
10. LISTELE – STRUCTURI DINAMICE NECONTIGUE

10.1 Consideraţii privind structurile de date de tip listă

O listă liniară (numită şi listă înlănţuită -”Linked List”) este o colecţie

de n>=0 elemente x[1], … x[n] toate de un tip oarecare, numite noduri
între care există o relaţie de ordine determinată de poziţia lor relativă. Ea
este deci o mulţime eşalonată de elemente de acelaşi tip având un număr
arbitrar de elemente. Numărul n al nodurilor se numeşte lungimea listei.
Dacă n=0, lista este vidă. Dacă n>=1, x[1] este primul nod iar x[n] este
ultimul nod. Pentru 1<k<n, x[k] este precedat de x[k-1] şi urmat de
x[k+1].

Acest tip de structură de date se aseamănă cu o structură standard:
tipul tablou cu o singură dimensiune (vector), ambele structuri conţinând
elemente de acelaşi tip iar între elemente se poate stabili o relaţie de
ordine. Una dintre deosebiri constă în numărul variabil de elemente care
constituie lista liniară, dimensiunea acesteia nu trebuie declarată şi deci
cunoscută anticipat (în timpul compilării) ci se poate modifica dinamic în
timpul execuţiei programului, în funcţie de necesităţi. Astfel utilizatorul nu
trebuie să fie preocupat de posibilitatea depăşirii unei dimensiuni estimate
iniţial, singura limită fiind mărimea zonei heap din care se solicită memorie
pentru noile elemente ale listei liniare. Un vector ocupă în memorie un
spaţiu continuu de memorie, pe când elementele unei liste simplu înlănţuite
se pot găsi la adrese nu neapărat consecutive de memorie.

O altă deosebire avantajează vectorii, deoarece referirea unui
element se face prin specificarea numărului de ordine al respectivului
element, pe când accesul la elementele unei liste liniare se face secvenţial,
pornind de la capul listei (adresa primului nod al listei) până la ultimul
element al ei, ceea ce măreşte uneori considerabil timpul de acces la un
anumit element. Pentru o listă liniară este obligatoriu să existe o variabilă,
declarată în timpul compilării, denumită cap de listă care să păstreze adresa
primului element al listei. Pierderea acestei valori va duce la imposibilitatea
accesării elementelor listei liniare.

Pentru implementarea dinamică a unei liste liniare, folosind pointeri,
nodurile listei vor fi structuri ce conţin două tipuri de informaţie:

- câmpurile ce conţin informaţia structurală a nodului
- câmpurile ce conţin informaţia de legătură, ce vor conţine pointeri la

nodurile listei. Înlănţuirea secvenţială a elementelor unei liste se face
utilizând variabile de tip pointer, care specifică adresa de memorie a
elementelor adiacente. Fiecare nod are un predecesor şi un succesor,
mai puţin elementele prim şi ultim dacă lista nu este circulară.
Listele înlănţuite cu un singur câmp de legătură se numesc liste

simplu înlănţuite (legătura indică următorul element din listă). Fiecare nod
conţine un pointer ce conţine adresa nodului următor din listă.

 URM

NULL

 INFO

Figura 10.1 Lista simplu înlănţuită

Ultimul element poate conţine ca adresă de legătură fie constanta

NULL fie constanta 0 (indicând astfel că ultimul nod nu are nici un
succesor).

Tipul unui nod într-o listă simplu înlănţuită se poate defini folosind o
declaraţie de forma:

class Lista;
class ElementLista
{ TINFO info;
 ElementLista *urm;
public:
 ElementLista(int val=0);
 friend class Lista;
};

Listele înlănţuite cu 2 câmpuri de legătură se numesc liste dublu

înlănţuite (o legătură indică nodul precedent iar cealaltă nodul succesor).

 URM

 PREC NULL

NULL

 INFO

Figura 10.2 Lista dublu înlănţuită

Nodurile unei liste dublu înlănţuite au tipul definit după cum urmează,

pointerul urm definind relaţia de succesor pentru nodurile listei, iar prec pe
cea de predecesor:

class Lista;
class ElementLista
{ ElementLista *prec;
 TINFO info;
 ElementLista *urm;
public:
 ElementLista(int val=0);
 friend class Lista;
};

În situaţia în care se realizează o închidere a înlănţuirilor, pierzându-

se astfel noţiunile de început şi de sfârşit ale unei liste liniare, se obţine o
listă circulară simplu sau dublu înlănţuită.

Într-o listă circulară simplu înlănţuită toate nodurile sunt echivalente,
fiecare nod având un următor şi fiecare la rândul său constituind următorul
unui alt nod. Acest considerent este valabil şi pentru listele circulare dublu
înlănţuite extinzându-se şi asupra relaţiei de precedenţă care există între
nodurile listei.

Relativ la o poziţie K din cadrul unei liste, putem defini următoarele
tipuri de operaţii:

- accesul la cel de-al K-lea nod al listei pentru examinare sau
modificare;

- ştergerea nodului aflat pe poziţia K din cadrul listei;
- inserarea unui nou nod înainte de, respectiv după nodul K.
Limitând efectuarea acestor trei operaţii la primul sau la ultimul nod

al unei liste liniare simplu înlănţuite se obţin structurile de date derivate de
tip stivă şi coadă. În ceea ce priveşte stiva, aceasta constituie o listă simplu
înlănţuită în care toate inserările şi suprimările de noduri se efectuează la
un singur capăt al acesteia, numit vârful stivei. Stivele se mai numesc
structuri listă de tip LIFO, Last-In-First-Out, adică ultimul-introdus-primul-
suprimat sau liste de tip pushdown.

Relativ la structura de date de tip coadă, trebuie specificat că
elementele noi vor fi inserate la un capăt al acesteia, numit spate, iar
suprimările de noduri vor avea loc la celălalt capăt, numit faţă. Din acest
motiv, cozile se mai numesc şi liste de tip FIFO, first-in-first-aut, adică liste
de tip primul-venit-primul-servit.

Prezenţa mai multor înlănţuiri într-un acelaşi nod conferă mai multă
flexibilitate structurilor de date de tip listă, acestea devenind aşa-numitele
multiliste, nodurile acestora aparţinând în acelaşi timp la mai multe liste
înlănţuite simple.

