9. REUNIUNILE DE DATE CONTIGUE

9.1 Necesitatea restructurarii datelor

In multe aplicatii codul materialului este privit ca intreg, iar in cazul
verificarii cifrelor de control, fiecare element sau grupuri de elemente sunt
privite ca formate din campuri de 1 octet.

In primul si al doilea caz, zona de memorie asociata codului de
material este reprezentata prin doua modele grafice si anume:

cod material

01A880

:

cod grupd cod subgrupa
Figura 9.1 Model grafic structurii de tip reuniune material

Se observa ca ambele structuri ocupa aceeasi zona de memorie, al
carui inceput este marcat de octetul cu adresa exprimata in hexazecimal cu
valoarea 01A880.

O alta situatie corespunde prelucrarii articolelor dintr-un fisier. Pentru
o aplicatie sunt necesare primele cinci campuri, pentru o alta aplicatie sunt
necesare sapte campuri din interiorul articolului, iar pentru a treia aplicatie
sunt necesare ultimele patru cdmpuri. Pentru toate aplicatiile, primul camp
este necesar intrucat serveste drept camp de regasire a informatiilor.

Modelul grafic al zonei de memorie astfel structurat este:

[

0100A0

|
!

0100A0

!

Figura 9.2 Structura zonei de memorie

Cele trei structuri care se suprapun peste aceeasi zona de memorie,
presupun lungimi identice si o aceeasi adresa de inceput.

In acest caz, rezultd ci zona de memorie este mai intai definitd
pentru precizarea uneia dintre structuri, iar celelalte structuri care se
suprapun apar ca redefiniri ale zonei de memorie.

Atunci cand se defineste un masiv tridimensional a, cu 10 x 10 x 10
elemente si un alt masiv b, unidimensional cu 1000 elemente, tipul lor fiind
unic, daca se procedeaza la punerea in corespondenta a elementelor

a[1][1][1] si b[1], in sensul:
adr(a[1][1][1]) = adr(b[1]) (9.1)

secventa:

for(i=0; i<10; i++)
for(J=0; j<10; j++)
for(k=0; k<10; k++)
alil0ilLk] = O;

este inlocuita cu secventa:

for(i=0; i<1000; i++)
b[i]=0;

care din punct de vedere a volumului operatiilor de prelucrare este mai
eficienta.

Exista probleme in care algoritmii de rezolvare cer definirea de
masive care diferda ca nume si ca dimensiuni de la o etapa la alta, dar care
sunt disjuncte din punct de vedere al utilizarii continutului.

De exemplu, pentru un algoritm alcatuit din trei etape, este necesara
utilizarea structurilor mentionate in tabelul de mai jos:

Tabelul nr. 9.1 Etapele unui algoritm

Structura A B U \" C D X
Etapa
Etapa 1 * * *
Etapa 2 * * *
Etapa 3 * * *

unde structurile sunt definite astfel:

A[10][10]

B [20][20]

uflioj

vV [20]

struct C {}, Ig (C) = 50
struct D {} , Ig (D) = 40
X [30]

Rezultd ca matricele A si B sunt suprapuse, vectorii U, V si X de
asemenea, iar structurile de tip articol C si D, urmeaza aceeasi cale.

Cele trei suprapuneri sunt reprezentate cu modelele grafice
urmatoare:

ATl 1]

|
T

01 AAO0OO

|
T

B[ll,l]

U [1]

T

01 BB0OO

TV
01 BB0OO

01 CCO00

D

Figura 9.3 Modelul grafic al suprapunerilor pe o zond de memorie

Problema suprapunerilor structurilor de date pe zone de memorie se
rezolva folosind functii de reunire.

9.2 Functia de reunire

Se considera datele d;, d,, ds, ..., d,, avand tipurile T;, T, ..., T, Si
mj, My,..., M, membrii de referintd ai acestora.

