8. VARIABILE POINTER

8.1 Tipul variabilei pointer

Pentru programatorii care cunosc un limbaj de asamblare, definirea si
utilizarea variabilelor pointer in limbaje evoluate de programare reprezinta
operanzii necesari implementarii adresarii indirecte.

La adresarea indirecta se utilizeaza doi operanzi si anume: operandul
care refera si operandul referit, notati in continuare Ry, respectiv O,.

Operandul R, contine adresa de inceput a zonei de memorie asociata
operandului O,. Evaluarea expresiilor:

RO =adr(Or),0r =15 (8.1)

conduce la modificarea continutului operandului Ry si a operandului O,,
figura 8.1, ceea ce se exprima prin:

cont(R0)=adr(Or) (8.2)

Ro Or

07441A 15
N

07441A

Figura 8.1 Modificarea continuturilor operanzilor Ry si O,

Aceasta expresie arata ca operandul R, este de un nou tip, T,, ale
carui valori apartin intervalului [A;, Af] n N, unde A; si Ar sunt adrese de
inceput, respectiv, de sfarsit ale unui segment de memorie.

Daca:

f(cont(RO), Tp) = TRUE (8.3)
adica

cont (Rop) n [Ai, Af] NN=¢ (8.4)

se spune ca operandul R, este de tipul T).

In continuare acest nou tip de data este numit tipul pointer.

Functia /g(Ry,T,) defineste o astfel de marime care sa permita
stocarea completa a informatiei necesare localizarii operanzilor, ale caror
adrese se incarca in variabila Ry.

Expresia:

cont(R,) = adr(R,) (8.5)

are semnificatia incarcarii in operandul R, a propriei adrese. Dupa evaluarea
expresiei, continutul lui Ry este dat in figura 8.2.

Ro
07441A

07441A

Figura 8.2 Noul continut al operandului Ry

In sine, expresia nu are o semnificatie deosebitd, mai mult oferd
riscul inchiderii unui lant de referire, transformandu-I in ciclu infinit. Daca
operandul R, devine reper si toate deplasarile sunt evaluate avandu-l ca
baza, expresia de mai sus se justifica.

Daca se definesc variabilele a, b, c avand tipul T; si variabilele p,,
ps, Pc avand tipul T,, evaluarea expresiilor:

pa = adr(a)
pp = adr(b)
Pc = adr(c)

realizeaza initializarea operanzilor de tip 7.
Daca sunt luate in considerare aceste expresii, in loc de:

c =a+b; (8.6)
se va utiliza expresia:
ref(pc) = ref(pa)+ref(py) (8.7)
unde functia de referire ref() este definita:
ref : [A;, Af -> 1 (8.8)
unde multimea este interpretata drept continutul zonei de memorie
asociate identificatorilor.
Se observa ca prin definirea functiei adr():

adr : 1->[A,A] (8.9)

functiile adr() si ref() nu sunt una inversa celeilalte. Este adevarata numai
egalitatea:

x = ref(adr(x)) (8.10)

Nu in toate cazurile, limbajele de programare implementeaza aceasta
proprietate.

ref(x)

adr(x) \4

Figura 8.3 Relatia intre functiile adr(x) si ref(x)

Proprietatile functiilor sunt discutate in contextul alocarii statice a
memoriei, fara posibilitatea redefinirii sau suprapunerii de operanzi,
obtinandu-se zone de memorie comune pentru seturi de operanzi.

Deci, in contextul prefixat, pentru doi operanzi diferiti, x; si x; de
acelasi tip sau de tipuri diferite.

adr(x;) = adr(x;) (8.11)
ref(adr(x;)) = ref(adr(x;)) (8.12)

pentru ca x; = x;, din definitie.

Variabilele de tip T, apar in expresii aritmetice, relationale sau de
atribuire, nu ca elemente in sine ci ca parametri ai functiei ref().

Revenind la limbajul de asamblare, operatiile de calcul sunt
specializate pe tipuri de operanzi. Exista operator de adunare pentru
operanzi de tip intreg, dar exista si operator de adunare pentru operanzi de
tip virguld mobilda simpla precizie. Pentru operanzii de tip dubla precizie,
exista operator distinct de cei mentionati.

Operatorii de comparare privesc zone de memorie de lungimi diferite,
care sa acopere totalitatea lungimilor asociate tipurilor fundamentale de
date implementate in limbajele de asamblare.

