
8. VARIABILE POINTER 
 
 

8.1 Tipul variabilei pointer 
 
Pentru programatorii care cunosc un limbaj de asamblare, definirea şi 

utilizarea variabilelor pointer în limbaje evoluate de programare reprezintă 
operanzii necesari implementării adresării indirecte. 

La adresarea indirectă se utilizează doi operanzi şi anume: operandul 
care referă şi operandul referit, notaţi în continuare R0, respectiv Or. 

Operandul R0 conţine adresa de început a zonei de memorie asociată 
operandului Or. Evaluarea expresiilor: 

 
15Or adr(Or),  R0    (8.1) 

 
conduce la modificarea conţinutului operandului R0 şi a operandului Or, 
figura 8.1, ceea ce se exprimă prin: 
 

adr(Or)  cont(R0)    (8.2) 
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Figura 8.1 Modificarea conţinuturilor operanzilor R0 şi Or 

 
 
Această expresie arată că operandul  R0 este de  un nou tip, Tp, ale 

cărui  valori aparţin intervalului [Ai, Af]  N, unde Ai şi Af sunt adrese de 
început, respectiv, de sfârşit ale unui segment de memorie. 

Dacă: 
 

TRUE  Tp),f(cont(R0)   (8.3) 
adică 
 

cont (R0)  [Ai, Af] N  (8.4) 
 
se spune ca operandul R0 este de tipul Tp. 

În continuare acest nou tip de dată este numit tipul pointer. 
Funcţia lg(R0,TP) defineşte o astfel de mărime care să permită 

stocarea completă a informaţiei necesare localizării operanzilor, ale căror 
adrese se încarcă în variabila R0. 

Expresia: 
 

cont(Ro) = adr(Ro)   (8.5) 
 

are semnificaţia încărcării în operandul R0 a propriei adrese. După evaluarea 
expresiei, conţinutul lui R0 este dat în figura 8.2. 
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Figura 8.2 Noul conţinut al operandului R0 

 
 În sine, expresia nu are o semnificaţie deosebită, mai mult oferă  

riscul închiderii unui lanţ de referire, transformându-l în ciclu infinit. Dacă 
operandul R0 devine reper şi toate deplasările sunt evaluate avându-l ca 
bază, expresia de mai sus se justifică. 

Dacă se definesc variabilele  a, b, c având  tipul  Ti,  şi variabilele pa, 
pb, pc  având tipul Tp, evaluarea expresiilor: 

 
pa = adr(a)  
pb = adr(b)  
pc = adr(c) 

 
realizează iniţializarea operanzilor de tip Tp. 

Dacă sunt luate în considerare aceste expresii, în loc de: 
 

c = a+b;  (8.6) 
 

se va utiliza expresia: 
 

ref(pc) = ref(pa)+ref(pb)  (8.7) 
 

unde funcţia de referire ref() este definită: 
 

ref : [Ai, Af] -> I   (8.8) 
 
unde mulţimea  este interpretată drept conţinutul zonei de memorie 
asociate identificatorilor. 

Se observă că prin definirea funcţiei adr(): 
 

adr  : I -> [Ai, Af]  (8.9) 
 
funcţiile adr() şi ref() nu sunt una inversă celeilalte.  Este adevărată numai 
egalitatea: 
 

x = ref(adr(x))  (8.10) 
 

Nu în toate cazurile, limbajele de programare implementează această 
proprietate. 
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Figura 8.3 Relaţia între funcţiile adr(x) şi ref(x) 
 
Proprietăţile funcţiilor sunt discutate în contextul alocării statice a 

memoriei, fără posibilitatea redefinirii sau suprapunerii de operanzi, 
obţinându-se zone de memorie comune pentru seturi de operanzi. 

Deci, în contextul prefixat, pentru doi operanzi diferiţi, xi şi xj de 
acelaşi tip sau de tipuri diferite. 

 
adr(xi)  adr(xj)         (8.11) 

 
ref(adr(xi))  ref(adr(xj))       (8.12) 

 
pentru că xi  xj, din definiţie. 

Variabilele de tip Tp apar în expresii aritmetice, relaţionale sau de 
atribuire, nu ca elemente în sine ci ca parametri ai funcţiei ref(). 

Revenind la limbajul de asamblare, operaţiile de calcul sunt 
specializate pe tipuri de operanzi. Există operator de adunare pentru 
operanzi de tip întreg, dar există şi operator de adunare pentru operanzi de 
tip virgulă mobilă simplă precizie. Pentru operanzii de tip dublă precizie, 
există operator distinct de cei menţionaţi. 

Operatorii de comparare privesc zone de memorie de lungimi diferite, 
care să acopere totalitatea lungimilor asociate tipurilor fundamentale de 
date implementate în limbajele de asamblare. 

Apariţia operanzilor de tip Tp, determină pierderea informaţiei 
referitoare la tipul iniţial al operandului şi există posibilitatea generării unei 
evaluări ambigue a expresiilor. 

