
9. REUNIUNILE DE DATE CONTIGUE

9.1 Necesitatea restructurării datelor

În multe aplicaţii codul materialului este privit ca întreg, iar în cazul

verificării cifrelor de control, fiecare element sau grupuri de elemente sunt
privite ca formate din câmpuri de 1 octet.

În primul şi al doilea caz, zona de memorie asociată codului de
material este reprezentată prin două modele grafice şi anume:

01A880

cod_material

cod_grupă cod_subgrupă

Figura 9.1 Model grafic structurii de tip reuniune material

Se observă că ambele structuri ocupă aceeaşi zonă de memorie, al

cărui început este marcat de octetul cu adresa exprimată în hexazecimal cu
valoarea 01A880.

O altă situaţie corespunde prelucrării articolelor dintr-un fişier. Pentru
o aplicaţie sunt necesare primele cinci câmpuri, pentru o altă aplicaţie sunt
necesare şapte câmpuri din interiorul articolului, iar pentru a treia aplicaţie
sunt necesare ultimele patru câmpuri. Pentru toate aplicaţiile, primul câmp
este necesar întrucât serveşte drept câmp de regăsire a informaţiilor.

Modelul grafic al zonei de memorie astfel structurat este:

0100A0

0100A0

Figura 9.2 Structura zonei de memorie

Cele trei structuri care se suprapun peste aceeaşi zonă de memorie,
presupun lungimi identice şi o aceeaşi adresă de început.

În acest caz, rezultă că zona de memorie este mai întâi definită
pentru precizarea uneia dintre structuri, iar celelalte structuri care se
suprapun apar ca redefiniri ale zonei de memorie.

Atunci când se defineşte un masiv tridimensional a, cu 10 x 10 x 10
elemente şi un alt masiv b, unidimensional cu 1000 elemente, tipul lor fiind
unic, dacă se procedează la punerea în corespondenţă a elementelor
a[1][1][1] şi b[1], în sensul:

adr(a[1][1][1]) = adr(b[1]) (9.1)

secvenţa:

for(i=0; i<10; i++)
 for(j=0; j<10; j++)
 for(k=0; k<10; k++)
 a[i][j][k] = 0;

este înlocuită cu secvenţa:

for(i=0; i<1000; i++)

 b[i]=0;

care din punct de vedere a volumului operaţiilor de prelucrare este mai
eficientă.

Există probleme în care algoritmii de rezolvare cer definirea de
masive care diferă ca nume şi ca dimensiuni de la o etapă la alta, dar care
sunt disjuncte din punct de vedere al utilizării conţinutului.

De exemplu, pentru un algoritm alcătuit din trei etape, este necesară
utilizarea structurilor menţionate în tabelul de mai jos:

Tabelul nr. 9.1 Etapele unui algoritm

 Structura
Etapa

A B U V C D X

Etapa 1

* * *

Etapa 2

* * *

Etapa 3

 * * *

unde structurile sunt definite astfel:

A [10][10]
B [20][20]
U [10]
V [20]
struct C {} , lg (C) = 50
struct D {} , lg (D) = 40
X [30]

Rezultă că matricele A şi B sunt suprapuse, vectorii U, V şi X de

asemenea, iar structurile de tip articol C şi D, urmează aceeaşi cale.
Cele trei suprapuneri sunt reprezentate cu modelele grafice

următoare:

 A [1, 1]

01 AA00

B [1, 1]

U [1]

 01 BB00

V[1]

 01 BB00

X [1]

C

 01 CC00

D

Figura 9.3 Modelul grafic al suprapunerilor pe o zonă de memorie

Problema suprapunerilor structurilor de date pe zone de memorie se
rezolvă folosind funcţii de reunire.