Aparitia operanzilor de tip T, determina pierderea informatiei
referitoare la tipul initial al operandului si exista posibilitatea generarii unei
evaluari ambigue a expresiilor.

In acest sens, tipul T, se defineste ca un tip compus:

T, = (pointer,T;) (8.13)

unde T;, reprezinta tipul variabilei referite si pointer este tipul specific,
fundamental al variabilei. Daca variabila care refera px, este de tip T, si
variabila referita x, este de tip T, In vorbirea curenta expresia se
interpreteaza, pornind de la efectul fizic al operatiilor cu pointeri, ca pointer
spre T..

Daca x are tipul int si px este de tip T,, se spune ca px este pointer
spre int si toti operatorii din expresiile omogene ca tip de date unde apare
px, sunt selectati pentru lucrul cu operanzi de tip int.

Tipul variabilei referite nu influenteaza lungimea variabilelor de tip T,
si continutul.

Daca o variabila x, este definitd ca avand tipul T; si variabila px este
definita ca avand tipul (pointer, T;), expresia:

px = adr(x) (8.14)

nu este evaluata decat numai dupa ce ara loc conversia de la tipul T; la tipul
T;, operatorul de atribuire necesitand operanzi de acelasi tip. Aceasta
conversie realizeaza de fapt schimbarea setului de informatii in concordanta
cu operandul din stanga.

Prin conversie, adresa este asociata unei variabile de tip T; cu toate
implicatiile ce decurg asupra alinierilor si lungimii zonelor de memorie
asociate noului tip, asociat zonei de memoria pusa in corespondenta cu
variabila x.

Exista situatii in care conversia de tip este implicita (in cazul evaluarii
expresiilor aritmetice), dar sunt numeroase cazurile in care aceasta trebuie
specificata explicit.

Functia conv(x, T;) modifica tipul variabilei x de la T; la T;. Daca:

tip(x) =T, (8.15)
X = conv(x,T;) (8.16)
conduce la:
tip(x) =T; (8.17)
si in mod corespunzator:
px = convp(adr(x),T;) (8.18)

unde convp() reprezinta functia de conversie a tipului spre care pointeaza o
variabila de tip T,.

Expresia din dreapta conduce mai intai prin evaluarea lui adr(x) la
tipul (pointer,T;), ca mai apoi prin folosirea functiei convp(), sa se obtina
conversia de tip si rezultatul evaluarii este (pointer, T;), care este omogen
in raport cu tipul T, al variabilei px.

Functia convp() are rolul de a modifica al doilea termen al perechii
(pointer, T;) care defineste tipul T,.

Conversiile de tip, sunt facilitati cu importante efecte asupra
performantei programelor, cu conditia ca ele sa se afle strict sub controlul
programatorului.

Atunci cand conversiile de tip depasesc simplele expresii de atribuire,
prin crearea de noi vecinatati pentru operanzi prin redistribuirea baitilor,
sunt interpretate componente care altfel ramaneau neexplorate in program.
Toate insd, e necesar sa fie sub controlul programatorului. Altfel, dintr-o
facilitate, conversia de tip se transforma intr-o problema generatoare de
greutati.

8.2 Aritmetica variabilelor pointer
Intrucat pentru variabilele px si py de tip T,:

cont(px) €[Ai, Al NN (8.19)

cont(py) €[A, A NN (8.20)

pe multimea [A;, A:] n N se defineste operatia , 0", astfel incat pentru:
v a,pe[A, Ad "N, a o B =y, ye[A, Ad NN (8.21)

Daca, de exemplu, se considera intervalul [0; 64000] ~ N, operatiile
de adunare, inmultire, scadere si impartire, nu sunt legi de compozitie
interna. Prin contraexemple se dovedeste ca exista a si p astfel incat:

[0;64000] » N (8.22)

