
9. REUNIUNILE DE DATE CONTIGUE 
 
 

9.1 Necesitatea restructurării datelor 
 
În multe aplicaţii codul materialului este privit ca întreg, iar în cazul 

verificării cifrelor de control, fiecare element sau grupuri de elemente sunt 
privite ca formate din câmpuri de 1 octet. 

În primul şi al doilea caz, zona de memorie asociată codului de 
material este reprezentată prin două modele grafice şi anume: 

 
 

01A880

cod_material 

cod_grupă cod_subgrupă 
 

Figura 9.1 Model grafic structurii de tip reuniune material 
 
Se observă că ambele structuri ocupă aceeaşi zonă de memorie, al 

cărui început este marcat de octetul cu adresa exprimată în hexazecimal cu 
valoarea 01A880. 

O altă situaţie corespunde prelucrării articolelor dintr-un fişier. Pentru 
o aplicaţie sunt necesare primele cinci câmpuri, pentru o altă aplicaţie sunt 
necesare şapte câmpuri din interiorul articolului, iar pentru a treia aplicaţie 
sunt necesare ultimele patru câmpuri. Pentru toate aplicaţiile, primul câmp 
este necesar întrucât serveşte drept câmp de regăsire a informaţiilor. 

Modelul grafic al zonei de memorie astfel structurat este: 
 

 

0100A0 

0100A0 

 
 

Figura 9.2 Structura zonei de memorie 
 



Cele trei structuri care se suprapun peste aceeaşi zonă de memorie, 
presupun lungimi identice şi o aceeaşi adresă de început. 

În acest caz, rezultă că zona de memorie este mai întâi definită 
pentru precizarea uneia dintre structuri, iar celelalte structuri care se 
suprapun apar ca redefiniri ale zonei de memorie. 

Atunci când se defineşte un masiv tridimensional a, cu 10 x 10 x 10 
elemente şi un alt masiv b, unidimensional cu 1000 elemente, tipul lor fiind 
unic, dacă se procedează la punerea în corespondenţă a elementelor 
a[1][1][1] şi b[1], în sensul: 

 
adr(a[1][1][1]) = adr(b[1]) (9.1) 

 
secvenţa: 
 

for(i=0; i<10; i++)  
    for(j=0; j<10; j++) 
        for(k=0; k<10; k++)
            a[i][j][k] = 0;

 
este înlocuită cu secvenţa: 
 

for(i=0; i<1000; i++) 

      b[i]=0; 

 
care din punct de vedere a volumului operaţiilor de prelucrare este mai 
eficientă. 

Există probleme în care algoritmii de rezolvare cer definirea de 
masive care diferă ca nume şi ca dimensiuni de la o etapă la alta, dar care 
sunt disjuncte din punct de vedere al utilizării conţinutului. 

De exemplu, pentru un algoritm alcătuit din trei etape, este necesară 
utilizarea structurilor menţionate în tabelul de mai jos: 

 
Tabelul nr. 9.1 Etapele unui algoritm 

 
               Structura 
Etapa 

A B U V C D X 

Etapa 1 
 

*  *  *   

Etapa 2 
 

*   *  *  

Etapa 3 
 

 *   *  * 

unde structurile sunt definite astfel: 
 

A [10][10] 
B [20][20] 
U [10] 
V [20] 
struct C {} , lg (C) = 50 
struct D {} , lg (D) = 40 
X [30] 



 
Rezultă că matricele A şi B sunt suprapuse, vectorii U, V şi X de 

asemenea, iar structurile de tip articol C şi D, urmează aceeaşi cale. 
Cele trei suprapuneri sunt reprezentate cu modelele grafice 

următoare: 
 

 A [1, 1] 

01 AA00

B [ 1, 1] 

U [1] 

    01 BB00 

V[1] 

    01 BB00 

X [1] 

C 

    01 CC00 

D 
 

Figura 9.3 Modelul grafic al suprapunerilor pe o zonă de memorie 
 

Problema suprapunerilor structurilor de date pe zone de memorie se 
rezolvă folosind funcţii de reunire. 