10.2. Lista simplu înlănţuită

10.2.1 Crearea listelor. Inserţia nodurilor

Într-o astfel de listă există întotdeauna un nod care nu mai are

succesor, precum şi un nod care nu este succesorul nici unui alt nod, aceste
noduri constituind capetele listei simplu înlănţuite. Într-o primă variantă de
gestionare a acestui tip de listă vom apela la doi pointeri prim şi ultim
pentru a referiri nodurile terminale ale listei.

 URM

 NULL

INFO

prim ultim

Figura 10.3 Lista simplu înlănţuită marcată de pointerii prim şi ultim

Dacă specificarea începutului listei prin pointerul prim este

obligatorie, utilizarea pointerului de sfârşit ultim este opţională, însă
eficientă atunci când se doreşte crearea listei în ordine naturală printr-o

inserţie a noilor noduri la sfârşitul acesteia. În practică, parcurgerea întregii
liste pentru a determina ultima poziţie a acesteia este o soluţie ineficientă,
convenabilă fiind cunoaşterea, cu ajutorul pointerului ultim, a nodului
terminal al acesteia. În prezenţa lui ultim, secvenţa de program care
inserează un nod la sfârşitul unei liste liniare şi concomitent îl actualizează
pe ultim este următoarea:

void Lista::inserare_sfarsit(TINFO val)
{
 ElementLista* ptr=new ElementLista(val);
 if (ptr==NULL)
 { cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 Ultim->urm=ptr;

 Ultim=ptr;

 if (Prim==NULL) Prim=Ultim;

 cout<<"Inserare la sfarsitul listei cu succes!\n";
}

Se observă că după adăugarea unui nou element la sfârşitul listei, se

actualizează pointerul Ultim, care va păstra adresa noului element ultim al
listei.

Dacă elementul adăugat la sfârşitul listei este primul element al listei
(caz în care pointerul Prim conţine valoarea NULL), vom actualiza şi
valoarea pointerului Prim, elementul adăugat fiind în acelaşi timp primul şi
ultimul element al listei.

Dacă se doreşte crearea unei liste prin inserţia noilor noduri la
începutul acesteia, se va apela metoda inserare_inceput, aceasta fiind
valabilă şi în cazul unei liste vide.

void Lista::inserare_inceput(TINFO val)
{
 ElementLista* ptr=new ElementLista(val);
 if (ptr==NULL)
 { cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 if(Prim==NULL) Ultim=ptr;

 ptr->urm=Prim;

 Prim=ptr;
 cout<<"Inserare la inceputul listei cu succes!\n";
}

Dacă elementul adăugat la începutul listei este primul element al

listei (caz în care pointerul Prim conţine valoarea NULL), vom actualiza şi
valoarea pointerului Ultim, elementul adăugat fiind în acelaşi timp ultimul şi
primul element al listei.

Operaţia de inserare a unui nod într-o listă nu se reduce numai la

cele două situaţii prezentate, ci implică de asemenea posibilitatea inserării

acestuia într-o poziţie oarecare a listei, şi anume, după sau înaintea unui
anumit nod specificat prin referinţa sa spec. Schematic cele două situaţii
sunt prezentate în figurile următoare, observându-se o oarecare dificultate
la operaţia de inserţie a noului nod înaintea celui specificat.

 X

spec

q

Figura 10.4 Inserţia unui nod după un nod specificat

void Lista::inserare_dupa_un_element(TINFO X, TINFO cheie)
{
 ElementLista* q, *spec;
 for(spec=Prim;spec&&spec->info!=cheie;spec=spec->urm);
 if(spec)
 {
 q=new ElementLista(X);
 if (q==NULL)
 {

 cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 if(spec==Ultim) Ultim=q;
 q->urm=spec->urm;
 spec->urm=q;
 cout<<"Inserare dupa element cu succes!\n";
 }
 else cout<<"Nu exista cheia specificata!\n";
}

INFO

Xspec

q

Figura 10.5 Inserarea unui nod înaintea unui nod specificat

Inserarea noului nod înaintea celui referit prin spec se implementează

ca o inserare după acesta, noul nod preluând conţinutul câmpului info al
acestuia, în care apoi se va memora informaţia X.

void Lista::inserare_inaintea_unui_elem(TINFO X,TINFO cheie)
{
 ElementLista* q, *spec;
 for(spec=Prim;spec&&spec->info!=cheie;spec=spec->urm);
 if(spec)
 {
 q=new ElementLista(X);
 if (q==NULL)
 {

 cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 if(spec==Ultim) Ultim=q;
 q->info=spec->info;
 q->urm=spec->urm;
 spec->urm=q;
 spec->info=X;
 cout<<"Inserare inaintea unui element cu succes!\n";
 }
 else cout<<"Nu exista cheia specificata!\n";
}

Se pune problema creării unei liste înlănţuite ordonate după câmpul

info, caz în care inserarea unui nod nou nu trebuie să afecteze relaţia de
ordonare existentă. Vom traversa lista utilizând doi pointeri consecutivi şi
vom identifică astfel poziţia de inserare a noului nod. Inserarea noului nod
se va face dupa nodul referit de pointerul q1.

Cei doi pointeri q1 şi q2 avansează simultan de-a lungul listei până
când valoarea q1 - info devine mai mare sau egală cu valoarea de inserat
X. Inserarea noului nod va avea loc între nodurile referite de q1 şi q2.

void Lista::inserare_ordonata(TINFO X)
{
 ElementLista *q1=NULL,*q2;
 ElementLista* ptr=new ElementLista(X);
 if (ptr==NULL)
 {
 cout<<"Eroare la alocare spatiu pentru inserare";

 return;

 }

 for(q2=Prim;q2&&q2->info<X;q1=q2,q2=q2->urm);
 if(q2==Prim)

 {
 if(Prim==NULL) Ultim=ptr;

 ptr->urm=Prim;
 Prim=ptr;
}
 else
 {

 if(q2==NULL) Ultim=ptr;

 q1->urm=ptr;

 ptr->urm=q2;
 }
 cout<<"Inserare ordonata cu succes!\n";
}

10.2.2 Localizarea unui nod

Identificarea unui nod în cadrul unei liste se poate efectua aplicând

metoda de căutare liniară, aceasta presupunând parcurgerea elementelor
listei, nod cu nod, fie până se localizează nodul dorit, fie până la sfârşitul
listei dacă elementul căutat este inexistent.