9.2 Funcţia de reunire

Se consideră datele d1, d2, d3, ..., dn, având tipurile T1, T2, ..., Tn şi

m1, m2,..., mn membrii de referinţă ai acestora.
În continuare un membru al unei structuri de date este numit de

referinţă, dacă în raport cu el sunt puse în evidenţă. Se defineşte funcţia:

union: T1*T2...*Tn (TRUE, FALSE) (9.2)

şi:

union (m1, m2,...,mn) = TRUE (9.3)

dacă şi numai dacă:

adr(m1) = adr(m2) = adr(mn) = δ, δ  [Ai, Af]  N (9.4)

Se notează:

})(madr |)(d{adr min ii
n i 1

 


(9.5)

şi:

})(madr |)T (lg)(dadr { max iii
n i 1

 


(9.6)

Cele n structuri de date redistribuite ca dispunere în raport cu adresa

δ, a celor n câmpuri de referinţă, ocupă o zonă de memorie de lungime
α - β+1 octeţi.

Diferitele limbaje de programare impun restricţii precum:

} })(madr |)(dadr { min ,A { max ii
n i 1

i  


(9.7)

ceea ce determină existenţa unui minim control asupra adresei operanzilor,
în sensul că adresele acestora să nu fie în afara domeniului prefixat în
limitele Ai şi Af.

Dacă se consideră o dată de bază, de exemplu d1:

union (m1, m2, ..., mn) = TRUE (9.8)

dacă:








n ..., 3, 2, i (d1)adr (di)adr

n ..., 2, 1, i (mi)adr 

(9.9)

De exemplu, acest grup de restricţii se regăseşte în limbajul

FORTRAN.
Se consideră masivele definite prin:

int a[10];
int b[5];

şi structura:

struct k
{
 int x;
 char g[10];

};
k t;

şi datele elementare:

int x, y;

Funcţia:

union (a[3], b[5], g, x, y) (9.10)

conduce la modelul grafic de suprapunere următor:

 a0 a1

b0 b1 b2 b3 b4

a3

g0 g1 g2 g8 g9

x

y

Figura 9.4 Modelul grafic al suprapunerilor pe o zonă de memorie

adr (a [3]) = adr (b [5]) = adr (t*g) = adr (x) = adr (y) = δ (9.11)

Adresa de început pentru fiecare din cele cinci câmpuri se obţine:

adr (a [3]) = adr (a [0]) + 3*1g (int)
adr (a [0]) =  - 3*1g (int)
adr (b [0]) =  - 5*1g (int)
adr (g) =  - 1*1g (int)
adr (x) = 
adr (y) = 

În programele C/C++, există posibilitatea realizării reuniunii de date

folosind variabile de tip pointer care referă aceeaşi zonă de memorie. De
exemplu, secvenţa:

 int x[3][3],*y[3],**z;
 for(int i=0;i<3;i++)
 y[i]=x[i];
 z=y;

 for(i=0;i<3;i++)
 for(int j=0;j<3;j++)

 x[i][j]=i*3+j;

 cout<<"Adresa de memorie alocata pentru x este:"<<&x<<endl;
 cout<<"Adresa de memorie alocata pentru y este:"<<&y<<endl;
 cout<<"Adresa de memorie alocata pentru z este:"<<&z<<endl;

 cout<<"Adresele de memorie la care sunt stocate liniile pornind
de la variabila x:"<<endl;
 for(i=0;i<3;i++)
 cout<<"Linia "<<i+1<<"este incepe la adresa "<<x[i]<<endl;

 cout<<"Adresele de memorie la care sunt stocate liniile pornind
de la variabila y:"<<endl;
 for(i=0;i<3;i++)
 cout<<"Linia "<<i+1<<"este incepe la adresa "<<y[i]<<endl;

 cout<<"Adresele de memorie la care sunt stocate liniile pornind
de la variabila z:"<<endl;
 for(i=0;i<3;i++)
 cout<<"Linia "<<i+1<<"este incepe la adresa
"<<*(z+i)<<endl;

 cout<<"Elementele matricei afisate prin variabila x:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"X["<<i+1<<"]["<<j+1<<"]="<<x[i][j]<<" ";
 }

 cout<<"Elementele matricei afisate prin variabila y:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"Y["<<i+1<<"]["<<j+1<<"]="<<*(y[i]+j)<<" ";
 }