În acest sens, tipul Tp se defineşte ca un tip compus: 
 

Tp = (pointer,Ti)   (8.13) 
 
unde Ti, reprezintă tipul variabilei referite şi pointer este tipul specific, 
fundamental al variabilei. Dacă variabila care referă px, este de tip Tp şi 
variabila referită x, este de tip Ti, în vorbirea curentă expresia se 
interpretează, pornind de la efectul fizic al operaţiilor cu pointeri, ca pointer 
spre Ti. 

Dacă x are tipul int şi px este de tip Tp, se spune că px este pointer 
spre int şi toţi operatorii din expresiile omogene ca tip de date unde apare 
px, sunt selectaţi pentru lucrul cu operanzi de tip int. 

Tipul variabilei referite nu influenţează lungimea variabilelor de tip Tp 
şi conţinutul. 

Dacă o variabila x, este definită ca având tipul Ti şi variabila px este 
definită ca având tipul (pointer, Tj), expresia: 

 
px = adr(x)  (8.14) 



 
nu este evaluată decât numai după ce ara loc conversia de la tipul Ti la tipul 
Tj, operatorul de atribuire necesitând operanzi de acelaşi tip. Această 
conversie realizează de fapt schimbarea setului de informaţii în concordanţă 
cu operandul din stânga. 

Prin conversie, adresa este asociată unei variabile de tip Tj cu toate 
implicaţiile ce decurg asupra alinierilor şi lungimii zonelor de memorie 
asociate noului tip, asociat zonei de memoria pusă în corespondenţă cu 
variabila x. 

Există situaţii în care conversia de tip este implicită (în cazul evaluării 
expresiilor aritmetice), dar sunt numeroase cazurile în care aceasta trebuie 
specificată explicit. 

Funcţia  conv(x, Tj) modifică tipul variabilei x de la Ti la Tj. Dacă: 
 

tip(x) = Ti            (8.15) 
 

x = conv(x,Tj)        (8.16) 
 
conduce la: 
 

tip(x) = Tj      (8.17) 
 
şi în  mod corespunzător: 
 

px = convp(adr(x),Tj)  (8.18) 
 
unde convp( ) reprezintă funcţia de conversie a tipului spre care pointează o 
variabila de tip Tp. 

Expresia din dreapta conduce mai întâi prin evaluarea lui adr(x) la 
tipul (pointer,Ti), ca mai apoi prin folosirea funcţiei convp(), să se obţină 
conversia de tip şi rezultatul evaluării este (pointer, Tj), care este omogen 
în raport cu tipul Tp al variabilei px. 

Funcţia convp() are rolul de a modifica al doilea termen al perechii 
(pointer, Ti) care defineşte tipul Tp. 

Conversiile de tip, sunt facilitaţi cu importante efecte asupra 
performanţei programelor, cu condiţia ca ele să se afle strict sub controlul 
programatorului. 

Atunci când conversiile de tip depăşesc simplele expresii de atribuire, 
prin crearea de noi vecinătăţi pentru operanzi prin redistribuirea baiţilor, 
sunt interpretate componente care altfel rămâneau neexplorate în program. 
Toate însă, e necesar să fie sub controlul programatorului. Altfel, dintr-o 
facilitate, conversia de tip se transformă într-o problemă generatoare de 
greutăţi. 

 
 
8.2 Aritmetica variabilelor pointer 
 
Întrucât pentru variabilele px şi py de tip Tp: 
 

cont(px) [Ai, Af]  N             (8.19) 
 
cont(py) [Ai, Af]  N             (8.20) 



 
pe mulţimea [Ai, Af]  N se defineşte operaţia „”, astfel încât pentru: 
 

 ,[Ai, Af]  N,     = , [Ai, Af]  N  (8.21) 
 
Dacă, de exemplu, se consideră intervalul [0; 64000]  N, operaţiile 

de adunare, înmulţire, scădere şi împărţire, nu sunt legi de compoziţie 
internă. Prin contraexemple se dovedeşte că există  şi  astfel încât: 

 
[0;64000]   N  (8.22) 

 
Aparent, nu se vorbeşte de o aritmetică a variabilelor pointer. Totuşi 

se construiesc expresiile  cu variabile pointer, cu condiţia ca rezultatul 
evaluării să aparţină intervalului [Ai, Af]   N. 