Aparent, nu se vorbeste de o aritmetica a variabilelor pointer. Totusi

se construiesc expresiile cu variabile pointer, cu conditia ca rezultatul

evaluarii sa apartina intervalului [A;, As] n N.
Daca se defineste masivul unidimensional:

float x [10];
si px este un pointer spre intreg, si:
px = adr(x[1]) (8.23)
evaluarea expresiei:
px = px + 6 = adr(x[l]) + I*Ig(real) = adr(x[2]) (8.24)

conduce la posibilitatea de a referi, elementul al doilea al vectorului x.
Daca:

px = adr(x[10]) (8.25)
si se evalueaza expresia:
px = px-24 (8.26)
px = adr(x[10])-4*Ig(real) = adr(x[6]) (8.27)
in expresiile:
adr(z+k) = adr(z)+k*Ig(T;) (8.28)

unde z este o variabila de tip T;, se observa ca pentru variabila pz de tip T,,
care a fost initializata prin:

pz: = adr(z); (8.29)
adr(z+k) = pz + k*Ig(T;) (8.30)

si pentru ca tipul T, = (pointer, T;), expresia k*Ig(T;) este rezultatul
conversiei la tipul T, al variabilei pz, a variabilei intregi k.

In acelasi mod, se defineste si operatia de scidere, in ambele cazuri
apare cerinta ca rezultatul evaluarii expresiilor sa apartina intervalului [A;,
Af] ~ N.

Se construiesc teoretic, expresii deosebit de complexe, in care
operanzii sa fie de tip T,, dar restrictia de apartenenta a rezultatului la acel
interval le face inoperante.

In plus, lucrul cu adrese in zone de memorie contigue si mai ales
pentru structuri de date omogene, vizeaza posibilitatea de a genera
termenii unor progresii aritmetice.

Daca variabila px de tip T,, este initializata prin:

px = adr(X[1]);

s = 0;
for(i=0; i<10; i++)
{

s = s + ref(px);
px = px+4;
¥

variabila px, permite referirea rand pe rand a elementelor x[0], x[1], ...,
x[9] ale vectorului x.
Mai mult, definind px variabila de tip T, in secventa:

px = adr(x);

s = 0;

pi = adr(X[0]);
do

{

s = s+ref(pi);
pi = pi+4 ;
} while (pi <= adr(x[9]));

difera foarte putin de secventele care implementeaza structurile repetitive
intr-un limbaj de asamblare oarecare.

Ca si in limbajele de asamblare, restrictile de apartenenta la
domeniul [A;; Af] n N, au determinat ca pentru variabilele pointer,
aritmetica sa se reduca la doua operatii: incrementarea si decrementarea.
Aceste operatii inseamna de fapt majorarea, respectiv diminuarea cu o
unitate, dupa cum urmeaza:

adr(x+l) = adr(x) + 1*Ig(T;) = px + I*Ig(T;) (8.31)
adr(x-1) = px = I*Ig(T;) (8.32)
Conversia de tip, determina ca unitatea sa fie egala de fapt cu
lungimea asociatd zonei de memorie ocupata de variabilele de tip T..
In cazul unor expresii complexe notate:

expr(apa;j ... an-1) (8.33)

adr(x+expr(ap a; an-1)) = px+int(expr(ap a; an-1))*lg(T;) (8.34)

Se considera ca expresia:
px+int(expr(ap a; an-1))*Ig(T;)) = « (8.35)

este corect definita daca o €[A;, Af] n N.

In limbajul C/C++, incdrcarea adreselor variabilelor definite in
program, se efectueaza cu operatorul ,&”.

Corespondentul C/C++ al secventelor de mai sus este:

typedef int mat[10];
mat x = {1,2,3,4,5,6,7,8,9,10};
int * px;

unsigned int i, s;

for (i = 0;i<10 ;i ++)

px = &x[i]
s =s + (*px);
3

cout << s;

Absenta controlului asupra limitelor de variatie pentru variabilele de
tip T,, determina sa devina operanzi zone nespecifice programului, alterand
in acest fel inclusiv componente din software de baza, cu consecinte asupra
calitatii prelucrarilor curente si chiar viitoare.

8.3 Niveluri de indirectare

Apare in mod firesc intrebarea daca tipul T, definit initial (pointer, T;),
unde T; reprezinta un tip fundamental de data, include si perechea (pointer,
T,), stiut fiind faptul ca si tipul T, este considerat tip fundamental.

Acceptand ca o astfel de constructie este corecta, se creeaza
posibilitatea realizarii de pointeri spre pointeri spre T; si a pointerilor spre
pointeri spre pointeri spre T;.

Se definesc variabilele:

int Y, x ;
int *py, *px ; // (pointer, integer);
int **ppx; // (pointer,(pointer, integer));

prin expresiile:

x = 20;
px = adr(x);
ppx = adr(px));

se obtin legaturile reprezentate grafic in figura 8.4.