 cout<<"Elementele matricei afisate prin variabila
z:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"Z["<<i+1<<"]["<<j+1<<"]="<<*(*(z+i)+j)<<" ";
 }

 cout<<"Adresele elementelor matricei afisate prin variabila
x:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"ADR(X["<<i+1<<"]["<<j+1<<"])="<<&x[i][j]<<" ";
 }

 cout<<"Adresele elementelor matricei afisate prin variabila
y:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"ADR(Y["<<i+1<<"]["<<j+1<<"])="<<y[i]+j<<" ";
 }

 cout<<"Adresele elementelor matricei afisate prin variabila

z:"<<endl;
 for(i=0;i<3;i++){
 cout<<endl;
 for(int j=0;j<3;j++)
 cout<<"ADR(Z["<<i+1<<"]["<<j+1<<"])="<<*(z+i)+j<<" ";
 }

efectuează punerea în corespondenţă:

adr(x[0][0]) = y[0]+0
adr(x[0][1]) = y[0]+1
adr(x[0][2]) = y[0]+2
adr(x[1][0]) = y[1]+0
adr(x[1][1]) = y[1]+1
adr(x[1][2]) = y[1]+2
adr(x[2][0]) = y[2]+0
adr(x[2][1]) = y[2]+1
adr(x[2][2]) = y[2]+2

între variabilele x şi y, precum şi punerea în corespondenţă:

adr(x[0][0]) = *(z+0)+0
adr(x[0][1]) = *(z+0)+1
adr(x[0][2]) = *(z+0)+2
adr(x[1][0]) = *(z+1)+0
adr(x[1][1]) = *(z+1)+1
adr(x[1][2]) = *(z+1)+2
adr(x[2][0]) = *(z+2)+0
adr(x[2][1]) = *(z+2)+1
adr(x[2][2]) = *(z+2)+2

între variabilele x şi z.

Astfel, aceeaşi zonă de memorie este accesată prin intermediul
variabilelor x, y şi z.

În condiţiile construirii de tipuri de date derivate, nu se efectuează
alocare de zone de memorie. Prin definirea de variabile pointer p1, p2, ..., pn
spre tipurile de date derivate, o dată cu construirea modelului grafic al
reuniunii de date, se evaluează adresa  ca fiind adresa de început a unei
variabile dk, din lista d1, d2, ..., dn.

})(dadr {min)(dadr i

n i 1
k 


(9.12)

cu condiţia ca:

adr(m1) = adr(m2) = ... = adr(mn) (9.13)

Se calculează deplasările:

Di = depl(di, dk) (9.14)

cu Di > 0 pentru i = 1, 2, ..., n.

Prin evaluarea expresiei:

iii D) T , (convpP   (9.15)

se obţine adresa de început a fiecărei date din tipul Ti, astfel încât:

adr(m1) = adr(m2) = ... = adr(mn) = adr(d1) + depl(m1, d1) (9.16)

Mecanismele de implementare prin variabile pointer a reuniunii de

structuri de date sunt utile mai ales în cazul structurilor de date contigue a
căror alocare se efectuează dinamic.

Chiar dacă, iniţial, funcţiile de reuniune sunt definite cu unele
restricţii asupra alinierii, la stânga sau la dreapta a elementelor, printr-o
aritmetică adecvată de evaluare a expresiilor în care apar variabile pointer
aceste restricţii sunt eliminate.

Reuniunile de date, în multe cazuri, sunt rezultatul unor prelucrări
accidentale şi în depanarea programelor e necesară identificarea modulului
în care s-au făcut suprapunerile unor date peste altele.

9.3 Zonele de memorie tampon – gazde ale reuniunilor

de date contigue

Prelucrarea datelor în condiţiile scăderii intensităţii pe care resursa

memorie o impune ca restricţie revine la a defini zone de memorie în care
se citesc date din fişiere, uneori chiar fişierele integral, pentru a fi prelucrate
ca date existente numai în memoria internă a calculatorului.