 
 

9.2 Funcţia de reunire 
 
Se consideră datele d1, d2, d3, ..., dn, având tipurile T1, T2, ..., Tn şi 

m1, m2,..., mn membrii de referinţă ai acestora. 
În continuare un membru al unei structuri de date este numit de 

referinţă, dacă în raport cu el sunt puse în evidenţă. Se defineşte funcţia: 
 

union: T1*T2...*Tn (TRUE, FALSE) (9.2) 



 
şi: 
 

union (m1, m2,...,mn) = TRUE (9.3) 
 
dacă şi numai dacă: 
 

adr(m1) = adr(m2) = adr(mn) = δ,   δ  [Ai, Af]  N (9.4) 
 
Se notează: 
 

}   )(madr    |   )(d{adr   min ii
n  i  1

 
   

(9.5) 

 
şi: 
 

}   )(madr   |  )T ( lg    )(dadr  {  max  iii
n   i  1

 
  

(9.6) 

 
Cele n structuri de date redistribuite ca dispunere în raport cu adresa 

δ, a celor n câmpuri de referinţă, ocupă o zonă de memorie de lungime      
α - β+1 octeţi. 

Diferitele limbaje de programare impun restricţii precum: 
 

} }   )(madr   |  )(dadr  { min  ,A { max ii
n  i  1

i  
  

(9.7) 

 
ceea ce determină existenţa unui minim control asupra adresei operanzilor, 
în sensul că adresele acestora să nu fie în afara domeniului prefixat în 
limitele Ai şi Af. 

Dacă se consideră o dată de bază, de exemplu d1: 
 

union (m1, m2, ..., mn) = TRUE  (9.8) 
 
dacă: 
 








n ..., 3, 2,  i    (d1)adr    (di)adr  

n ..., 2, 1,  i                (mi)adr  

 

 
(9.9) 

 
De exemplu, acest grup de restricţii se regăseşte în limbajul 

FORTRAN. 
Se consideră masivele definite prin: 
 

int a[10];
int b[5]; 

 
şi structura: 
 

struct k  
{ 
 int x; 
 char g[10];



}; 
k t; 

 
şi datele elementare: 
 

int x, y; 
 
Funcţia: 
 

union (a[3], b[5], g, x, y ) (9.10) 
 
conduce la modelul grafic de suprapunere următor: 
 

 a0 a1 

b0 b1 b2 b3 b4 

a3 

g0 g1 g2 ....... g8 g9 

x

y 
 

 
Figura 9.4 Modelul grafic al suprapunerilor pe o zonă de memorie 
 

adr ( a [3] ) = adr ( b [5] ) = adr ( t*g) = adr (x) = adr (y) = δ (9.11) 
 
Adresa de început pentru fiecare din cele cinci câmpuri se obţine: 
 

adr (a [3] ) = adr (a [0] ) + 3*1g (int) 
adr (a [0] ) =  - 3*1g (int) 
adr (b [0] ) =  - 5*1g (int) 
adr ( g ) =  - 1*1g (int) 
adr ( x ) =  
adr ( y ) =  

 
În programele C/C++, există posibilitatea realizării reuniunii de date 

folosind variabile de tip pointer care referă aceeaşi zonă de memorie. De 
exemplu, secvenţa: 

 
 int x[3][3],*y[3],**z; 
 for(int i=0;i<3;i++) 
  y[i]=x[i]; 
 z=y; 
  
 for(i=0;i<3;i++) 
  for(int j=0;j<3;j++) 



   x[i][j]=i*3+j; 
 
 cout<<"Adresa de memorie alocata pentru x este:"<<&x<<endl; 
 cout<<"Adresa de memorie alocata pentru y este:"<<&y<<endl; 
 cout<<"Adresa de memorie alocata pentru z este:"<<&z<<endl; 
 
 cout<<"Adresele de memorie la care sunt stocate liniile pornind 
de la variabila x:"<<endl; 
 for(i=0;i<3;i++) 
  cout<<"Linia "<<i+1<<"este incepe la adresa "<<x[i]<<endl; 
 
 cout<<"Adresele de memorie la care sunt stocate liniile pornind 
de la variabila y:"<<endl; 
 for(i=0;i<3;i++) 
  cout<<"Linia "<<i+1<<"este incepe la adresa "<<y[i]<<endl; 
 
 cout<<"Adresele de memorie la care sunt stocate liniile pornind 
de la variabila z:"<<endl; 
 for(i=0;i<3;i++) 
  cout<<"Linia "<<i+1<<"este incepe la adresa 
"<<*(z+i)<<endl; 
 
 cout<<"Elementele matricei afisate prin variabila x:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"X["<<i+1<<"]["<<j+1<<"]="<<x[i][j]<<" "; 
 } 
 