PR=

o1aa10
px

{” 017400

017400

Figura 8.4 Alocarea in memorie a variabilelor x, px si ppx

Expresiile:

py = adr(y);
y = 16;

conduc la reprezentarea grafica din figura 8.5.

Ry

015000
_.___._:;gl_

o1E010

018000

Figura 8.5 Alocarea in memorie a variabilelor py si y

Expresia:
ref(y) = ref(y) + ref(ref(x)) (8.36)
este echivalenta cu:
y=y+x (8.37)

Programul C/C++ care evalueaza expresia este:

typedef int * pint;
int x, y;

pint pXx, py;

pint *ppx;

{

X = 20 ;

y = 15;

px = &X;
py = &y;
ppXx = &pXx;

*py = *py + *Fppx;
cout << *py ;

3

Constructia (pointer, T,) permite compunerea unei functii adr()
asociate nivelurilor indirectate.
In definitia:

int x ;

int *px ; // (pointer, integer)

int **ppx ; // (pointer, (pointer, integer))

int ***pppx ; // (pointer, (pointer,(pointer, integer)))

si din secventa:

X = 17;

px =adr(x);

ppx = adr(px);
pppx = adr(ppx);

se obtine:
pppx - adr(adr(adr(x))) = adr’ (x) (8.38)

Numarul 3 reprezinta nivelul de indirectare. Pentru referirea unei
variabile avand nivelul 3 de indirectare, se procedeaza astfel:

ref(ref(ref(pppx))) = ref’ (pppx) (8.39)

Pentru omogenizarea operanzilor in cadrul expresiilor, este necesar ca
variabilele in care tipul T, are puterea n, sa fie initializate cu adr() si sa fie
referite cu ref” ().

Se considera:

T!, = (pointer,T;)

T?, = (pointer, (pointer, T;)
T°, = (pointer,(pointer (pointer, T;)))

Pentru efectuarea unor generalizari privind aritmetica ordinului n a
tipului T, este necesara definirea functiei pentru evaluarea lungimii acestui
tip. Astfel, expresii ca:

adr’ (adr’(x)+i) sau adr* (adr’(x)-i) (8.40)

devin interpretabile.

Asa cum pentru toate tipurile de date exista constante ce sunt
atribuite si pentru tipul pointer, exista constante corespunzator definite.
Constantele pentru tipul pointer, simbolizeaza adrese absolute. Se vorbeste
de adresa nula, se vorbeste de adresa 15, sau de orice altd adresa. Daca
insa un program P lansat in executie, ocupa zona de memorie delimitata
prin [AP; AP] n N, initializarea oricarei variabile pointer, este efectuata cu
valori cuprinse in acest interval. Folosirea valorii nule are numai scop de
jalonare la initializare, pentru a vedea daca s-au facut atribuiri ulterioare
pentru a lucra corect, sau atribuirile nu au fost posibil sa se efectueze si
deci nu se lucreaza pentru ca variabila pointer are valoare nula.

In programele C/C++, referirea unei variabile pointer px cu 5 nivele
de indirectare, de exemplu, se realizeaza prin evaluarea expresiei:

iar pentru valoarea nuld a variabilei pointer, se foloseste constanta
simbolica NULL. Initializarea unei variabile pointer cu o adresa absoluta de
memorie se realizeaza cu functia Ptr(), avand ca parametru o adresa in
hexazecimal. De exemplu:

py : = Ptr($00AA,$0020);

variabila pointer py este initializata cu o adresa absoluta de memorie.

8.4 Vectori si matrice de pointeri

Si cu tipul T, se construiesc structuri de date omogene, daca
toate componentele acestora au tipul T,. Constructia:

T, x[n]; (8.41)
Tpi y[n][m]; (8.42)

reprezinta definirea unui masiv x avand n componente, fiecare componenta
fiind un pointer spre T; si, respectiv, definirea unei matrice y avand n linii si
m coloane, elemente ce sunt pointeri spre tipul T.

Se justifica stocarea in masive uni- si bidimensionale a adreselor
unor operanzi, daca acestia au diferentieri intre ei, sau daca tipologiile
determina activari de functii dupa succesiuni stabilite.

