 }
}

Programatorul trebuie să realizeze un echilibru între creşterea

numărului de dimensiuni, reducerea gradului de umplere şi complexitatea
expresiilor asociate calculelor de deplasare, pentru a localiza fiecare
element al structurii pe care o defineşte. Acest echilibru conduce în final la
reducerea duratei de prelucrare şi la obţinerea lizibilităţii bune a
programului.