Dacă se defineşte masivul unidimensional: 
 

float x [10]; 
 

şi px este un pointer spre întreg, şi: 
 

px = adr(x[l])  (8.23) 
 

evaluarea expresiei: 
 

px = px + 6 = adr(x[l]) + l*lg(real) = adr(x[2])        (8.24) 
 
conduce la posibilitatea de a referi, elementul al doilea al vectorului x. 
Dacă: 
 

px = adr(x[10])   (8.25) 
 
şi se evaluează expresia: 
 

px = px-24         (8.26) 
 

px = adr(x[10])-4*lg(real) = adr(x[6])       (8.27) 
 

în expresiile: 
 

adr(z+k) = adr(z)+k*lg(Ti)   (8.28) 
 
unde z este o variabilă de tip Ti, se observă că pentru variabila pz de tip Tp, 
care a fost iniţializată prin: 
 

pz: = adr(z);       (8.29) 
 

adr(z+k) = pz + k*lg(Ti)       (8.30) 
 
şi pentru că tipul Tp = (pointer, Ti), expresia k*lg(Ti) este rezultatul 
conversiei la tipul Tp al variabilei pz, a variabilei întregi k. 



În acelaşi mod, se defineşte şi operaţia de scădere, în ambele cazuri 
apare cerinţa ca rezultatul evaluării expresiilor să aparţină intervalului [Ai, 
Af]   N. 

Se construiesc teoretic, expresii deosebit de complexe, în care 
operanzii să fie de tip Tp, dar restricţia de apartenenţă a rezultatului la acel 
interval le face inoperante. 

În plus, lucrul cu adrese în zone de memorie contigue şi mai ales 
pentru structuri de date omogene, vizează posibilitatea de a genera 
termenii unor progresii aritmetice. 

Dacă variabila px de tip Tp, este iniţializată prin: 
 

px = adr(x[1]); 
s = 0; 
for(i=0; i<10; i++)  
{ 
     s = s + ref(px); 
     px = px+4; 
}; 

 
variabila px,  permite referirea rând pe rând a elementelor x[0], x[1], ..., 
x[9] ale vectorului x. 

Mai mult, definind px variabila de tip Tp în secvenţa: 
 

px = adr(x); 
s = 0; 
pi = adr(x[0]); 
do 
{ 
     s = s+ref(pi); 
     pi = pi+4 ; 
} while (pi <= adr(x[9])); 

 
diferă foarte puţin de secvenţele care implementează structurile repetitive 
într-un limbaj de asamblare oarecare. 

Ca şi în limbajele de asamblare, restricţiile de apartenenţă la 
domeniul [Ai; Af]  N, au determinat că pentru variabilele pointer, 
aritmetica să se reducă la două operaţii: incrementarea şi decrementarea. 
Aceste operaţii înseamnă de fapt majorarea, respectiv diminuarea cu o 
unitate, după cum urmează: 

 
adr(x+l) = adr(x) + 1*lg(Ti) = px + l*lg(Ti)      (8.31) 

 
adr(x-l) = px – l*lg(Ti)       (8.32) 

 
Conversia de tip, determină ca unitatea să fie egală de fapt cu 

lungimea asociată zonei de memorie ocupată de variabilele de tip Ti. 
În cazul unor expresii complexe notate: 
 

expr(a0 a1 ... an-1)        (8.33) 
 

adr(x+expr(a0 a1 .....an-1)) = px+int(expr(a0 a1 .....an-1))*lg(Ti)     (8.34) 
 



Se consideră că expresia: 
 

px+int(expr(a0 a1 .....an-1))*lg(Ti) =   (8.35) 
 

este corect definită dacă  [Ai, Af]  N. 
În limbajul C/C++, încărcarea adreselor variabilelor definite în 

program, se efectuează cu operatorul „&”.  
Corespondentul C/C++ al secvenţelor de mai sus este: 

 
typedef int mat[10]; 
mat x = {1,2,3,4,5,6,7,8,9,10}; 
int * px; 
 
unsigned int i, s; 
{ 
s = 0; 
for  ( i  =  0 ; i < 10 ; i + +) 
{ 
   px = &x[i] 
   s = s + (*px); 
} 
cout << s; 

 
Absenţa controlului asupra limitelor de variaţie pentru variabilele de 

tip Tp, determină să devină operanzi zone nespecifice programului, alterând 
în acest fel inclusiv componente din software de bază, cu consecinţe asupra 
calităţii prelucrărilor curente şi chiar viitoare. 

 
 
8.3 Niveluri de indirectare 
 
Apare în mod firesc întrebarea dacă tipul Tp definit iniţial (pointer, Ti), 

unde Ti reprezintă un tip fundamental de dată, include şi perechea (pointer, 
Tp), ştiut fiind faptul că şi tipul Tp este considerat tip fundamental. 

Acceptând că o astfel de construcţie este corectă, se creează 
posibilitatea realizării de pointeri spre pointeri spre Ti şi a pointerilor spre 
pointeri spre pointeri spre Ti. 

 Se definesc variabilele: 
 

int  Y, x ;     
int *py, *px ;   // (pointer, integer); 
int **ppx;       // (pointer,(pointer, integer)); 

 
prin expresiile: 
 

x  = 20; 

px = adr(x); 

ppx = adr(px)); 

  
se obţin legăturile reprezentate grafic în figura 8.4. 
 