 cout<<"Elementele matricei afisate prin variabila y:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"Y["<<i+1<<"]["<<j+1<<"]="<<*(y[i]+j)<<" "; 
 } 
 
  cout<<"Elementele matricei afisate prin variabila 
z:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"Z["<<i+1<<"]["<<j+1<<"]="<<*(*(z+i)+j)<<" "; 
 } 
 
 cout<<"Adresele elementelor matricei afisate prin variabila 
x:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"ADR(X["<<i+1<<"]["<<j+1<<"])="<<&x[i][j]<<" "; 
 } 
 
 cout<<"Adresele elementelor matricei afisate prin variabila 
y:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"ADR(Y["<<i+1<<"]["<<j+1<<"])="<<y[i]+j<<" "; 
 } 
 
 cout<<"Adresele elementelor matricei afisate prin variabila 



z:"<<endl; 
 for(i=0;i<3;i++){ 
  cout<<endl; 
  for(int j=0;j<3;j++) 
   cout<<"ADR(Z["<<i+1<<"]["<<j+1<<"])="<<*(z+i)+j<<" "; 
 } 

 
efectuează punerea în corespondenţă: 

 
adr(x[0][0]) = y[0]+0 
adr(x[0][1]) = y[0]+1 
adr(x[0][2]) = y[0]+2 
adr(x[1][0]) = y[1]+0 
adr(x[1][1]) = y[1]+1  
adr(x[1][2]) = y[1]+2 
adr(x[2][0]) = y[2]+0  
adr(x[2][1]) = y[2]+1 
adr(x[2][2]) = y[2]+2 

 
între variabilele x şi y, precum şi punerea în corespondenţă: 
 

adr(x[0][0]) = *(z+0)+0 
adr(x[0][1]) = *(z+0)+1 
adr(x[0][2]) = *(z+0)+2 
adr(x[1][0]) = *(z+1)+0 
adr(x[1][1]) = *(z+1)+1  
adr(x[1][2]) = *(z+1)+2 
adr(x[2][0]) = *(z+2)+0  
adr(x[2][1]) = *(z+2)+1 
adr(x[2][2]) = *(z+2)+2 

 
între variabilele x şi z. 

Astfel, aceeaşi zonă de memorie este accesată prin intermediul 
variabilelor x, y şi z. 

În condiţiile construirii de tipuri de date derivate, nu se efectuează 
alocare de zone de memorie. Prin definirea de variabile pointer p1, p2, ..., pn 
spre tipurile de date derivate, o dată cu construirea modelului grafic al 
reuniunii de date, se evaluează adresa  ca fiind adresa de început a unei 
variabile dk, din lista d1, d2, ..., dn. 

 
}  )(dadr  {min  )(dadr   i

n  i  1
k 


 
(9.12) 

 
cu condiţia ca: 

 
adr(m1) = adr(m2) = ... = adr(mn) (9.13) 

 
Se calculează deplasările: 
 

Di = depl(di, dk) (9.14) 
 
cu Di > 0 pentru i = 1, 2, ..., n. 

Prin evaluarea expresiei: 



 
iii D  ) T , ( convpP    (9.15) 

 
se obţine adresa de început a fiecărei date din tipul Ti, astfel încât: 
 

adr(m1) = adr(m2) = ... = adr(mn) = adr(d1) + depl(m1, d1) (9.16) 
 
Mecanismele de implementare prin variabile pointer a reuniunii de 

structuri de date sunt utile mai ales în cazul structurilor de date contigue a 
căror alocare se efectuează dinamic. 

Chiar dacă, iniţial, funcţiile de reuniune sunt definite cu unele 
restricţii asupra alinierii, la stânga sau la dreapta a elementelor, printr-o 
aritmetică adecvată de evaluare a expresiilor în care apar variabile pointer 
aceste restricţii sunt eliminate. 

Reuniunile de date, în multe cazuri, sunt rezultatul unor prelucrări 
accidentale şi în depanarea programelor e necesară identificarea modulului 
în care s-au făcut suprapunerile unor date peste altele. 

 
 
9.3 Zonele de memorie tampon – gazde ale reuniunilor 

de date contigue 
 
Prelucrarea datelor în condiţiile scăderii intensităţii pe care resursa 

memorie o impune ca restricţie revine la a defini zone de memorie în care 
se citesc date din fişiere, uneori chiar fişierele integral, pentru a fi prelucrate 
ca date existente numai în memoria internă a calculatorului. 