In continuare un membru al unei structuri de date este numit de
referinta, daca in raport cu el sunt puse in evidenta. Se defineste functia:

union: Ti*Ts...*T,— (TRUE, FALSE) (9.2)

Si:
union (my, my,...,m,) = TRUE (9.3)
daca si numai daca:
adr(m;) = adr(m;) = adr(m,) =96, 0 €[A, AdJ "N (9.4)
Se noteaza:

azlmin {adr(d;) | adr(m,)= J} (9.5)

p=max {adr(d,) + lg(T,) | adr(m,) =0} (9.6)

l<i<n

Cele n structuri de date redistribuite ca dispunere in raport cu adresa
J, a celor n campuri de referinta, ocupa o zona de memorie de lungime
a - B+1 octeti.

Diferitele limbaje de programare impun restrictii precum:

a=max{A,, 1rn.in{aldr(di) | adr(m,)=0}} (9.7)

ceea ce determina existenta unui minim control asupra adresei operanzilor,
in sensul ca adresele acestora sa nu fie in afara domeniului prefixat in
limitele A;si A

Daca se considera o data de baza, de exemplu d;:

union (my, my, ..., my,) = TRUE (9.8)
daca:

adr (mi)=0 1=1,2,...,n

adr (di) >adr(dl) i=2,3,...n (2-9)

De exemplu, acest grup de restrictii se regaseste in limbajul
FORTRAN.
Se considera masivele definite prin:

int a[10];
int b[5];
si structura:
struct k
{
int x;
char g[10];

si datele elementare:

int x, y;

Functia:
union (a[3], b[5], g, X, y) (9.10)

conduce la modelul grafic de suprapunere urmator:

a0 a] a3

by | bi by | bs b

oo lo o ... e lo |

Figura 9.4 Modelul grafic al suprapunerilor pe o zond de memorie

adr(a[3])=adr(b[5])=adr(t*g) =adr(x)=adr(y) =25 (9.11)

Adresa de inceput pentru fiecare din cele cinci campuri se obtine:

adr (a [3]) = adr (a [0]) + 3*1g (int)
adr (a [0]) = 6- 3*1g (int)

adr (b [0]) = 6 - 5*1g (int)
adr(g)=06-1%*1g (int)

adr(x) =906

adr(y) =96

In programele C/C++, existd posibilitatea realizdrii reuniunii de date
folosind variabile de tip pointer care refera aceeasi zona de memorie. De
exemplu, secventa:

int x[3][3],*y[3].**z;

for(int 1=0;1<3;i1++)
yLi]=x[i];

z=y;

for(i=0;i1<3;i++)
for(int j=0;j<3;j++)

x[i10]=1*3+j;

cout<<"Adresa de memorie alocata pentru x este:''<<&x<<endl;
cout<<"'Adresa de memorie alocata pentru y este:'<<&y<<endl;
cout<<"Adresa de memorie alocata pentru z este:''<<&z<<endl;

cout<<Adresele de memorie la care sunt stocate liniile pornind
de la variabila x:"<<endl;
Ffor(i=0;i1<3;i++)
cout<<'Linia "<<i+l<<"este incepe la adresa "<<x[i]<<endl;

cout<<Adresele de memorie la care sunt stocate liniile pornind
de la variabila y:"<<endl;
Ffor(i=0;i1<3;i++)
cout<<'Linia "<<i+l<<"este incepe la adresa "<<y[i]<<endl;

cout<<Adresele de memorie la care sunt stocate liniile pornind
de la variabila z:"<<endl;
Ffor(i=0;i1<3;i++)
cout<<'Linia "<<i+l<<"este incepe la adresa
"<<*(z+1)<<endl;

cout<<"Elementele matricei afisate prin variabila x:'<<endl;
Ffor(i=0;i<3;i++){
cout<<endl;
for(int j=0;j<3;j++)
cout<<"X["<<i+l<<"][<<j+i<<")="<<x[i]0O]<<" *;

}

cout<<"Elementele matricei afisate prin variabila y:"<<endl;
for(i=0;1<3;1++){
cout<<endl;
for(int j=0;j<3;j++)
cout<<"Y["<<i+l<<"]["<<j+l<<")=<<H(y[i]HJ)<<"