/* caută nodul X în cadrul listei şi returneză
pointerul spre nodul identificat şi 0 în caz
contrar */

ElementLista *Lista::cautare(TINFO X)
{
 ElementLista *q;
 for(q=Prim;q&&q->info!=X;q=q->urm);
 if(q)

 return(q);
 else
 return(0);
}

Să se ofere o implementare a problemei concordanţei, inserarea unui

nou nod realizându-se la începutul listei. În final, lista va conţine toate
“cuvintele” X distincte şi numărul de apariţii ale acestora.

#include<iostream.h>
class Lista;
class ElementLista
{ int info,contor;
 ElementLista *urm;
public:
 ElementLista(int val=0);
 friend class Lista;
};
class Lista
{
protected:
 ElementLista *Ultim, *Prim;
public:
 Lista()
 { Prim = NULL;
 Ultim = new ElementLista();
 }
 ~Lista();
 void traversare();
 void inserare(int);
};

ElementLista::ElementLista(int val)
{
 info=val;
 contor=1;
 urm=NULL;
}

Lista::~Lista()
{
 ElementLista* ptr=Prim;
 while (Prim)
 {
 Prim=Prim->urm;
 delete ptr;
 ptr=Prim;
 }
}

void Lista::traversare()
{
 ElementLista* p=Prim;
 if (p==NULL)
 cout << "\n Lista este vida! \n";
 else
 while (p!=NULL)
 {
 cout<<p->info<<" numar de aparitii: "<<p->contor<<"\n";
 p=p->urm;

 }
 cout<<"\n";
}

void Lista::inserare(int X)
{
 ElementLista *p;
 for(p=Prim;p&&p->info!=X;p=p->urm);
 if(p)
 p->contor++;
 Else
 {
 p=new ElementLista(X);
 p->urm=Prim;
 Prim=p;
 }
}

void main()
{
 Lista Listamea;
 int cheie;
 cout<<"Introduceti cheia de inserat:";
 cin>>cheie;
 while(cheie)
 { Listamea.inserare(cheie);
 cout<<"Introduceti cheia de inserat:";
 cin>>cheie;
 }
 cout<<"Inserare incheiata!\n";
 cout<<"\nTraversare lista:\n";
 Listamea.traversare();
}

O îmbunătăţire substanţială a procesului de căutare poate avea loc

prin aplicarea aşa-numitei metode de căutare cu reordonare. Ori de câte ori
un cuvânt se caută şi se localizează în listă, el va fi mutat la începutul
acesteia, astfel încât la proxima apariţie să fie găsit imediat. Cu alte
cuvinte, lista se reordonează după fiecare căutare finalizată cu succes. Dacă
un nod nu este găsit în listă, atunci el va fi inserat la începutul acesteia.

q2
 q1 prim

 URM

prim
fanion

 NULL

INFO

3

X

2 1

Figura 10.6 Mutarea nodul X la începutul listei

void Lista::inserare(int X)
{
 ElementLista *q1, *q2=NULL, *p;
 for(q1=Prim;q1&&q1->info!=X;q2=q1,q1=q1->urm);

 if(q1)
 {
 q1->contor++;
 if(q2)
 {
 q2->urm=q1->urm;
 q1->urm=Prim;
 Prim=q1;
 }
 }
 else
 {
 p=new ElementLista(X);
 p->urm=Prim;
 Prim=p;
 }
}

10.2.3 Suprimarea nodurilor

Se propune eliminarea unui anumit nod, referit prin q1, din cadrul

unei liste liniare înlănţuite. Pentru aceasta vom folosi un pointer auxiliar, q2,
care indică predecesorul elementului ce urmează să fie suprimat .

void suprima (TNOD *q);
{
 ElementLista *q1=NULL,*q2;
 for(q2=Prim;q2&&q2->info!=X;q1=q2,q2=q2->urm);
 if(q2)

 {

 if(q2==Prim) Prim=q2->urm;

 if(q2==Ultim) Ultim=q1;

 if(q1) q1->urm=q2->urm;

 delete(q2);

 cout<<Suprimare cu succes!\n";

 }

 Else
 cout<<"Nodul nu exista!\n";
}

10.3 Lista circulară simplu înlănţuită

Listele circulare sunt liste înlănţuite ale căror înlănţuiri se închid, în

aceste condiţii dispărând noţiunea de început şi de sfârşit al listei. Pentru
gestiunea unei astfel de lista, vom păstra un pointer spre „ultimul” element
al listei.

include <iostream.h>
define TINFO int
class Lista;
class ElementLista
{ TINFO info;
 ElementLista *urm;

public:
 ElementLista(int val=0);
 friend class Lista;
};

class Lista
{
protected:
 ElementLista *Ultim;
public:
 Lista()
 { Ultim = NULL;}
 ~Lista();
 void traversare();
 void inserare_sfarsit(TINFO);
 void inserare_inaintea_unui_elem(TINFO,TINFO);
 ElementLista *cautare(TINFO);
 void suprimare(TINFO);
 };

ElementLista::ElementLista(TINFO val)
{
 info=val;
 urm=NULL;
}

Lista::~Lista()
{
 ElementLista* ptr;
 if(Ultim!=NULL)
 { while (Ultim->urm!=Ultim)
 {
 ptr=Ultim->urm;
 Ultim->urm=Ultim->urm->urm;
 delete ptr;
 }
 delete Ultim;
 }
}

void Lista::traversare()
{
 ElementLista* ptr=Ultim;
 if (Ultim==NULL)
 cout << "\n Lista este vida! \n";
 else
 { while (ptr->urm!=Ultim)
 {
 ptr=ptr->urm;
 cout << ptr->info<<" ";
 }
 cout << ptr->urm->info<<" ";
 cout<<"\n";
 }
}

void Lista::inserare_sfarsit(TINFO val)
{
 ElementLista* ptr=new ElementLista(val);
 if (ptr==NULL)
 {