 
 

Figura 8.4 Alocarea în memorie a variabilelor x, px şi ppx 
 

Expresiile: 
 

py = adr(y); 

y = 16; 

 
conduc la reprezentarea grafică din figura 8.5. 

 

 
 

Figura 8.5 Alocarea în memorie a variabilelor py şi y 
 
 
Expresia: 
 

ref(y) = ref(y) + ref(ref(x))   (8.36) 
 

este echivalentă cu: 
 

y = y + x    (8.37) 
 

Programul C/C++ care evaluează expresia este: 
 

typedef  int * pint; 
int x, y; 
pint px, py; 
pint *ppx; 
{ 
      x  =  20 ; 



      y  = 15; 
      px = &x;  
      py = &y; 
      ppx  =  &px; 
      *py = *py + **ppx; 
      cout << *py ; 
}; 

 
Construcţia  (pointer, Tp) permite compunerea unei funcţii adr() 

asociate nivelurilor indirectate. 
În definiţia: 
 
int x ; 

int *px ; // (pointer, integer)  

int **ppx ; // (pointer, (pointer, integer))  

int ***pppx ; // (pointer, (pointer,(pointer, integer))) 

 
şi din secvenţa: 
 

x = 17; 

px =adr(x); 

ppx = adr(px); 
pppx = adr(ppx); 

 
se obţine: 
 

pppx - adr(adr(adr(x))) =  adr3 (x)     (8.38) 
 
Numărul 3 reprezintă nivelul de indirectare. Pentru referirea unei 

variabile având nivelul 3 de indirectare, se procedează astfel: 
 

ref(ref(ref(pppx))) = ref3 (pppx)    (8.39) 
 
Pentru omogenizarea operanzilor în cadrul expresiilor, este necesar ca 

variabilele în care tipul Tp are puterea n, să fie iniţializate cu adr() şi să fie 
referite cu refn (). 

Se consideră: 
 

T1
p = (pointer,Ti) 

T2
p = (pointer, (pointer, Ti) 

T3
p = (pointer,(pointer (pointer, Ti))) 

... 
 
Pentru efectuarea unor generalizări privind aritmetica ordinului n a 

tipului Tp este necesară definirea funcţiei pentru evaluarea lungimii acestui 
tip. Astfel, expresii ca: 

 
adrk (adrh(x)+i) sau adrk (adrh(x)-i)   (8.40) 

 
devin interpretabile. 



Aşa cum pentru toate tipurile de date există constante ce sunt 
atribuite şi  pentru tipul pointer, există constante corespunzător definite. 
Constantele pentru tipul pointer, simbolizează adrese absolute. Se vorbeşte 
de adresă nulă, se vorbeşte de adresa 15, sau de orice altă adresă. Dacă 
însă un program P lansat în execuţie, ocupă zona de memorie delimitată 
prin [Ai

p; Af
p]  N, iniţializarea oricărei variabile pointer, este efectuată cu 

valori cuprinse în acest interval. Folosirea valorii nule are numai scop de 
jalonare la iniţializare, pentru a vedea dacă s-au făcut atribuiri ulterioare 
pentru a lucra corect, sau atribuirile nu au fost posibil să se efectueze şi 
deci nu se lucrează pentru că variabila pointer are valoare nulă. 

În programele C/C++, referirea unei variabile pointer px cu 5 nivele 
de indirectare, de exemplu, se realizează prin evaluarea expresiei: 

  
*****px; 

 
iar pentru valoarea nulă a variabilei pointer, se foloseşte constanta 
simbolică NULL. Iniţializarea unei variabile pointer cu o adresă absolută de 
memorie se realizează cu funcţia Ptr(), având ca parametru o adresă în 
hexazecimal. De exemplu: 
 

py : =  Ptr($00AA,$0020); 
 
variabila pointer py este iniţializată cu o adresă absolută de memorie. 

 
 
8.4 Vectori şi matrice de pointeri 
 
 Şi cu tipul Tp se construiesc structuri de date omogene, dacă 

toate componentele acestora au tipul Tp. Construcţia: 
 

Tp x[n];     (8.41) 
 

Tpi  y[n][m];      (8.42) 
 
reprezintă definirea unui masiv x având n componente, fiecare componentă 
fiind un pointer spre Ti şi, respectiv, definirea unei matrice y având n linii şi 
m coloane, elemente ce sunt pointeri spre tipul Ti.  

 Se justifică  stocarea în masive uni- şi bidimensionale a adreselor 
unor operanzi, dacă aceştia  au diferenţieri între ei, sau dacă tipologiile 
determină activări de funcţii după succesiuni stabilite. 

Se memorează, de exemplu, mesajele unui program care apar în 
dialogul cu utilizatorul, sub forma unui text continuu. Acestor mesaje,  în 
număr de 50, li se memorează adresa de început în componentele 
vectorului text[i], de pointeri spre tipul char [].  