}
cout<<"Elementele matricei afisate prin variabila
z:"<<endl;
Ffor(i=0;i<3;i++){
cout<<endl;
for(int j=0;j<3;j++)
cout<<"Z["<<i+l<<"][V<<jHi<<M) =< (R (zH))<<
}

cout<<"Adresele elementelor matricei afisate prin variabila
x:"<<endl;
Ffor(i=0;i<3;i++){
cout<<endl;
for(int j=0;j<3;j++)
COUt<<"ADR(X["<<i+l<<"["<<j+i<<"DP="<<@&x[1]1[J1=<<" ";

}
cout<<"'Adresele elementelor matricei afisate prin variabila
y:"'<<endl;
for(i=0;i1<3;i++){
cout<<endl;
for(int j=0;j<3;j++)
Cout<<"ADR(Y["<<i+1<<"["<<J+i<<"D="<<y[i]+j<<" "'
}

cout<<"Adresele elementelor matricei afisate prin variabila

z:"<<endl;
Ffor(i=0;i<3;i++){
cout<<endl;
for(int j=0;j<3;j++)
COUt<<"ADR(Z["<<i+1<<"]["<<J+1I<<" D =""<<*(z+ D) Hj<<" ™
bs

efectueaza punerea in corespondenta:

adr(x[0][0]) = y[0]+0
adr(x[0][1]) = y[0]+1
adr(x[0][2]) = y[0]+2
adr(x[1][0]) = y[1]+0
adr(x[1][1]) = y[1]+1
adr(x[1][2]) = y[1]+2
adr(x[2][0]) = y[2]+0
adr(x[2][1]) = y[2]+1
adr(x[2][2]) = y[2]+2

intre variabilele x si y, precum si punerea in corespondenta:

adr(x[0][0]) = *(z+0)+0
adr(x[0][1]) = *(z+0)+1
adr(x[0][2]) = *(z+0)+2
adr(x[1][0]) = *(z+1)+0
adr(x[1][1]) = *(z+1)+1
adr(x[1][2]) = *(z+1)+2
adr(x[2][0]) = *(z+2)+0
adr(x[2][1]) = *(z+2)+1
adr(x[2][2]) = *(z+2)+2

intre variabilele x si z.

Astfel, aceeasi zona de memorie este accesata prin intermediul
variabilelor x, y si z.

In conditiile construirii de tipuri de date derivate, nu se efectueaza
alocare de zone de memorie. Prin definirea de variabile pointer p;, ps, ..., Pn
spre tipurile de date derivate, o data cu construirea modelului grafic al
reuniunii de date, se evalueaza adresa « ca fiind adresa de inceput a unei
variabile dy, din lista d;, d>, ..., d,.

azadr(dk)zglln{adr(di) } (9.12)

cu conditia ca:
adr(m;) = adr(m;) = ... = adr(m,) (9.13)
Se calculeaza deplasarile:
D; = depl(d, d) (9.14)

cubD;>0pentrui=1,2,...,n.
Prin evaluarea expresiei:

P, =convp(a,T,)+D, (9.15)
se obtine adresa de inceput a fiecarei date din tipul T;, astfel incat:
adr(m;) = adr(m;) = ... = adr(m,) = adr(d;) + depl(m,, d;) (9.16)

Mecanismele de implementare prin variabile pointer a reuniunii de
structuri de date sunt utile mai ales in cazul structurilor de date contigue a
caror alocare se efectueaza dinamic.

Chiar daca, initial, functiile de reuniune sunt definite cu unele
restrictii asupra alinierii, la stanga sau la dreapta a elementelor, printr-o
aritmetica adecvata de evaluare a expresiilor in care apar variabile pointer
aceste restrictii sunt eliminate.

Reuniunile de date, in multe cazuri, sunt rezultatul unor prelucrari
accidentale si in depanarea programelor e necesara identificarea modulului
in care s-au facut suprapunerile unor date peste altele.