 cout<<"Eroare la alocare spatiu pentru inserare";
 return;
 }
 if(Ultim)
 {
 ptr->urm=Ultim->urm;
 Ultim->urm=ptr;
 Ultim=ptr;
 }
 else
 {
 Ultim=ptr;
 ptr->urm=ptr;
 }
 cout<<"Inserare sfarsit cu succes!\n";
}

void Lista::inserare_inaintea_unui_elem(TINFO X,TINFO cheie)
{
 ElementLista* ptr, *q1=Ultim, *q2;
 if(Ultim==NULL)
 {
 cout<<"Lista vida! Inserare fara succes!\n";
 return;
 }
 for(q2=Ultim->urm;q2!=Ultim&&q2->info!=cheie;q1=q2,q2=q2->urm);
 if(q2->info==cheie)
 {
 ptr=new ElementLista(X);
 if (ptr==NULL)
 {
 cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 q1->urm=ptr;
 ptr->urm=q2;
 cout<<"Inserare cu succes!\n";
 }
 else cout<<"Nu exista cheia specificata!\n";
}

ElementLista *Lista::cautare(TINFO X)
{
 ElementLista *ptr;
 if(Ultim==NULL) return(0);
 for(ptr=Ultim->urm;ptr!=Ultim&&ptr->info!=X;ptr=ptr->urm);
 if(ptr->info==X)
 return(ptr);
 else
 return(0);
}

void Lista::suprimare(TINFO X)
{
 ElementLista *q1=Ultim, *q2;
 if(Ultim==NULL)
 {
 cout<<"Lista vida! Suprimare fara succes!\n";
 return;
 }
 for(q2=Ultim->urm;q2!=Ultim&&q2->info!=X;q1=q2,q2=q2->urm);

 if(q2->info==X)
 {
 if(q2->urm==q2)
 {
 Ultim=NULL;
 delete(q2);
 }
 else
 {
 if(q2==Ultim) Ultim=q1;
 q1->urm=q2->urm;
 delete(q2);
 }
 cout<<"Suprimare cu succes!\n";
 }
 else
 cout<<"Nodul nu exista!\n";
}

void main()
{
 Lista Listamea;
 int opt;
 TINFO valoare,cheie;
 do
 {
 cout<<"\n Optiuni de lucru cu lista:";
 cout<<"\n 1 - Afisare lista";
 cout<<"\n 2 - Inserare element la sfarsitul listei";
 cout<<"\n 3 - Inserare element inaintea unui elem specificat";
 cout<<"\n 4 - Cautarea unui element specificat";
 cout<<"\n 5 - Suprimarea unui element";
 cout<<"\n 9 - Terminare lucru \n\n";
 cout<<"Introduceti optiunea dorita:";
 cin>>opt;
 switch(opt)
 {
 case 1:
 {
 cout<<"Traversare lista:";
 Listamea.traversare();
 break;
 }
 case 2:
 {
 cout<<"Introduceti elementul de inserat:";
 cin>>valoare;
 Listamea.inserare_sfarsit(valoare);
 break;
 }
 case 3:
 {
 cout<<"Introduceti elementul de inserat:";
 cin>>valoare;
 cout<<"Introduceti elem inaintea caruia inseram:";
 cin>>cheie;
 Listamea.inserare_inaintea_unui_elem(valoare,cheie);
 break;
 }
 case 4:
 {

 cout<<"Introduceti elementul cautat:";
 cin>>valoare;
 if(Listamea.cautare(valoare))
 cout<<"Elementul a fost gasit!\n";
 else
 cout<<"Elementul nu exista in lista!\n";
 break;
 }
 case 5:
 {
 cout<<"Introd elem pe care doriti sa-l suprimati:";
 cin>>valoare;
 Listamea.suprimare(valoare);
 break;
 }
 case 9: break;
 default:
 cout<<"\n Nu exista optiunea! \n ";
 }
 }while (opt!=9);
}

10.4 Structuri de date dinamice necontigue

Structurile de date statice sunt cele care se definesc în program, iar

în faza de compilare se calculează deplasări pentru fiecare câmp elementar
sau grup de câmpuri, astfel încât după editarea de legături orice evaluare
de adresă să permită referirea corectă a structurilor sau a componentelor
lor.

Caracterul local sau global al variabilelor conduce la o abordare
diferenţială a variabilelor statice. Chiar variabilele care se definesc în cadrul
unui bloc şi care au caracter local, a căror alocare de memorie şi iniţializare
este realizată prin mecanisme proprii mediului de programare, sunt tratate
tot ca structuri sau funcţii apelate la cerere de către programatori.

În continuare, se grupează sub denumirea de structuri dinamice acele
structuri pentru care alocarea şi dezalocarea memoriei este gestionată de
programator.

Funcţiile care alocă memorie au ca parametri acele informaţii care
conduc la răspunsuri neambigue la întrebările:

- care este lungimea zonei de memorie care se alocă?
- unde este stocată adresa zonei de memorie alocată, pentru a fi la

dispoziţia programatorului?
- se iniţializează zona de memorie alocată înainte de a fi utilizată

de programator?
Mecanismul de alocare dinamică a memoriei, are la bază faptul că în

memoria internă a unui sistem de calcul, apare o zonă disponibilă delimitată

prin , unde: N] D ,D [fi 

 Di – adresa de început a zonei;
 Df – adresa de sfârşit a zonei.

La intrarea în execuţie a programului, un registru RO, sau o zonă de
memorie fixată, se iniţializează cu valoarea Di.

Dacă într-un program este activată funcţia de alocare definită prin:

y = alocare (lg (Ti)) (10.1)

şi

N] D ,D [N :alocare fi  (10.2)

)T pointer, ()y (tipunde), RO (cont y i (10.3)

RO = RO + lg (Ti) (10.4)

Dacă:

cont (RO) > Df  y = 0 (10.5)

Dacă într-un program este activată funcţia de dezalocare a memoriei:

z = dezalocare (y) (10.6)

RO = RO – lg (Ti) (10.7)

Şi în cazul alocării, dacă:

tip (y) = (pointer, Tj) (10.8)

şi variabila x din

alocare (lg (x)) (10.9)

are tipul Ti, se impune efectuarea unei conversii de tip.

Astfel,

))) x (alocare (tip,)y tip((convtp y  (10.10)

unde, convtp() este o funcţie de conversie a tipului de dată Tp.