Dacă se doreşte aflarea tuturor mesajelor prin secvenţa: 
 

for (i = 0 ; i < 50 ; i + + ) 
 cout << ref(text[i]); 

 
se obţine acelaşi lucru.    



 Dacă se doreşte afişarea unui anumit mesaj, este important să se 
cunoască poziţia în vectorul text[] a componentei în care este memorată 
adresa respectivului mesaj. 

Dacă în cele cinci componente ale unui vector de pointeri numit px, 
se memorează adresele primelor componente ale vectorilor a[], b[], c[], 
d[], e[], cu număr de componente diferite şi se doreşte să se calculeze cu 
funcţia suma(), suma elementelor vectorilor, în loc să se scrie de cinci ori 
apelul funcţiei suma(), se va construi secvenţa: 

 
for(i=0; i<5; i++)
   s[i] = suma(px[i], n[i]); 

 
Dacă se defineşte: 
 

 int x1[10], x2[10], x3[10], x4[10]; 
 Tp y[4]; 
 T 2p  z; 

 
prin atribuirile: 
 

y[0]=adr(xl[0]);
y[1]=adr(x2[0]);
y[2]=adr(x3[0]);
y[3]=adr(x4[0]);
z = adr(y[0]); 

 
s-a obţinut construcţia cu modelul grafic din figura 8.6. 
 

z 

3] y[ 3] y[ 2] y[ 1] y[ 0] 

X 2 X 3 X4  
 

Figura 8.6 Modelul grafic al legăturilor între variabilele x, y şi z 
 

Modelul grafic din figura 8.6 este identic cu modelul grafic asociat structurii 
de date omogene şi contigue, matricea. 

Tot astfel, se defineşte o funcţie fct(), care  se apelează prin: 
 

fct(pl, p2, p3,…, pn)       (8.43) 
 
La apel, construieşte un vector cu n componente în care sunt 

memorate adresele parametrilor reali ai funcţiei,  deci vectorul acesta este 
un vector de pointeri. 



Adresa primei componente a vectorului este memorată într-un 
registru. Acest registru conţine adresa listei de adrese a  parametrilor.  

În cazul în care la definire funcţia are parametri formali: 1, 2,....., 
n  şi dacă: 

 
tip(pi) = tip(i)  i {1, 2, ..., n}      (8.44) 

 
înseamnă că s-a obţinut concordanţa între tipul parametrilor reali şi tipul 
parametrilor formali. 

Transmiterea parametrilor formali prin valoare vizează efectuarea 
copierii valorilor parametrilor reali pi în zonele de memorie definite în 
funcţie, asociate parametrilor i, operaţie simbolizată prin expresia de 
atribuire: 

 
i = pi;    i = 1, 2, ...,n       (8.45) 

 
În cazul în care are loc o inversare a parametrilor sau omiterea unuia 

dintre ei, dispare concordanţa de tip şi tipul parametrului i este Ti, iar tipul 
parametrului pi este Tj, ceea ce impune efectuarea conversiei de la tipul Tj 
la tipul Ti, cu toate efectele pe care conversia de tip  le antrenează. 

 
i = conv(pi,Ti)  (8.46) 

 
determină perturbarea radicală a rezultatelor. 

Dacă parametrii pi sunt variabile pointer în funcţie, se operează 
asupra zonelor de memorie externe acesteia, a zonelor ale căror adrese 
sunt conservate în variabilele pointer pi. 

Aceasta explică necesitatea ca funcţia de interschimb de valori să 
conţină pointeri pentru elemente şi nu elementele însăşi. 

În continuare se ia în discuţie programul executabil ca dată. Orice 
program executabil este format din instrucţiuni executabile şi zone de 
memorie ce servesc ca operanzi. 

Orice program are o primă instrucţiune executabilă şi o ultimă 
instrucţiune executabilă. De obicei, în cazul funcţiilor, prima instrucţiunea 
executabilă, etichetată cu numele funcţiei, se numeşte punct de intrare în 
funcţie. Instrucţiunea de apel a funcţiei, efectuează un salt necondiţionat 
spre punctul de intrare în funcţie.  

Ultima instrucţiune executabilă dintr-o funcţie, este un salt 
necondiţionat către programul apelator, pe baza informaţiei care 
localizează unde se efectuează revenirea. Această instrucţiune se numeşte 
punct de ieşire din program. Din punct de vedere al structurilor de date, 
aceste puncte sunt de fapt elemente folclorice, care prin pitorescul lor 
colorează limbajul programatorilor.  

Ca structură de date, textul executabil este un text omogen, atunci 
când toate instrucţiunile au o lungime şi o structură fixată. În cele mai 
multe cazuri, instrucţiunile necesită informaţii care determină extensii pe 
cuvinte adiacente, reducând gradul de omogenitate a structurii de date 
numită program. 