9.3 Zonele de memorie tampon - gazde ale reuniunilor
de date contigue

Prelucrarea datelor in conditiile scaderii intensitatii pe care resursa
memorie o impune ca restrictie revine la a defini zone de memorie in care
se citesc date din fisiere, uneori chiar figierele integral, pentru a fi prelucrate
ca date existente numai in memoria interna a calculatorului.

In acest context, memoria tampon este pusd in corespondentd cu
structuri de tip articol si parti ale sale sunt interpretate sau intra ca operanzi
in expresii, sub forma membrilor de structura.

Cazul cel mai frecvent corespunde situatiei in care, pentru orice
structura de date din sirul ordonat d;, d>, ... d, avem:

union(m;, m;) = FALSE (9.17)
adr(di+;) = adr(d;) + Ig(d,) (9.18)

(V)i=1,2,..,n-1, adica datele sunt disjuncte.

In cazul lucrului cu buffere, se cautd ca prin aritmetica de pointeri s
se obtina acea suprapunere care coincide, fie cu modul in care a fost creat
fisierul, fie cu obiectivul urmarit.

Daca programul de creare a fisierului contine ca definire structura d,
iar programul de exploatare a fisierului contin aceeasi structurd d’, cu
deosebirea ca:

lg(dy) # Ig(d's) (9.19)

conduce la concluzia ca cele doua structuri sunt asemanatoare numai prin
numarul identic de campuri si coincidenta tipurilor, dar difera prin lungimile
a doua campuri corespondente.

Se presupune ca:

lg(dy) - Ig(d')=1 (9.20)

Dup3a n citiri de inregistrari dx din fisierul creat cu inregistréri avand
structura di, se obtine o diferenta de n baiti pana la a n + 1 inregistrare
corect plasata in fisier.

Figura 9.5 Decalajele intre articolele celor doua fisiere

Decalajul de 1 octet genereaza o suprapunere dinamica, distanta
intre inceputul inregistrarii dy si inregistrarea d'y se mareste pe masura ce
indicele k creste, fiind de k-1 octeti.

Problema depistarii cauzelor de obtinere a rezultatelor eronate creste
in complexitate daca diferenta:

lg(dy) - Ig(d’)>1 (9.21)

In aceste cazuri, este necesar sa se defineasca functii de verificare a
concordantei dintre parametrii ce caracterizeaza o structura.

De asemenea, din punct de vedere al tipurilor pe care le au datele
elementare, care intra in componenta articolelor sau a masivelor, reunirile
apar ca suprapuneri de tipuri, omogene sau nu, cu toate consecintele ce
decurg.

Astfel, o data elementara sau atom este definita din punct de vedere
al tipului ca:

E = (T) (9.22)
unde T;, este unul din tipurile fundamentale T;, T,..., T,, n fiind numarul de
tipuri fundamentale implementate in limbajul de programare considerat.
Masivul unidimensional, se defineste ca tip vector T, astfel:
T,=(T, Ty ..., T}) (9.23)
Numarul de componente coincide cu dimensiunea vectorului si tipul
este acelasi pentru toate elementele.
O matrice este de tipul T,,, definit:
Tm=(T,T,..., T),) (9.24)
O structura de tip articol, are tipul:

Ta = (7-1'1/ 7-i2/ ey T/m) (9'25)

unde, T, e {T,,T,,...T,,T,,T.,T, }.

ees Lo

O structura de vectori, este definita prin:

Tow=(Ty, T, ..., T\) (9.26)

Un vector de structura, se defineste prin:
Tvs=(Ts Ta..., T3) (9.27)

Deplasand problematica reuniunii de date la nivelul reuniunii de date
ca tipuri, obtinem o noua interpretare si anume:

union(T, , T, ,...,T,)=TRUE (9.28)

daca exista cel putin un T,; € T,;, astfel incat oricare ar fi doua elemente de

tip T, si Ty sa existe:

tadr (T,;) N tadr(T,;) #¢ (9.29)

unde, Ty reprezinta tipul membrului cu pozitia k din tipul derivat T,;.