Algoritmii de structurare a memoriei în pagini, modul în care se face
încărcarea programelor, precum şi momentele uneori aleatoare din program
la care se apelează funcţiile de alocare/dezalocare, conduc în cele mai multe
cazuri ca, pentru două apelări consecutive ale funcţiei de alocare, zonele
alocate să fie necontigue.

Necesitatea definirii în programe a datelor de tip dinamic, este dată
de utilizarea mai bună a memoriei, lungimea unui program variind în funcţie
de volumul datelor cu care se lucrează.

În programe C/C++, pentru alocarea dinamică de memorie, se
apelează proceduri din biblioteca malloc.h sau operatorul new, iar pentru
dezalocare, procedura free() sau operatorul delete. Ca argumente,
operatorul new are tipul de dată şi numărul de elemente pentru care se face
alocarea zonei de memorie, iar free() şi delete au o variabilă pointer, care
indică adresa zonei ce se eliberează.

Se consideră un program P pentru calculul inversei unei matrice.
Pentru a-i oferi o mai largă aplicabilitate, se consideră că acest program
este definit aşa fel încât să inverseze o matrice cu cel mult 50 linii şi 50
coloane.

Definirea statică a matricei:

int a[50][50];

determină ocuparea unei zone de 2500 * lg (int) baiţi.

Deci:

) executabil text (lg) baiti (lg * 2500) P (lg  (10.11)

unde  reprezintă lungimea totală a zonei de memorie rezervată altor
variabile de control sau de lucru.

Indiferent de problema de rezolvat, lg(P) = constant.
Se ştie că în lucru multiuser, un factor care influenţează aşteptarea

într-un fir, înainte de intrarea în prelucrare, este şi lungimea programului.
În contextul definirii matricei ca operand alocat dinamic, la execuţia

de fiecare dată a programului, se introduce dimensiunea matricei de
inversat, folosind variabila n de tip întreg.

Lungimea programului pentru rezolvarea problemei Pi, se determină
dinamic:

) executabil text (lg (integer) lg *n) P (lg i (10.12)

şi se are în vedere că:

lg (Pi)  lg (P) (10.13)

ştiut fiind faptul că zona la dispoziţia alocării dinamice este ,
finită.

N] D , D [fi 

Restricţiile impuse asupra domeniul pe care este definită funcţia
alocare(), determină filozofia întregului proces de construire a variabilelor
dinamice.

În cazul în care:

N] D , D [Z:alocare fi  (10.14)

este creată posibilitatea efectuării de reacoperiri de zone, deci se generează
mecanisme de realizare a uniunii de structuri dinamice de date.

De exemplu, se consideră structurile:

int a[10];
int b[10];

şi variabilele pa şi pb de tip Tp = (pointer, int), prin:

pa = alocare (10 * lg (int))
pb = alocare (7 * lg (int))
pb = alocare (-3 * lg (int))

se obţinute reuniunea cu modelul grafic:

 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

. . .

b0

b1

b2

b8

b9

Figura 10.7 Modelul grafic al reuniunii

În cele mai multe cazuri, modul de definire al funcţiilor de alocare

este limitativ, dar reuniunea este totuşi posibilă prin aritmetica variabilelor
pointer, care se iniţializează cu aceste funcţii.

Structurile de date formate din elementele omogene E1, E2, ..., Em, de
un tip derivat sau fundamental TE, se numesc necontigue, dacă există cel
puţin o pereche (Ei, Ei+1) astfel încât:

adr(Ei+1) > adr(Ei) + lg(TE) (10.15)

şi dacă:

adr(Ei+1) = adr(Ei) + lg(TE) + i (10.16)

unde  e o variabilă aleatoare, de regulă uniform distribuită, pentru a avea
acces la elementele E1, E2, ..., Em, sub o formă care să permită adresarea
corectă a elementelor necontigue.

Există posibilitatea prin definirea unor pointeri spre pointeri şi
iniţializarea corespunzătoare a acestora, să se procedeze la reaşezarea
operanzilor alocaţi dinamic, în aşa fel încât să dispară golurile dintre
operanzi, rezultate în procesul de alocare/dezalocare.

Dacă se consideră constantele C1, C2, ..., Cn având tipul Ti, care
ocupă zonele de memorie Z1, Z2, ..., Zn, şi numerele aleatoare 1, 2, …, n a
căror lege de distribuţie este, de regulă, uniform distribuită, se spune că
mulţimile de perechi (Zj, j) determină o structură de date necontiguă de tip
listă, dacă:

succ(Zj) = Zj + 1 (10.17)

pred(Zj) = Zj – 1 (10.18)

şi

adr(Zj+1) = adr(Zj) + lg(Ti) + j = j (10.19)

Dacă:

1 = 2 = …… = n (10.20)

atunci se obţine cazul particular de dată unidimensională cu necontiguitate
nulă, ce corespunde masivului unidimensional contiguu, respectiv vectorul,

şi zona de memorie pentru conservarea variabilei  i nu se mai justifică,
întrucât ea este calculabilă ca:

 j = adr(Zj) + lg(Ti) = adr(Z1) + (j-1)*lg(Ti) (10.21)

Dacă se ia în considerare mecanismul alocării dinamice a memoriei,

atunci:

 j = cont (RO) (10.22)

la momentul tj, ce corespunde alocării zonei de memorie pentru perechea
(Zj+1, j+1).

Privită din punct de vedere al tipului de dată, Zj reprezintă informaţia
utilă, iar j reprezintă informaţia de identificare a succesorului.

adr(succ(Zi)) =  (10.23)

Perechea (Zj, j) defineşte o structură de date de tip listă, numită TL,

unde j este dată de tip Tp = (pointer, TL).

10.5 Modelul grafic al listei ca structură necontiguă

Se consideră necesar ca o matrice rară să fie memorată fără a se

cunoaşte în prealabil numărul elementelor nenule ale sale.
Rând pe rând, se introduce de la terminal linia, coloana şi valoarea

elementului nenul. Se alocă dinamic o zonă de memorie pentru stocarea
acestor elemente, precum şi un câmp pentru stocarea adresei zonei în care
se stochează elementul următor.

class zona
{
 int i;
 int j;
 float val;
 zona *poz;
};
zona * pa;

Folosind succesiv operatorul new:

pg = new zona;

unde pg este o variabilă de tip pa, iar pa la rândul ei este un pointer spre
structura zona, se alocă o zonă de memorie de adresa cont(RO) şi lungime
lg(Tzona), ce este referită folosind variabila pointer pg, care este de tipul Tp =
(pointer, Tzona).