Totuşi, structura de date numită program executabil este delimitată 
prin două instrucţiuni executabile cu aceeaşi semnificaţie, oricare ar fi 
funcţia scrisă într-un limbaj evoluat. Acest lucru se datorează standardelor 
de preluare a parametrilor şi de revenire în funcţia apelatoare. 



Dacă se consideră funcţiile f1(), f2(), ..., fm() cărora le corespund m 
texte program executabil, memorate în m zone de memorie, prin fl(), f2(), 
..... fm(), se simbolizează adresele primelor instrucţiuni executabile ale 
acestor funcţii, şi dacă se definesc punctele de intrare ca un nou tip de dată 
numit tipul de date funcţie, se construieşte un vector de pointeri: 

 
(pointer, funcţie) pf [m]  (8.47) 

 
iniţializat astfel: 
 

pf[i] = f( );    i=1, 2, …, m   (8.48) 
 
În loc să se scrie o secvenţa cu m apeluri de funcţii, se reduce totul la 

secvenţa, unde p1, p2,.., pn sunt vectori cu parametrii asociaţi funcţiilor f1, 
f2,…, fn: 

 
for ( i = 0 ; i < m ; i + + ) 
 pf[i] (p1[i], p2[i], ..., pn[i]); 

 
Deci vectorul de pointeri spre funcţii facilitează crearea unor secvenţe 

dinamice de apel în timpul execuţiei, prin variabilitatea indicelui i. 
Dacă funcţiile de intrare se memorează într-o matrice de pointeri spre 

funcţie, atunci există o mai mare diversitate şi flexibilitate de prelucrare, 
ceea ce permite realizarea de sisteme de programe vecine prin 
complexitatea  lor cu sistemele de program expert. 

 
 

8.5 Variabile de tip pointer şi structurile de date de tip 
articol 

 
Variabilele pointer, ca de altfel orice alt tip de variabilă, apar ca 

membri în structurile de date de tip articol. De asemenea, o variabilă 
pointer este definită ca pointer spre structură. 

Construcţiile: 
 

struct a 
{ 
   int m1; 
   double m2; 

}; 

a x; 
a *y;      

 
definesc:   

 x ca variabilă de tip articol; 
 y ca variabilă de tip pointer spre articol. 
Expresiile: 
 

y = adr(x)     (8.49) 
 

ref(y).m1   (8.50) 



ref(y).c = adr(z)     (8.51) 
 

ref(y) = ref(c)     (8.52) 
 
reprezintă modalităţile de iniţializare sau utilizare a membrilor structurii, în 
condiţiile în care elementul bază de referire este o variabilă pointer şi unul 
dintre membri este, de asemenea, tot o variabilă pointer. 

Deosebirea este că y este un pointer spre structura x, iar c este un 
pointer spre întreg. 

Lucrul cu fişiere presupune stocarea de informaţii privind 
caracteristicile fişierelor, precum şi informaţii de stare a prelucrării  
acestora. Informaţiile sunt neomogene şi pentru stocarea lor trebuie 
definite structuri corespunzătoare, care se constituie de fapt ca un vector 
de structură. Numărul de componente ale vectorului, indică numărul maxim 
de fişiere cu care se lucrează într-un program. 

Acest vector de structură se pune în corespondenţă cu elementele ce 
se definesc în programele utilizatorilor. 

Tipul de date FILE este de tip pointer spre o structură şi caracterul 
local sau global acordat variabilelor de acest tip permite definirea zonei 
program din care programatorul are acces prin operaţii de intrare/ieşire la 
fişier. Programatorul are acces la fişiere prin structurile de date de tip FILE. 

Numeroşi parametri ai funcţiilor de lucru cu fişiere, sunt pointeri care 
au acelaşi tip cu membrii structurii de date FILE, parametri care permit 
iniţializări de membri, sau comparări care validează efectuarea de operaţii. 

Dacă fişierul însuşi este pus în corespondenţă cu un pointer spre 
FILE, acesta apare ca parametru într-o funcţie, ceea ce oferă caracter 
general aplicaţiilor. Când se spune că fişierul apare ca parametru într-o 
funcţie, realitatea este că pointerul variabilă pointer spre structura de tip 
FILE, care conţine descrierea fişierului cu care se doreşte să se lucreze în 
funcţie, se transmite ca parametru real. 

Observăm că toate informaţiile despre toate entităţile, date, 
programe şi fişiere, se structurează adecvat şi devin resurse la dispoziţia 
programatorului. 

Limbajele evoluate, precum C şi C++, sunt puternice prin 
multitudinea funcţiilor de bibliotecă pe care programatorii le apelează. 
Numeroase funcţii necesită definirea unor variabile în programe, de un tip 
derivat, definit ca global în fişiere, ce trebuie incluse în program. 

Programatorul trebuie să cunoască aceste structuri, pentru a folosi 
informaţiile pe care la returnează funcţiile apelate. 