In acest context, tadr(T,) reprezinta o multime a adreselor
operanzilor de tip Ty ai structurii de tip derivat T,;.

Se considera spre exemplificare structurile:

struct a
{
char e[20];
int a;
float c;
};
Si:
struct x
{
int y;
char z[4];
float u;
int w;
}:

Se considera structura:

T. = (char[], int, float, bool) (9.30)

si structura:
T. = (int, char[], float, int) (9.31)

Structura union (T,, T,) se evalueaza definind multimile:

tadr (T,,,)={adr(a)} (9.32)
tadr (T,) ={adr (y),adr(w)} (9.33)

unde tadr() este functia de extragere a adreselor elementelor de un tip
specificat dintr-o structura.

tadr (T, ;)= {adr(c)} (9.34)
tadr (T,)= {adr(u)} (9.35)
tadr (T, ;) = {adr(e)} (9.36)
tadr (T,) = {adr (2) } (9.37)
tadr (T,) = {adr(d)} (9.38)
tadr (T,) = ¢ (9.39)

Daca se presupune ca programatorul are la dispozitie posibilitatea de
a modifica continutul contorului de locatii, care sa realizeze o definire a
structurilor a si b incat:

tadr (T

a boolean

) N tadr (T, .,) # & (9.40)
deci:
union (T,, T,)=TRUE (9.41)
Implementarile curente genereaza cazuri particulare in care:

adr(x;) = adr(x;) (9.42)

unde x’, x; sunt membrii cu pozitia 1 din structurile i i j.

Membrii care alcatuiesc o structura dintr-o reuniune de structuri, au
adresa calculata fata de primul membru al structurii. Toti primii membrii ai
structurilor, au aceeasi adresa.

Privind structurile de date ca structuri de tipuri:

tadr (T;;) N tadr (T,) = adr(x;) = adr(x,) (9.43)

pentru oricare i si j, ce corespund tipurilor de date derivate ce definesc
structurile considerate.

O astfel de abordare mareste generalitatea modelului asociat
reuniunii de structuri, intrucat nu mai sunt luate in calcul direct lungimile
efective ale operanzilor de un anumit tip, lungimi ce difera de la un mod de
implementare al unui limbaj la alt limbaj.

Mai mult, aplicarea functiei union la suprapunerile accidentale a
structurilor, prin considerarea tipurilor ca entitati de baza, permite
descifrarea rezultatelor care numai aparent au caracter nedeterminat.

Evidentierea lucrului cu astfel de structuri se realizeaza prin
intermediul urmatoarelor doua exemple.

Primul

exemplu

initializeaza o zona

sub forma
unidimensional pe care o utilizeaza ca masiv bidimensional la afisare.

union reuniune

{
int a[3][3];
int b[9];
}z;
int i, j;
for(i=0; i<9; i++)
z.b[i] =1 * 1;
for(i=0; i1<3; i++)
{
for(J=0; j<3; j++)
cout<<"\n "<<z.a[i]lLil:
}

unui

masiv

Al doilea exemplu defineste in cadrul unor structuri de tip struct,
campuri pe care le reuneste la aceeasi adresa de memorie, efectuand
exploatarea diferentiala a acesteia.

struct unionl

{
char x[10];
s
struct union2
{
char y[5];
3
struct union3
{
char z[10];
3
union uniune2
{
unionl unil;
union2 un2;
union3 un3;
Ju2;

strcpy(u2.unl.x,"1234567890");
cout<<u2.unl.x;
cout<<'"\n";

for(int 1=0; i<5; i++)

u2.un2.y[i]="a"+i;

for(i=0; i<5; i++)

cout<<u2.un2.y[i];

cout<<"\n"<<u2.unl.x;

cout<<'"\n";

for(i=0; i1<15; i1++)
cout<<u2.un3.z[i];

Exemplele anterioare evidentiaza modalitati de realizare si operarare
a reunirilor de date.