În program, membrii structurii se referă prin:

pg->i

pg->j

pg->val

Dacă pn este variabilă de tip pa şi se efectuează atribuirea pn = new

zona, variabila pn conţine adresa zonei în care este stocat următorul
element al matricei rare.

Atribuirea:

pg->poz = pn

este echivalentă cu:

j = adr(succ(Zj)) (10.24)

01788 A

pg

new(pg)

i j val

01788 A

018800

poz

i j val

018800

Zj Zj+1

new (pn) pg->poz = pn;

Figura 10.8 Alocarea zonelor de memorie

Dacă:

succ(Zn) =  (10.25)

atunci:

adr(succ(Zn)) = NULL (10.26)

pg->poz->poz = NULL; (10.27)

Acest algoritm de construire a şirului 1, 2, …, n conduce la modelul

grafic:

 NULL ...

Figura 10.9 Modelul grafic al listei simplu înlănţuită

O astfel de listă se numeşte listă liniară simplu înlănţuită.
Încărcarea matricei rare se face exact cu atâtea elemente câte valori

nenule se află pe linii şi coloane. Spre deosebire de cazul în care se foloseau
3 vectori pentru stocarea informaţiilor, acum nu mai există restricţii legate
de rezervările predefinite ale celor 3 vectori.

Totul depinde de modul în care programul solicită spaţii din zonă [Di,
Df] ∩ N şi mai ales de dimensiunile proiectate ale acestei zone la generarea
sistemului de operare.

Dacă în loc de:

adr(succ(Zn)) = NULL (10.28)

se construieşte:

adr(succ(Zn)) = adr(Z1) (10.29)

lista se numeşte circulară şi n <> NULL.

Pentru transformarea listei care stochează matricea rară în listă
circulară, la terminarea prelucrării:

pn->poz = pg;

unde pg stochează adresa zonei de memorie alocată pentru primul element
nenul al matricei rare.

Modelul grafic al listei circulare este:

pg->poz = pn;

pg->poz = pg;

...

Figura 10.10 Modelul grafic al listei circulare

Lungimea listei liniare:







1 i

ii]) , Z([lg L 

 (10.30)

i <> NULL (10.31)

unde lg[Zi, NULL] = 0.

10.6 Operaţii cu liste liniare simplu înlănţuite

Parcurgerea listei liniare simplu înlănţuite corespunde funcţiei de

extragere a adresei elementului succesor şi de referire a membrilor
acestuia.

Pentru tipărirea conţinutului elementelor matricei rare, cu număr
necunoscut de elemente nenule, funcţia de parcurgere, construită recursiv
este:

parcurgere (pg)
{
 while (pg->poz != NULL)
 {
 tipareste (pg->i, pg->j, pg->val);
 parcurgere (pg->poz);
 }
}

Considerând lista ca mulţimea de perechi de forma (Z, ) de tip TL,

w = adr(Z1) (10.32)

conţine adresele de regăsire a elementelor listei.

parcurgere (adr (w))
{
 while (w != NULL)
 {
 tipareste (w, z);

 parcurgere (ref (w), );
 }
}

Ştergerea unui element (Zk, k) al listei

Înainte de ştergere lista este:

 Zk-1 k Zk k+1 Zk+1 k+2

Figura 10.11 Lista înainte de ştergere

După efectuarea ştergerii:

 Zk-1 k+1 Zk k+1 Zk+1 k+2

Figura 10.12 Lista după de ştergerea elementului

stergere (w, w1, Zk)
{

 while (ref (w). != NULL || ref (w).Z != Zk)
 {

 w = ref (w, ); 1

 stergere (w1, w, Zk)
 }

 if(ref (w1).Z = =Zk)

 ref (w). = ref (w1).;
}

Concatenarea a două liste

Concatenarea a două liste (Z, ) şi (U, ), reprezintă ca ultimul

element al primei liste să-şi schimbe valoarea din NULL a lui n cu adresa
elementului (U1, 1).

Deci:

ref(Zn). n = adr[(U1, 1)] (10.33)

Funcţia care efectuează concatenarea listelor este:

concatenare((Z, ), (U, ))
{

 while (ref(Z). != NULL)
 {

 concatenare ((ref(Z).,),(U,Z));
 }

 ref(Z). = adr((U,))
}

Modelul grafic al concatenării:

 (Z1, 1) (Z2, 2) (Z3, 3) (Zn, n)

(U1, 1) (U2, 2) (U3, 3) (Um, m)

NULL

 





 

 ...

...

Figura 10.13 Modelul grafic al concatenării listelor

Lista concatenată are ca prin element (Z1, 1), iar ca ultim element

(Um, m).
Fizic, lista (U, ) nu s-a modificat. Conservând (Z, 1) şi (U, 1) se

lucrează cu cele două liste, ca şi cum concatenarea nu s-a executat. Totuşi
lista concatenată, pentru operaţia de parcurgere se comportă ca o listă cu m
+ n componente.

Modificarea unui element al listei

Fie lista (Zi, i), i = 1, 2, ..., n. Pentru înlocuirea unei valori a cu

valoarea b, trebuie mai întâi găsit elementul k pentru care:

cont (Zk) = a (10.34)

după care se realizează atribuirea:

Zk = b; (10.35)

În toate cazurile, parcurgere, ştergere, concatenare, modificare,

disciplina de parcurgere este de la primul element către ultimul, First In –
First Out.

modificare (w)
{
 if (ref (w). z != a)

 modificare (ref (w).);
 else
 ref (w). z = b;
}

Copierea unei liste

Fie lista (Zj, j), j = 1, 2, ..., n. Se pune problema obţinerii unei liste:

(Z’
j, ’

j), j = 1, 2, ... , n (10.36)

astfel încât:

cont(Z’
j) = cont(Zj) (10.37)

pentru j = 1, 2, ..., n.

copiere_lista (w, u)
{

 while (ref (w). != NULL)
 {
 ref (u).Z = ref (w).Z;
 alocare (v);

 ref (u). = v;
 copiere_lista (ref (w).), v);
 }

 ref (u).  = NULL;
}

Inserarea unui element în listă

Se spune că o listă este ordonată crescător dacă:

) 1 Z(cont) Z(cont jj  (10.38)

pentru orice j = 1, 2, …, n – 1.