Funcţiile, primesc ca parametrii reali variabile elementare, sau 
masive, sau structuri, sau pointeri. sau alte tipuri derivate şi/sau definite 
global. 

Funcţiile returnează valori ce se stochează în variabile elementare, în 
structuri de tip articol, în date de tip pointer. Numărul valorilor returnate 
este unu. Pentru a obţine ca funcţia să returneze un masiv, uni- sau 
bidimensional, e suficient ca acesta să fie inclus într-o structură de tip 
articol. 

Programatorul care face distincţie între toate tipurile de date 
prezentate până acum şi care e deprins să vehiculeze uşor definirile şi 
referirile acestora, prin funcţii de bibliotecă sau funcţii proprii are acces la 
absolut toate resursele unui sistem de calcul. 

Se observă că: 



- referirea unei variabile elementare se face prin nume; 
- referirea unui masiv se face prin nume,  iar al unui element al său 

prin nume urmat de o expresie indicială cuprinsă între „[ ]”; 
- referirea unei structuri de tip articol se face prin nume, iar a unui 

membru indicând numele structurii separat de operatorul „.”, de 
numele membrului respectiv; 

- referirea unei date de tip pointer  se face prin  nume, iar a 
variabilei  a cărui adresă o conţine,  printr-un operator de referire; 

- referirea unui  fişier se efectuează prin numele variabilei pointer 
spre tipul de date FILE; iniţializarea şi utilizarea acestei structuri  
este la dispoziţia  funcţiilor destinate lucrului  cu fişiere. 

Comparând referirile, se observă că pentru a defini aceste tipuri de 
date sunt necesare informaţii care să indice tipul şi ordinea pe care 
componentele o au în cadrul structurilor ca entităţi efective, desfăşurate 
liniar şi contiguu în memorie. 

 
 
8.6 Definirea şi utilizarea variabilelor pointer în limbajul C++ 
 
În limbajul C++, pentru tipul pointer, prin declaraţia tip * nume, se 

prelucrează tipul. 
De exemplu: 
 

 int *px, *py ; 
 int x, y ; 

 
Pentru iniţializarea variabilelor pointer, se foloseşte operatorul „&”. 

De exemplu: 
 

px  = & x; 

py  = & y; 

 
Funcţiei de referire îi corespunde operatorul „*”. 

Instrucţiunea: 
 

*px = *px + *py; 

 
este echivalentă cu: 
 

x = x+y; 
 
şi are  corespondent în consideraţiile anterioare: 

 
ref (px) = ref (px) + ref (py)   (8.53) 

 
În cazul definirii pointerilor spre tipuri de date derivate, se folosesc 

construcţii precum: 
 

typedef struct b 
{ 
   int c; 



   int d; 
   int e; 
   int * g; 
}; 
typedef  b *a; 
 
a x; 
b y; 

 
Expresiile: 
 

x = & y; 
x->c = 3 
x->d = x-> c*5; 
x->e = 1 
x->g = Addr(x,e); 
x->e =  x-> e +x-> g; 

 
ilustrează modalităţi de referire a membrilor unei structuri. 

 În cazul definirii: 
 

typedef  int c; 
typedef  c * b; 
typedef  b * a; 
 
a x; 
b y; 
c z; 
………… 

 
expresiile: 
 

z  = 7; 
y  = &z; 
x  = &y; 
cout << **x; 

 
ilustrează modalităţi de lucru cu pointeri spre întreg, variabila y, şi cu 
pointeri spre pointeri spre întreg, variabila x. 

 Funcţiei refk(px) îi corespunde construcţia **… de k ori …***px, iar 
funcţiei adrk(px), îi corespunde secvenţa: 

 
p1 = &(x); 

p2 = &(p1); 

… … … … … … 

pk = &(pk-1); 

 
Instrucţiunile: 

int * px; 
int  x; 



… … … … … … 
px = &(x); 
x = 7; 
cout << *px 

 
au acelaşi efect ca: 
 

cout << x; 
 
Aplicaţiile complexe necesită definirea de vectori de pointeri spre 

matrice, pointeri spre vectori de pointeri spre pointeri spre matrice, pointeri 
spre vectori de pointeri. 

Programele de mai jos, realizează sumele elementelor a trei matrice, 
folosind diferite modalităţi de referire a elementelor, specificate la fiecare 
program prin comentariu. 