Se memoreaza, de exemplu, mesajele unui program care apar in
dialogul cu utilizatorul, sub forma unui text continuu. Acestor mesaje, In
numar de 50, li se memoreaza adresa de inceput in componentele
vectorului text[i], de pointeri spre tipul char [].

Daca se doreste aflarea tuturor mesajelor prin secventa:

for (i =0 ;i1 <50 ;i ++)
cout << ref(text[i]);

se obtine acelasi lucru.

Daca se doreste afisarea unui anumit mesaj, este important sa se
cunoasca pozitia in vectorul text[] a componentei in care este memorata
adresa respectivului mesaj.

Daca in cele cinci componente ale unui vector de pointeri numit px,
se memoreaza adresele primelor componente ale vectorilor af], b[], c[],
d[], e[], cu numar de componente diferite si se doreste sa se calculeze cu
functia suma(), suma elementelor vectorilor, in loc sa se scrie de cinci ori
apelul functiei suma(), se va construi secventa:

for(i=0; i<5; i++)
sLi] = suma(px[i], n[il);

Daca se defineste:

int x;[10], %x;[10], x3[10], x4[10];

To YI41;
T 2% z;

prin atribuirile:

y[0]=adr(xi[01);
y[1]=adr(xz[0]);
y[2]=adr(xs[0]);
y[3]=adr(xs[01);
z = adr(y[0]);

s-a obtinut constructia cu modelul grafic din figura 8.6.

--

Figura 8.6 Modelul grafic al legaturilor intre variabilele x, y si z

Modelul grafic din figura 8.6 este identic cu modelul grafic asociat structurii
de date omogene si contigue, matricea.
Tot astfel, se defineste o functie fct(), care se apeleaza prin:

fCt(pI/ P2, P3,..., pn) (843)

La apel, construieste un vector cu n componente in care sunt
memorate adresele parametrilor reali ai functiei, deci vectorul acesta este
un vector de pointeri.

Adresa primei componente a vectorului este memorata intr-un
registru. Acest registru contine adresa listei de adrese a parametrilor.

In cazul in care la definire functia are parametri formali: oy, ay,..... ,
o, Si daca:

tip(p;) = tip(ey) Vied{l, 2, ..., n} (8.44)

inseamna ca s-a obtinut concordanta intre tipul parametrilor reali si tipul
parametrilor formali.

Transmiterea parametrilor formali prin valoare vizeaza efectuarea
copierii valorilor parametrilor reali pi in zonele de memorie definite in
functie, asociate parametrilor o;, operatie simbolizata prin expresia de
atribuire:

a-py i=1,2 ..n (845)

In cazul in care are loc o inversare a parametrilor sau omiterea unuia
dintre ei, dispare concordanta de tip si tipul parametrului o; este T;, iar tipul
parametrului p; este T;,, ceea ce impune efectuarea conversiei de la tipul T;
la tipul T;, cu toate efectele pe care conversia de tip le antreneaza.

a; =conv(p;,Ti) (8.46)

determina perturbarea radicala a rezultatelor.

Daca parametrii p; sunt variabile pointer in functie, se opereaza
asupra zonelor de memorie externe acesteia, a zonelor ale caror adrese
sunt conservate in variabilele pointer p;.

Aceasta explica necesitatea ca functia de interschimb de valori sa
contind pointeri pentru elemente si nu elementele insasi.

In continuare se ia in discutie programul executabil ca data. Orice
program executabil este format din instructiuni executabile si zone de
memorie ce servesc ca operanzi.

Orice program are o prima instructiune executabilda si o ultima
instructiune executabild. De obicei, in cazul functiilor, prima instructiunea
executabild, etichetata cu numele functiei, se numeste punct de intrare in
functie. Instructiunea de apel a functiei, efectueaza un salt neconditionat
spre punctul de intrare in functie.

Ultima instructiune executabila dintr-o functie, este un salt
neconditionat catre programul apelator, pe baza informatiei care
localizeaza unde se efectueaza revenirea. Aceasta instructiune se numeste
punct de iesire din program. Din punct de vedere al structurilor de date,
aceste puncte sunt de fapt elemente folclorice, care prin pitorescul lor
coloreaza limbajul programatorilor.

Ca structura de date, textul executabil este un text omogen, atunci
cand toate instructiunile au o lungime si o structura fixata. In cele mai
multe cazuri, instructiunile necesita informatii care determina extensii pe
cuvinte adiacente, reducand gradul de omogenitate a structurii de date
numita program.