În acest context, memoria tampon este pusă în corespondenţă cu
structuri de tip articol şi părţi ale sale sunt interpretate sau intră ca operanzi
în expresii, sub forma membrilor de structură.

Cazul cel mai frecvent corespunde situaţiei în care, pentru orice
structură de date din şirul ordonat d1, d2, ... dn avem:

union(mi, mj) = FALSE (9.17)

adr(di+1) = adr(di) + lg(di) (9.18)

1n ..., 2, 1, i)( , adică datele sunt disjuncte.

În cazul lucrului cu buffere, se caută ca prin aritmetica de pointeri să
se obţină acea suprapunere care coincide, fie cu modul în care a fost creat
fişierul, fie cu obiectivul urmărit.

Dacă programul de creare a fişierului conţine ca definire structura dk,
iar programul de exploatare a fişierului conţin aceeaşi structură d’

k, cu
deosebirea că:

lg(dk) ≠ lg(d'k) (9.19)

conduce la concluzia că cele două structuri sunt asemănătoare numai prin
numărul identic de câmpuri şi coincidenţa tipurilor, dar diferă prin lungimile
a două câmpuri corespondente.

Se presupune că:

lg(dk) - lg(d'k)=1 (9.20)

După n citiri de înregistrări d’

k din fişierul creat cu înregistrări având
structura dk, se obţine o diferenţă de n baiţi până la a n + 1 înregistrare
corect plasată în fişier.

 d1

d'1 d'2

d2

d'3 d'4

d3 d4

d'5

d5

Figura 9.5 Decalajele între articolele celor două fişiere

Decalajul de 1 octet generează o suprapunere dinamică, distanţa

între începutul înregistrării dk şi înregistrarea d'k se măreşte pe măsură ce
indicele k creşte, fiind de k-1 octeţi.

Problema depistării cauzelor de obţinere a rezultatelor eronate creşte
în complexitate dacă diferenţa:

lg(dk) – lg(d'k)>1 (9.21)

În aceste cazuri, este necesar să se definească funcţii de verificare a

concordanţei dintre parametrii ce caracterizează o structură.
De asemenea, din punct de vedere al tipurilor pe care le au datele

elementare, care intră în componenţa articolelor sau a masivelor, reunirile
apar ca suprapuneri de tipuri, omogene sau nu, cu toate consecinţele ce
decurg.

Astfel, o dată elementară sau atom este definită din punct de vedere
al tipului ca:

E = (Ti) (9.22)

unde Ti, este unul din tipurile fundamentale T1, T2,..., Tn, n fiind numărul de
tipuri fundamentale implementate în limbajul de programare considerat.

Masivul unidimensional, se defineşte ca tip vector Tv astfel:

Tv = (Ti, Ti, ..., Ti) (9.23)

Numărul de componente coincide cu dimensiunea vectorului şi tipul

este acelaşi pentru toate elementele.
O matrice este de tipul Tm, definit:

Tm = (Tv, Tv ..., Tv) (9.24)

O structură de tip articol, are tipul:

Ta = (Ti1, Ti2, ..., Tim) (9.25)

unde, . } T ,T ,T ,T ..., ,T ,T { T amvn21ik 

O structură de vectori, este definită prin:

Tsv = (Tv, Tv ..., Tv) (9.26)

Un vector de structură, se defineşte prin:

Tvs = (Ta, Ta ..., Ta) (9.27)

Deplasând problematica reuniunii de date la nivelul reuniunii de date

ca tipuri, obţinem o nouă interpretare şi anume:

TRUE) T ..., ,T ,union(T
n21 xxx  (9.28)

dacă există cel puţin un Tki Є Txi, astfel încât oricare ar fi două elemente de
tip Txi şi Txj să existe:

) T (tadr) T (tadr jkik 

(9.29)

unde, Tki reprezintă tipul membrului cu poziţia k din tipul derivat Txi.