În acest context, memoria tampon este pusă în corespondenţă cu 
structuri de tip articol şi părţi ale sale sunt interpretate sau intră ca operanzi 
în expresii, sub forma membrilor de structură. 

Cazul cel mai frecvent corespunde situaţiei în care, pentru orice 
structură de date din şirul ordonat d1, d2, ... dn avem: 

 
union( mi, mj ) = FALSE (9.17) 

 
adr(di+1) = adr(di) + lg(di) (9.18) 

 
1n ..., 2, 1,  i )(  , adică datele sunt disjuncte. 

În cazul lucrului cu buffere, se caută ca prin aritmetica de pointeri să 
se obţină acea suprapunere care coincide, fie cu modul în care a fost creat 
fişierul, fie cu obiectivul urmărit. 

Dacă programul de creare a fişierului conţine ca definire structura dk, 
iar programul de exploatare a fişierului conţin aceeaşi structură d’

k, cu 
deosebirea că: 

 
lg(dk) ≠ lg(d'k) (9.19) 

 
conduce la concluzia că cele două structuri sunt asemănătoare numai prin 
numărul identic de câmpuri şi coincidenţa tipurilor, dar diferă prin lungimile 
a două câmpuri corespondente. 

Se presupune că: 
 



lg(dk) - lg(d'k)=1 (9.20) 
 
După n citiri de înregistrări d’

k din fişierul creat cu înregistrări având 
structura dk, se obţine o diferenţă de n baiţi până la a n + 1 înregistrare 
corect plasată în fişier. 

 
 d1 

d'1 d'2 

d2 

 

d'3 d'4

d3 d4

d'5

  

d5 

 
 

Figura 9.5 Decalajele între articolele celor două fişiere 
 
Decalajul de 1 octet generează o suprapunere dinamică, distanţa 

între începutul înregistrării dk şi înregistrarea d'k se măreşte pe măsură ce 
indicele k creşte, fiind de k-1 octeţi. 

Problema depistării cauzelor de obţinere a rezultatelor eronate creşte 
în complexitate dacă diferenţa: 

 
lg(dk) – lg(d'k)>1  (9.21) 

 
În aceste cazuri, este necesar să se definească funcţii de verificare a 

concordanţei dintre parametrii ce caracterizează o structură. 
De asemenea, din punct de vedere al tipurilor pe care le au datele 

elementare, care intră în componenţa articolelor sau a masivelor, reunirile 
apar ca suprapuneri de tipuri, omogene sau nu, cu toate consecinţele ce 
decurg. 

Astfel, o dată elementară sau atom este definită din punct de vedere 
al tipului ca: 

 
E = (Ti) (9.22) 

 
unde Ti, este unul din tipurile fundamentale T1, T2,..., Tn, n fiind numărul de 
tipuri fundamentale implementate în limbajul de programare considerat. 

Masivul unidimensional, se defineşte ca tip vector Tv astfel: 
 

Tv = (Ti, Ti, ..., Ti)  (9.23) 
 
Numărul de componente coincide cu dimensiunea vectorului şi tipul 

este acelaşi pentru toate elementele. 
O matrice este de tipul Tm, definit: 
 

Tm = (Tv, Tv ..., Tv)  (9.24) 
 
O structură de tip articol, are tipul: 
 

Ta = (Ti1, Ti2, ..., Tim) (9.25) 
 
unde, . } T ,T ,T ,T ..., ,T ,T {    T amvn21ik 



O structură de vectori, este definită prin: 
 

Tsv = (Tv, Tv ..., Tv)  (9.26) 
 
Un vector de structură, se defineşte prin: 
 

Tvs = (Ta, Ta ..., Ta)  (9.27) 
 
Deplasând problematica reuniunii de date la nivelul reuniunii de date 

ca tipuri, obţinem o nouă interpretare şi anume: 
 

TRUE ) T ..., ,T ,union(T
n21 xxx   (9.28) 

 
dacă există cel puţin un Tki Є Txi, astfel încât oricare ar fi două elemente de 
tip Txi şi Txj să existe: 
 

    ) T (  tadr   ) T (tadr jkik 
 

(9.29) 

 
unde, Tki reprezintă tipul membrului cu poziţia k din tipul derivat Txi. 

În acest context, tadr(Tki) reprezintă o mulţime a adreselor 
operanzilor de tip Tki ai structurii de tip derivat Txi. 