Totusi, structura de date numita program executabil este delimitata
prin doud instructiuni executabile cu aceeasi semnificatie, oricare ar fi
functia scrisa intr-un limbaj evoluat. Acest lucru se datoreaza standardelor
de preluare a parametrilor si de revenire in functia apelatoare.

Daca se considera functiile f;(), f2(), ..., fn() carora le corespund m
texte program executabil, memorate in m zone de memorie, prin fi(), (),
..... fn(), se simbolizeaza adresele primelor instructiuni executabile ale
acestor functii, si daca se definesc punctele de intrare ca un nou tip de data
numit tipul de date functie, se construieste un vector de pointeri:

(pointer, functie) pf [m] (8.47)
initializat astfel:
pf(i] = f(); i=1,2,.., m (8.48)
In loc s§ se scrie o secventa cu m apeluri de functii, se reduce totul la

secventa, unde p1, p2,.., pn sunt vectori cu parametrii asociati functiilor f1,
f2,..., fn:

for (1 =0 ;01 <m;i++)

pfLi] (pi[i], p2[i], ..., pn[i]);

Deci vectorul de pointeri spre functii faciliteaza crearea unor secvente
dinamice de apel in timpul executiei, prin variabilitatea indicelui /.

Daca functiile de intrare se memoreaza intr-o matrice de pointeri spre
functie, atunci exista o mai mare diversitate si flexibilitate de prelucrare,
ceea ce permite realizarea de sisteme de programe vecine prin
complexitatea lor cu sistemele de program expert.

8.5 Variabile de tip pointer si structurile de date de tip
articol

Variabilele pointer, ca de altfel orice alt tip de variabila, apar ca
membri in structurile de date de tip articol. De asemenea, o variabild
pointer este definita ca pointer spre structura.

Constructiile:

struct a

{
int ml;
double m2;
};
a X;
a *y;

definesc:
e X ca variabila de tip articol;
e y ca variabila de tip pointer spre articol.
Expresiile:

y = adr(x) (8.49)

ref(y).mi (8.50)

ref(y).c = adr(z) (8.51)
ref(y) = ref(c) (8.52)

reprezinta modalitatile de initializare sau utilizare a membrilor structurii, in
conditiile in care elementul baza de referire este o variabila pointer si unul
dintre membri este, de asemenea, tot o variabild pointer.

Deosebirea este ca y este un pointer spre structura x, iar ¢ este un
pointer spre intreg.

Lucrul cu fisiere presupune stocarea de informatii privind
caracteristicile fisierelor, precum si informatii de stare a prelucrarii
acestora. Informatiile sunt neomogene si pentru stocarea lor trebuie
definite structuri corespunzatoare, care se constituie de fapt ca un vector
de structura. Numarul de componente ale vectorului, indica numarul maxim
de fisiere cu care se lucreaza intr-un program.

Acest vector de structura se pune in corespondenta cu elementele ce
se definesc in programele utilizatorilor.

Tipul de date FILE este de tip pointer spre o structura si caracterul
local sau global acordat variabilelor de acest tip permite definirea zonei
program din care programatorul are acces prin operatii de intrare/iesire la
fisier. Programatorul are acces la fisiere prin structurile de date de tip FILE.

Numerosi parametri ai functiilor de lucru cu fisiere, sunt pointeri care
au acelasi tip cu membrii structurii de date FILE, parametri care permit
initializari de membri, sau comparari care valideaza efectuarea de operatii.

Daca fisierul insusi este pus in corespondenta cu un pointer spre
FILE, acesta apare ca parametru intr-o functie, ceea ce ofera caracter
general aplicatiilor. Cand se spune ca fisierul apare ca parametru intr-o
functie, realitatea este ca pointerul variabild pointer spre structura de tip
FILE, care contine descrierea fisierului cu care se doreste sa se lucreze in
functie, se transmite ca parametru real.

Observam ca toate informatiile despre toate entitatile, date,
programe si fisiere, se structureaza adecvat si devin resurse la dispozitia
programatorului.

Limbajele evoluate, precum C si C++4, sunt puternice prin
multitudinea functiilor de biblioteca pe care programatorii le apeleaza.
Numeroase functii necesita definirea unor variabile in programe, de un tip
derivat, definit ca global in fisiere, ce trebuie incluse in program.