În acest context, tadr(Tki) reprezintă o mulţime a adreselor
operanzilor de tip Tki ai structurii de tip derivat Txi.

Se consideră spre exemplificare structurile:

struct a
{
 char e[20];
 int a;
 float c;
};

şi:

struct x
{
 int y;
 char z[4];
 float u;
 int w;
};

Se consideră structura:

Ta = (char[], int, float, bool) (9.30)

şi structura:

Tx = (int, char[], float, int) (9.31)

Structura union (Ta, Tx) se evaluează definind mulţimile:

} (w)adr , (y)adr {)T (tadr

} (a)adr {)T (tadr

intb

inta





(9.32)

(9.33)

unde tadr() este funcţia de extragere a adreselor elementelor de un tip
specificat dintr-o structură.

)T (tadr

} (d)adr {)T (tadr

} (z)adr {)T (tadr

} (e)adr {)T (tadr

} (u)adr {)T (tadr

} (c)adr {)T (tadr

boolx

bool a

] char[x

] char[a

floatx

float a










(9.34)

(9.35)

(9.36)

(9.37)

(9.38)

(9.39)

Dacă se presupune că programatorul are la dispoziţie posibilitatea de

a modifica conţinutul contorului de locaţii, care să realizeze o definire a
structurilor a şi b încât:

) T (tadr) T (tadr realx boolean a  (9.40)

deci:

TRUE) T ,T (union xa  (9.41)

Implementările curente generează cazuri particulare în care:

) x(adr) x(adr '
j

'
i 

(9.42)

unde x’

i, x’
j sunt membrii cu poziţia 1 din structurile i şi j.

Membrii care alcătuiesc o structură dintr-o reuniune de structuri, au
adresa calculată faţă de primul membru al structurii. Toţi primii membrii ai
structurilor, au aceeaşi adresă.

Privind structurile de date ca structuri de tipuri:

) x(adr) x(adr) T (tadr) T (tadr '
i

'
j2i1i 

(9.43)

pentru oricare i şi j, ce corespund tipurilor de date derivate ce definesc
structurile considerate.

O astfel de abordare măreşte generalitatea modelului asociat
reuniunii de structuri, întrucât nu mai sunt luate în calcul direct lungimile
efective ale operanzilor de un anumit tip, lungimi ce diferă de la un mod de
implementare al unui limbaj la alt limbaj.

Mai mult, aplicarea funcţiei union la suprapunerile accidentale a
structurilor, prin considerarea tipurilor ca entităţi de bază, permite
descifrarea rezultatelor care numai aparent au caracter nedeterminat.

Evidenţierea lucrului cu astfel de structuri se realizează prin
intermediul următoarelor două exemple.

Primul exemplu iniţializează o zonă sub forma unui masiv
unidimensional pe care o utilizează ca masiv bidimensional la afişare.

union reuniune
{
 int a[3][3];
 int b[9];
}z;
…
int i, j;
for(i=0; i<9; i++)
 z.b[i] = i * i;
for(i=0; i<3; i++)
{
 for(j=0; j<3; j++)
 cout<<"\n "<<z.a[i][j];
}
…

Al doilea exemplu defineşte în cadrul unor structuri de tip struct,

câmpuri pe care le reuneşte la aceeaşi adresă de memorie, efectuând
exploatarea diferenţială a acesteia.

struct union1
{
 char x[10];
};
struct union2
{
 char y[5];
};
struct union3
{
 char z[10];
};

union uniune2
{
 union1 un1;
 union2 un2;
 union3 un3;
}u2;
…
strcpy(u2.un1.x,"1234567890");
cout<<u2.un1.x;
cout<<"\n";

for(int i=0; i<5; i++)
 u2.un2.y[i]='a'+i;

for(i=0; i<5; i++)
 cout<<u2.un2.y[i];

cout<<"\n"<<u2.un1.x;

cout<<"\n";

for(i=0; i<15; i++)
 cout<<u2.un3.z[i];
…

Exemplele anterioare evidenţiază modalităţi de realizare şi operarare
a reunirilor de date.