Se consideră spre exemplificare structurile: 
            

struct a  
{ 
 char e[20];
 int a; 
 float c; 
}; 

 
şi: 
 

struct x 
{  
 int y; 
 char z[4];
 float u; 
 int w; 
}; 

 
Se consideră structura: 
 

Ta = ( char[], int, float, bool) (9.30) 
 
şi structura: 
 

Tx = ( int, char[], float, int) (9.31) 
 
Structura union (Ta, Tx) se evaluează definind mulţimile: 

 



} (w)adr  , (y)adr  {  )T (tadr 

} (a)adr  {  )T (tadr 

intb

inta




 

(9.32) 

(9.33) 
 
unde tadr() este funcţia de extragere a adreselor elementelor de un tip 
specificat dintr-o structură. 
 

    )T (tadr 

} (d)adr  {    )T (tadr 

} (z)adr  {   )T (tadr 

} (e)adr  {    )T (tadr 

} (u)adr  {   )T (tadr 

} (c)adr  {   )T (tadr 

boolx 

bool a

] char[x 

] char[ a

floatx 

float a










 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

(9.39) 
 
Dacă se presupune că programatorul are la dispoziţie posibilitatea de 

a modifica conţinutul contorului de locaţii, care să realizeze o definire a 
structurilor a şi b încât: 

 
    ) T (  tadr   ) T (tadr realx boolean a   (9.40) 

 
deci: 
 

TRUE) T ,T (union xa   (9.41) 
 
Implementările curente generează cazuri particulare în care: 
 

)  x(adr     )  x(adr '
j

'
i   

(9.42) 

 
 
unde x’

i, x’
j sunt membrii cu poziţia 1 din structurile i şi j. 

Membrii care alcătuiesc o structură dintr-o reuniune de structuri, au 
adresa calculată faţă de primul membru al structurii. Toţi primii membrii ai 
structurilor, au aceeaşi adresă. 

Privind structurile de date ca structuri de tipuri: 
 

)  x(adr     )  x(adr     ) T (  tadr   ) T (tadr '
i

'
j2i1i   

(9.43) 

 
pentru oricare i şi j, ce corespund tipurilor de date derivate ce definesc 
structurile considerate. 

O astfel de abordare măreşte generalitatea modelului asociat 
reuniunii de structuri, întrucât nu mai sunt luate în calcul direct lungimile 
efective ale operanzilor de un anumit tip, lungimi ce diferă de la un mod de 
implementare al unui limbaj la alt limbaj. 

Mai mult, aplicarea funcţiei union la suprapunerile accidentale a 
structurilor, prin considerarea tipurilor ca entităţi de bază, permite 
descifrarea rezultatelor care numai aparent au caracter nedeterminat. 

Evidenţierea lucrului cu astfel de structuri se realizează prin 
intermediul următoarelor două exemple. 



Primul exemplu iniţializează o zonă sub forma unui masiv 
unidimensional pe care o utilizează ca masiv bidimensional la afişare. 

 
union reuniune 
{ 
 int a[3][3]; 
 int b[9]; 
}z; 
… 
int i, j; 
for(i=0; i<9; i++) 
     z.b[i] = i * i; 
for(i=0; i<3; i++) 
{ 
     for(j=0; j<3; j++) 
       cout<<"\n "<<z.a[i][j];
} 
… 

 
Al doilea exemplu defineşte în cadrul unor structuri de tip struct, 

câmpuri pe care le reuneşte la aceeaşi adresă de memorie, efectuând 
exploatarea diferenţială a acesteia. 

 
struct union1 
{ 
 char x[10]; 
}; 
struct union2 
{ 
 char y[5]; 
}; 
struct union3 
{ 
 char z[10]; 
}; 
   
union uniune2 
{ 
 union1 un1; 
 union2 un2; 
 union3 un3; 
}u2; 
… 
strcpy(u2.un1.x,"1234567890"); 
cout<<u2.un1.x;  
cout<<"\n"; 
  
for(int i=0; i<5; i++) 
 u2.un2.y[i]='a'+i; 
 
for(i=0; i<5; i++) 
 cout<<u2.un2.y[i]; 
 
cout<<"\n"<<u2.un1.x; 
  
cout<<"\n"; 
 



for(i=0; i<15; i++) 
 cout<<u2.un3.z[i];  
… 

Exemplele anterioare evidenţiază modalităţi de realizare şi operarare 
a reunirilor de date.  

 