A insera un element într-o listă, înseamnă mai întâi a găsi o valoare k
Є {1, 2, …, n} astfel încât:

) 1 Z(cont a) Z(cont kk  (10.39)

sau

) 1 Z(cont a) Z(cont kk  (10.40)

după cum lista este ordonată crescător sau descrescător. În aceste condiţii,
inserarea elementului a, înseamnă conform modelului grafic, a trece de la
configuraţia:

...

(Zk, k) (Zk+1, k+1)

...

(, )

a

Figura 10.14 Configuraţia înainte de inserare nodului în interiorul listei

la configuraţia:

...

(Zk, adr()) (Zk+1, k+1)

...

(, adr (Zk+1))

a

Figura 10.15 Configuraţia după inserarea nodului în interiorul listei

Există cazuri particulare de inserare în care elementul este poziţionat

fie la începutul listei, fie la sfârşitul acesteia, operaţia numindu-se adăugare.
Dacă elementele a şi b vor fi inserate la începutul, respectiv, la

sfârşitul listei, se trece de la configuraţia:

...... NULL

(, )

a

(, )

a

(Z1, 1) (Zn, n)

Figura 10.16 Configuraţia înainte de inserarea nodului la un capăt al listei

la configuraţia:

(Z1, 1) (Zn, adr())

......

NULL

(,adr (Z1)

b

(, )

b

Figura 10.17 Configuraţia după inserarea nodului la un capăt al listei

Interschimbul între două elemente ale listei

Interschimbul nu se realizează fizic, zonele ce corespund celor două

elemente modificându-şi doar adresele de referire a elementelor.
Modelul grafic al listei înainte de interschimbul elementelor (Zk, k) şi

(Zj, j) este:

 (Zk-1, k-1) (Zk, k) (Zk+1, k+1)

... ...

(Zj-1, j-1) (Zj, j) (Zj+1, j+1)

... ...

Figura 10.18 Modelul grafic al listei înainte de interschimbul nodurilor

După efectuarea interschimbului, legăturile dintre componente sunt:

(Zk-1, k-1)

(Zk, k) (Zk+1, k+1)

... ...

(Zj-1, j-1)

(Zj, j)

(Zj+1, j+1)

... ...

Figura 10.19 Modelul grafic al listei după interschimbul nodurilor

Funcţia pentru efectuarea interschimbului, realizează atribuirile:

k-1 = adr(Zj) (10.41)

j-1 = adr(Zk) (10.42)

j = adr(Zk+1) (10.43)

k = adr(Zj+1) (10.44)

ceea ce înseamnă că la un moment dat sunt gestionate şase adrese de
variabile de tip TL, ale elementelor ce se interschimbă, precum şi a
elementelor adiacente.

Sortarea elementelor unei liste

Fiind dată o structură de date de tip listă (Zj, j), j = 1, 2, ..., n,

funcţia de sortare transformă această structură de date într-o nouă listă
(Z’k, ’k), k = 1, 2, ..., n astfel încât oricărui k Є [1, n] � N îi corespunde
un j Є [1, n] � N şi numai unul aşa încât:

cont(Z’k) = cont(Z’j) (10.45)

şi

) 1 Z(cont) Z(cont kk  (10.46)

pentru orice k = 1, 2, …, n – 1.

Funcţia de sortare apelează la rândul ei funcţia de interschimb a două
elemente adiacente, până când în final se obţine ordinea crescătoare sau
descrescătoare a termenilor Zi din lista iniţială.

Un exemplu simplu de sortare, fără a lua în considerare multitudinea
de tehnici este:

sortare (w)
{
 k = 1;

 while (k != 0)
 {
 k = 0;

 while (ref (w). != NULL)
 {

 if (ref (w).Z > ref (w).ref().Z)
 {
 k = 1;

 interschimb (w, w.);
 }
 }
 }
}

10.7 Liste dublu înlănţuite

Spre deosebire de listele simplu înlănţuite care permit parcurgerea de

la primul element spre ultimul alocat dinamic, listele dublu înlănţuite
realizează şi drumul invers, permiţând şi parcurgerea de la ultimul element
către primul element.

Modelul grafic al listei dublu înlănţuite este:

...

(Zj-1, j-1, j-1) (Zj , j, j) (Zj+1, j+1, j+1)

...

Figura 10.20 Model grafic al listei dublu înlănţuite

sau:

Figura 10.21 Model grafic al listei dublu înlănţuite

Lista dublu înlănţuită este de fapt formată din două liste (Zj, j) şi (Uj,

j) cu proprietăţile:

) (cont) (cont

) 1 Z(adr) , Z(cont

) 1 Z(adr) , Z(cont

) (lg) (adr) (adr

) U(cont) Z(cont) U(adr) Z(adr

1 j1 j

jjj

jjj

jjj

jjjj

 
















 (10.47)

Şi cu listele dublu înlănţuite se efectuează operaţii precum:
- inserarea unui element;
- adăugarea unui element;
- ştergerea unui element;
- inversarea a două elemente;
- ştergerea listei;
- parcurgerea într-un sens şi în sensul opus;
- transformarea listei în listă circulară dublu înlănţuită.
Un exemplu de creare, inserare, căutare, parcurgere şi ştergere a

unei liste dublu înlănţuite, este următorul program:

include <iostream.h>
define TINFO int
class ListaDubluInlan;

class ElementLista
{ TINFO info;
 ElementLista *pred, *suc;
public:
 ElementLista(int val=0);
 friend class ListaDubluInlan;
};

class ListaDubluInlan
{
protected:
 ElementLista *Prim;
public:
 ListaDubluInlan()
 { Prim = NULL;}
 ~ListaDubluInlan();
 void traversare_inainte();
 void inserare_inceput(TINFO);
 void inserare_inaintea_unui_elem(TINFO,TINFO);
 void inserare_dupa_elem(TINFO,TINFO);
 ElementLista *cautare(TINFO);
 void suprimare(TINFO);
 };