Programatorul trebuie sa cunoasca aceste structuri, pentru a folosi
informatiile pe care la returneaza functiile apelate.

Functiile, primesc ca parametrii reali variabile elementare, sau
masive, sau structuri, sau pointeri. sau alte tipuri derivate si/sau definite
global.

Functiile returneaza valori ce se stocheaza in variabile elementare, in
structuri de tip articol, in date de tip pointer. Numarul valorilor returnate
este unu. Pentru a obtine ca functia sa returneze un masiv, uni- sau
bidimensional, e suficient ca acesta sa fie inclus intr-o structura de tip
articol.

Programatorul care face distinctie intre toate tipurile de date
prezentate pana acum si care e deprins sa vehiculeze usor definirile si
referirile acestora, prin functii de biblioteca sau functii proprii are acces la
absolut toate resursele unui sistem de calcul.

Se observa ca:

- referirea unei variabile elementare se face prin nume;

- referirea unui masiv se face prin nume, iar al unui element al sau
prin nume urmat de o expresie indiciala cuprinsa intre ,,[]”;

- referirea unei structuri de tip articol se face prin nume, iar a unui
membru indicand numele structurii separat de operatorul ,.”, de
numele membrului respectiv;

- referirea unei date de tip pointer se face prin nume, iar a
variabilei a carui adresa o contine, printr-un operator de referire;

- referirea unui fisier se efectueaza prin numele variabilei pointer
spre tipul de date FILE; initializarea si utilizarea acestei structuri
este la dispozitia functiilor destinate lucrului cu fisiere.

Comparand referirile, se observa ca pentru a defini aceste tipuri de

date sunt necesare informatii care sa indice tipul si ordinea pe care
componentele o au in cadrul structurilor ca entitati efective, desfasurate
liniar si contiguu in memorie.

8.6 Definirea si utilizarea variabilelor pointer in limbajul C++
In limbajul C++, pentru tipul pointer, prin declaratia tip * nume, se

prelucreaza tipul.
De exemplu:

int *px, *py ;
int x, vy ;

Pentru initializarea variabilelor pointer, se foloseste operatorul ,&”.
De exemplu:

px = & X;
9% & y;

Functiei de referire 1ii corespunde operatorul ,*”.
Instructiunea:

[px = *px + *py;

este echivalenta cu:
X = X+Yy;
si are corespondent in consideratiile anterioare:
ref (px) = ref (px) + ref (py) (8.53)

In cazul definirii pointerilor spre tipuri de date derivate, se folosesc
constructii precum:

typedef struct b
{

int c;

int d;

int e;
int * g;
};
typedef b *a;
a Xx;
by;
Expresiile:
X =8&Yy;
X->c = 3
X->d = X-> c*5;
Xx->e =1
X->g = Addr(x,e);
X->e = X-> e +X-> (;

ilustreaza modalitati de referire a membrilor unei structuri.
In cazul definirii:

typedef int c;
typedef c * b;
typedef b * a;
a X;
by;
c z;
expresiile:

z =17;

y = &z;

X = a&y;

cout << **x;

ilustreaza modalitati de lucru cu pointeri spre intreg, variabila y, si cu
pointeri spre pointeri spre intreg, variabila x.

Functiei ref<(px) ii corespunde constructia **... de k ori ... ***px, iar
functiei adr(px), ii corespunde secventa:

p1 = &(X);
P2 = &(P1);
Pk = &(Pk-1);
Instructiunile:
int * px;

int Xx;

px = &(X);
X = 7;
cout << *px

au acelasi efect ca:

cout << X;

Aplicatiile complexe necesita definirea de vectori de pointeri spre
matrice, pointeri spre vectori de pointeri spre pointeri spre matrice, pointeri
spre vectori de pointeri.

Programele de mai jos, realizeaza sumele elementelor a trei matrice,
folosind diferite modalitati de referire a elementelor, specificate la fiecare
program prin comentariu.