 
//vectori de pointeri spre matrice 
#include <iostream> 
 
using namespace std; 
 
typedef int mat[2][3]; 
typedef mat *pmat; 
typedef pmat vecp[3]; 
vecp vp; 
int i,j,k; 
int s[3] = {0,0,0}; 
mat a = {1,1,1,2,2,2}; 
mat b = {3,3,3,4,4,4}; 
mat c = {5,5,5,6,6,6}; 
main() 
{ 
      vp[0] = &a; 
      vp[1] = &b; 
      vp[2] = &c; 
      for (k=0; k<3; k++) 
      { 
   for (i=0; i<2; i++) 
    for (j=0; j<3; j++) 
     s[k]+=(*vp[k])[i][j]; 
             cout<<"\n Suma matricei "<<k<<" este "<<s[k]; 
      } 
} 

 
Codul sursă al programului care utilizează vectori de pointeri spre 

pointeri la o matrice este: 
 

//vectori de pointeri spre pointeri la o matrice 
#include <iostream> 
 
using namespace std; 
 
typedef int mat[2][3]; 
typedef mat * pmat; 
typedef pmat vecp[3]; 
typedef pmat * vecpp[3]; 
vecp vp; 
vecpp vpp; 



int i,j,k; 
int s[3] = {0,0,0}; 
mat a = {1,1,1,2,2,2}; 
mat b = {3,3,3,4,4,4}; 
mat c = {5,5,5,6,6,6}; 
main() 
{ 
      vp[0] = &a; 
      vp[1] = &b; 
      vp[2] = &c; 
   for (i=0; i<3 ;i++) 
    vpp[i] = &vp[i]; 
 
      for (k=0 ; k<3 ; k++) 
      { 
   for (i=0; i<2; i++) 
    for (j=0; j<3; j++) 
     s[k] + = (**vpp[k])[i][j]; 
             cout<<"\n Suma matricei "<<k<<" este "<<s[k]; 
      } 
} 

 
În programul: 
 

//pointeri spre vectori de pointeri 
 
#include <iostream> 
 
using namespace std; 
 
typedef vecp *pvec; 
int * ppp; 
 
vec a = {1,2,3,4,5}; 
 
vecp p; 
pvec pp; 
int i; 
 
main() 
{ 
 for (i=0; i<5; i++) 
  p[i] = &a[i]; 
 ppp = a; 
 pp = &p; 
 for (i=0; i<5; i++) 
 { 
  cout<<"\n"<<*(ppp+i)<<" ** "<<(*p[i]); 
  cout<<"\n"<<(*(*pp)[i]); 
 } 
} 

 
se utilizează pointeri spre vectori de pointeri, iar în programul următor sunt 
folosiţi pointeri spre vectori de pointeri spre pointeri de matrice: 

 
//pointeri spre vectori de pointeri spre pointeri la matrice 
 
#include <iostream> 
 
using namespace std; 



 
typedef pmat vecp[3]; 
typedef pmat* vecpp[3]; 
typedef vecpp * pvecpp; 
 
vecp vp; 
vecpp vpp; 
pvecpp pvpp; 
int i,j,k; 
 
int s[3] = {0,0,0}; 
mat a = {1,1,1,2,2,2}; 
mat b = {3,3,3,4,4,4}; 
mat c = {5,5,5,6,6,6}; 
main() 
{ 
      vp[0] = &a; 
      vp[1] = &b; 
      vp[2] = &c; 
 for (i=0; i<3; i++) 
   vpp[i] = &vp[i]; 
 
 pvpp = &vpp; 
 
      for (k=0; k<3; k++) 
      { 
     for (i=0; i<2; i++) 
   for (j=0; j<3; j++) 
      s[k] + = (**(*pvpp)[k])[i][j]; 
          cout<<"\n Suma matricei "<<k<<" este "<<s[k]; 
      } 
} 

 
Un exemplu de program în care sunt puse în evidenţă modalităţi de 

referire a unor structuri complexe, este considerat următorul: 
 

#include <iostream> 
 
using namespace std; 
 
typedef int vec[5]; 
typedef int * pvec[5]; 
typedef pvec * ppvec; 
typedef struct strz  
{ 
 vec aa; 
 pvec paa; 
 ppvec pppa; 
}; 
typedef strz * pstr; 
typedef pstr ps[2]; 
typedef ps* pps; 
 
int i,j; 
strz st[2]; 
ps pst; 
pps pss; 
 
main() 
{ 



    st[0].aa[0] = 100;  
    st[0].aa[1] = 200; 
    st[0].paa[0] = &st[0].aa[0];  
    st[0].paa[1] = &st[0].aa[1]; 
    st[1].aa[0] = 300;  
    st[1].aa[1] = 400; 
    st[1].paa[0] = &st[1].aa[0];  
    st[1].paa[1] = &st[1].aa[1]; 
    pst[0] = &st[0];  
    pst[1] = &st[1]; 
    pss = &pst; 
    st[0].pppa = &st[0].paa; 
    st[1].pppa = &st[1].paa; 
     
    for (i=0; i<2; i++) 
 for (j=0; j<2; j++) 
 { 
        cout<<"\n*"<<st[i].aa[j]<<"**"<<*(pst[i]->paa[j]); 
        cout<<"++"<<*((*pss)[i]->paa[j])<<"--"<<*((*pss)[i]->pppa[j]); 
 } 
} 

 
Un aspect important în utilizarea variabilelor pointer îl reprezintă 

alocarea dinamică a memoriei. 