ElementLista::ElementLista(TINFO val)
{
 info=val;
 pred=suc=NULL;
}

ListaDubluInlan::~ListaDubluInlan()
{
 ElementLista* ptr;
 while (Prim)
 {
 ptr=Prim;
 Prim=Prim->suc;
 delete ptr;
 }
}

void ListaDubluInlan::traversare_inainte()
{
 ElementLista* ptr=Prim;

 if (Prim==NULL)
 cout << "\n Lista este vida!";
 else
 while (ptr)
 {
 cout << ptr->info<<" ";
 ptr=ptr->suc;
 }
 cout<<"\n";
}

void ListaDubluInlan::inserare_inceput(TINFO val)
{
 ElementLista* ptr=new ElementLista(val);
 if (ptr==NULL)
 {
 cout<<"Eroare la alocare spatiu pentru inserare";
 return;
 }
 ptr->pred=NULL;
 ptr->suc=Prim;
 if(Prim)
 Prim->pred=ptr;
 else
 Prim=ptr;
 cout<<"Inserare la inceput cu succes!\n";
}

void ListaDubluInlan::inserare_inaintea_unui_elem(TINFO X,TINFO cheie)
{
 ElementLista* ptr, *p;
 if(Prim==NULL)
 {
 cout<<"Lista vida! Inserare fara succes!\n";
 return;
 }
 for(p=Prim;p&&p->info!=cheie;p=p->suc);
 if(p)
 {
 ptr=new ElementLista(X);
 if (ptr==NULL)
 {
 cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 if(p==Prim)
 {
 ptr->pred=NULL;
 ptr->suc=p;
 p->pred=ptr;
 Prim=ptr;
 }
 else
 {
 ptr->pred=p->pred;
 ptr->suc=p;
 p->pred->suc=ptr;
 p->pred=ptr;
 }
 cout<<"Inserare inainte element cu succes!\n";
 }

 else cout<<"Nu exista cheia specificata!\n";
}

void ListaDubluInlan::inserare_dupa_elem(TINFO X,TINFO cheie)
{
 ElementLista* ptr, *p;
 if(Prim==NULL)
 {
 cout<<"Lista vida! Inserare fara succes!\n";
 return;
 }
 for(p=Prim;p&&p->info!=cheie;p=p->suc);
 if(p)
 {
 ptr=new ElementLista(X);
 if (ptr==NULL)
 {
 cout<<"Eroare alocare spatiu la inserare";
 return;
 }
 ptr->suc=p->suc;
 ptr->pred=p;
 if(p->suc)
 p->suc->pred=ptr;
 p->suc=ptr;
 cout<<"Inserare dupa element cu succes!\n";
 }
 else cout<<"Nu exista cheia specificata!\n";
}

ElementLista *ListaDubluInlan::cautare(TINFO X)
{
 ElementLista *ptr;
 for(ptr=Prim;ptr&&ptr->info!=X;ptr=ptr->suc);
 if(ptr)
 return(ptr);
 else
 return(0);
}

void ListaDubluInlan::suprimare(TINFO X)
{
 ElementLista *ptr;
 if(Prim==NULL)
 {
 cout<<"Lista vida! Suprimare fara succes!\n";
 return;
 }
 for(ptr=Prim;ptr&&ptr->info!=X;ptr=ptr->suc);
 if(ptr)
 {
 if(ptr==Prim)
 {
 Prim=Prim->suc;
 if (Prim) Prim->pred=NULL;
 }
 else
 {
 ptr->pred->suc=ptr->suc;
 if(ptr->suc)
 ptr->suc->pred=ptr->pred;

 }
 delete(ptr);
 cout<<"Suprimare cu succes!\n";
 }
 else
 cout<<"Nodul nu exista!\n";
}

void main()
{
 ListaDubluInlan Listamea;
 int opt;
 TINFO valoare,cheie;
 do
 {
 cout<<"\n Optiuni de lucru cu lista:";
 cout<<"\n 1 - Afisare lista";
 cout<<"\n 2 - Inserare element la inceputul listei";
 cout<<"\n 3 - Inserare element inaintea unui elem specificat";
 cout<<"\n 4 - Inserare dupa un element specificat";
 cout<<"\n 5 - Cautarea unui element specificat";
 cout<<"\n 6 - Suprimarea unui element";
 cout<<"\n 9 - Terminare lucru \n\n";
 cout<<"Introduceti optiunea dorita:";
 cin>>opt;
 switch(opt)
 {
 case 1:
 }
 cout<<"Traversare lista:";
 Listamea.traversare_inainte();
 break;
 }
 case 2:
 {
 cout<<"Introduceti elementul de inserat:";
 cin>>valoare;
 Listamea.inserare_inceput(valoare);
 break;
 }
 case 3:
 {
 cout<<"Introduceti elementul de inserat:";
 cin>>valoare;
 cout<<"Introduceti elem inaintea caruia inseram:";
 cin>>cheie;
 Listamea.inserare_inaintea_unui_elem(valoare,cheie);
 break;
 }
 case 4:
 {
 cout<<"Introduceti elementul de inserat:";
 cin>>valoare;
 cout<<"Introduceti elementul dupa care inseram:";
 cin>>cheie;
 Listamea.inserare_dupa_elem(valoare,cheie);
 break;
 }
 case 5:
 {
 cout<<"Introduceti elementul cautat:";

 cin>>valoare;
 if(Listamea.cautare(valoare))
 cout<<"Elementul a fost gasit!\n";
 else
 cout<<"Elementul nu exista in lista!\n";
 break;
 }
 case 6:
 {
 cout<<"Introd elem pe care doriti sa-l suprimati:";
 cin>>valoare;
 Listamea.suprimare(valoare);
 break;
 }
 case 9: break;
 default:
 cout<<"\n Nu exista optiunea! \n ";
 }
 }while (opt!=9);
}

	Figura 10.2 Lista dublu înlănţuită
	Figura 10.4 Inserţia unui nod după un nod specificat
	Figura 10.6 Mutarea nodul X la începutul listei
	Copierea unei liste
	Interschimbul între două elemente ale listei
	Sortarea elementelor unei liste