//vectori de pointeri spre matrice
#include <iostream>

using namespace std;

typedef int mat[2][3];
typedef mat *pmat;
typedef pmat vecp[3];
vecp vp;

int i,j.k;

int s[3] = {0,0,0};
mat a = {1,1,1,2,2,2};
mat b = {3,3,3,4,4,4%};
mat ¢ = {56,5,5,6,6,6%};
main()

{
vp[O]
vp[1] = é&b;
vp[2] = &c;
for (k=0; k<3; k++)

&a;

for (1=0; i<2; i++)
for (3=0; j<3; j++)
s[kl+=CvpLkD L1101

cout<<'™\n Suma matricei '<<k<<" este "'<<s[k];

3

Codul sursa al programului care utilizeaza vectori de pointeri spre
pointeri la o matrice este:

//vectori de pointeri spre pointeri la o matrice
#include <iostream>

using namespace std;

typedef int mat[2][3];
typedef mat * pmat;
typedef pmat vecp[3];
typedef pmat * vecpp[3];
vecp vp;

VECpp Vpp;

int i,j,k;

int s[3] = {0,0,0};
mat a = {1,1,1,2,2,2};
mat b = {3,3,3,4,4,4};
mat ¢ = {5,5,5,6,6,6};
main()
{

vp[0] = &a;

vp[1] = &b;

vp[2] = &c;

for (i=0; 1<3 ;i++)

vppLi] = &vp[i];

for (k=0 ; k<3 ; k++)
{
for (i=0; 1<2; i++)
for (3=0; j<3; j++)
skl + = C*vpplKDLi10i1:

cout<<'"\n Suma matriceil "<<k<<" este '"<<s[k];

In programul:

//pointeri spre vectori de pointeri
#include <iostream>
using namespace std;

typedef vecp *pvec;
int * ppp;

vec a = {1,2,3,4,5}%};
vecp p;

pvec pp;

int i;

main()

for (i=0; i<5; i++)

pLi] = &a[i];

ppp = a;

pp = &p;

for (i=0; i<5; i++)

{
cout<<'\n"<<*(ppp+i)<<" ** "<<Cp[il);
cout<<"\n"<<C*Cpp)[iD);

b

}

se utilizeaza pointeri spre vectori de pointeri, iar in programul urmator sunt
folositi pointeri spre vectori de pointeri spre pointeri de matrice:

//pointeri spre vectori de pointeri spre pointeri la matrice
#include <iostream>

using namespace std;

typedef pmat vecp[3];
typedef pmat* vecpp[3];
typedef vecpp * pvecpp;

vecp vp;
Vecpp vpp;
pvecpp pvpp,;
int i,j,k;
int s[3] = {0,0,0};
mat a = {1,1,1,2,2,2};
mat b = {3,3,3,4,4,4};
mat ¢ = {5,5,5,6,6,6%};
main()
{
vp[O] = &a;
vp[1l] = &b;
vp[2] = &c;

for (i=0; i1<3; i++)
vpp[i] = &vp[i];

pvpp = &vpp;
for (k=0; k<3; k++)
{

for (1=0; i<2; i++)

for (J=0; j<3; j++)
skl + = C*Cpvpp) [KDLi10i1:

cout<<'™\n Suma matriceil ''<<k<<" este "'<<s[k];

}

Un exemplu de program in care sunt puse in evidenta modalitati de
referire a unor structuri complexe, este considerat urmatorul:

#include <iostream>
using namespace std;

typedef int vec[5];
typedef int * pvec[5];
typedef pvec * ppvec;
typedef struct strz

{
vec aa;
pvec paa;

3 ppvec pppa;

typedef strz * pstr;
typedef pstr ps[2];
typedef ps* pps;

int i,j;
strz st[2];
ps pst;
pps pss;

main()

{

st[0]-aa[0] 100;
st[0]-aa[1] 200;
st[0]-paa[0] = &st[0].aa[0];
st[0]-paa[1l] = &st[0].aa[1];
st[1]-aa[0] = 300;
st[1]-aa[1l] = 400;
st[1]-paa[0] = &st[1].aa[0];
st[1]-paa[l] = &st[1l].aa[1];
pst[0] = &st[0];

pst[1] = &st[1];

psSs = &pst;
st[0] -pppa = &st[0].-paa;
st[1]-pppa = &st[1].paa;

for (i=0; i<2; i++)
for (J=0; j<2; j++)
{
cout<<"\n*"<<st[i].aa[J]<<"**"<<*(pst[i]->paalj]):
cout<<"++"'<<*((*pss) [1]->paaljD<<"--"<<*((*pss) [il->pppalil);
}

Un aspect important in utilizarea variabilelor pointer il reprezinta
alocarea dinamica a memoriei.

