10. LISTELE - STRUCTURI DINAMICE NECONTIGUE

10.1 Consideratii privind structurile de date de tip lista

O lista liniara (numita si lista inlantuita -"Linked List”) este o colectie
de n>=0 elemente x[1], ... Xx[n] toate de un tip oarecare, numite noduri
intre care exista o relatie de ordine determinata de pozitia lor relativa. Ea
este deci o multime esalonata de elemente de acelasi tip avand un numar
arbitrar de elemente. Numarul n al nodurilor se numeste /ungimea listei.
Daca n=0, lista este vida. Daca n>=1, x[1] este primul nod iar x[n] este
ultimul nod. Pentru 1<k<n, x[k] este precedat de x[k-1] si urmat de
x[k+1].

Acest tip de structura de date se aseamana cu o structura standard:
tipul tablou cu o singura dimensiune (vector), ambele structuri continand
elemente de acelasi tip iar intre elemente se poate stabili o relatie de
ordine. Una dintre deosebiri consta in numarul variabil de elemente care
constituie lista liniara, dimensiunea acesteia nu trebuie declarata si deci
cunoscuta anticipat (in timpul compilarii) ci se poate modifica dinamic in
timpul executiei programului, in functie de necesitati. Astfel utilizatorul nu
trebuie sa fie preocupat de posibilitatea depasirii unei dimensiuni estimate
initial, singura limita fiind marimea zonei heap din care se solicita memorie
pentru noile elemente ale listei liniare. Un vector ocupa in memorie un
spatiu continuu de memorie, pe cand elementele unei liste simplu inlantuite
se pot gasi la adrese nu neaparat consecutive de memorie.

O altda deosebire avantajeaza vectorii, deoarece referirea unui
element se face prin specificarea numarului de ordine al respectivului
element, pe cand accesul la elementele unei liste liniare se face secvential,
pornind de la capul listei (adresa primului nod al listei) pana la ultimul
element al ei, ceea ce mareste uneori considerabil timpul de acces la un
anumit element. Pentru o lista liniara este obligatoriu sa existe o variabila,
declarata in timpul compilarii, denumita cap de lista care sa pastreze adresa
primului element al listei. Pierderea acestei valori va duce la imposibilitatea
accesarii elementelor listei liniare.

Pentru implementarea dinamica a unei liste liniare, folosind pointeri,
nodurile listei vor fi structuri ce contin doua tipuri de informatie:

- campurile ce contin informatia structurald a nodului
- campurile ce contin informatia de legaturd, ce vor contine pointeri la
nodurile listei. Inlantuirea secventiala a elementelor unei liste se face

utilizédnd variabile de tip pointer, care specifica adresa de memorie a

elementelor adiacente. Fiecare nod are un predecesor si un succesor,

mai putin elementele prim si ultim daca lista nu este circulara.

Listele inlantuite cu un singur camp de legatura se numesc liste
simplu inlantuite (legatura indica urmatorul element din lista). Fiecare nod
contine un pointer ce contine adresa nodului urmator din lista.

INFO

o—->b ---0— URM e+—> ° >-----0—| NULL

Figura 10.1 Lista simplu inlantuita

Ultimul element poate contine ca adresa de legatura fie constanta
NULL fie constanta 0 (indicand astfel ca ultimul nod nu are nici un

succesor).
Tipul unui nod intr-o lista simplu inlantuitd se poate defini folosind o

declaratie de forma:

class Lista;
class ElementLista
{ TINFO info;
ElementLista *urm;
public:
ElementLista (int val=0);
friend class Lista;

};

Listele inlantuite cu 2 cadmpuri de legatura se numesc liste dublu
inlantuite (o legatura indica nodul precedent iar cealaltd nodul succesor).

NULL [« ---<«—1®PREC |«—t® —e - ---- ——e
INFO
—---0—> URM o1— ° > - — 0= NULL

Figura 10.2 Lista dublu inlantuita

Nodurile unei liste dublu inlantuite au tipul definit dupa cum urmeaza,
pointerul urm definind relatia de succesor pentru nodurile listei, iar prec pe
cea de predecesor:

class Lista;
class ElementLista
{ ElementlLista *prec;
TINFO info;
ElementLista *urm;
public:
ElementLista (int val=0);
friend class Lista;

};

In situatia in care se realizeaz& o inchidere a inldntuirilor, pierzandu-
se astfel notiunile de inceput si de sfarsit ale unei liste liniare, se obtine o
lista circulard simplu sau dublu inlantuita.

Intr-o listd circulard simplu inldntuitd toate nodurile sunt echivalente,
fiecare nod avand un urmator si fiecare la randul sau constituind urmatorul
unui alt nod. Acest considerent este valabil si pentru listele circulare dublu
inlantuite extinzandu-se si asupra relatiei de precedenta care exista intre
nodurile listei.

Relativ la o pozitie K din cadrul unei liste, putem defini urmatoarele
tipuri de operatii:

- accesul la cel de-al K-lea nod al listei pentru examinare sau
modificare;

- stergerea nodului aflat pe pozitia K din cadrul listei;

- inserarea unui nou nod inainte de, respectiv dupa nodul K.

Limitand efectuarea acestor trei operatii la primul sau la ultimul nod
al unei liste liniare simplu inldntuite se obtin structurile de date derivate de
tip stiva si coada. In ceea ce priveste stiva, aceasta constituie o lista simplu
inlantuita in care toate inserarile si suprimarile de noduri se efectueaza la
un singur capat al acesteia, numit varful stivei. Stivele se mai numesc
structuri lista de tip LIFO, Last-In-First-Out, adica ultimul-introdus-primul-
suprimat sau liste de tip pushdown.

Relativ la structura de date de tip coada, trebuie specificat ca
elementele noi vor fi inserate la un capat al acesteia, numit spate, iar
suprimarile de noduri vor avea loc la celdlalt capat, numit fatd. Din acest
motiv, cozile se mai numesc si liste de tip FIFO, first-in-first-aut, adica liste
de tip primul-venit-primul-servit.

Prezenta mai multor inlantuiri intr-un acelasi nod confera mai multa
flexibilitate structurilor de date de tip lista, acestea devenind asa-numitele
multiliste, nodurile acestora apartinand in acelasi timp la mai multe liste
inlantuite simple.

10.2. Lista simplu inlantuita
10.2.1 Crearea listelor. Insertia nodurilor

Intr-o astfel de listd existd intotdeauna un nod care nu mai are
succesor, precum si un nod care nu este succesorul nici unui alt nod, aceste
noduri constituind capetele listei simplu inlantuite. Intr-o prima varianta de
gestionare a acestui tip de lista vom apela la doi pointeri prim si ultim
pentru a referiri nodurile terminale ale listei.

INFO

o—---0— URM @ [>----Lo—>| NULL

prim ultim

Figura 10.3 Lista simplu inlantuita marcata de pointerii prim si ultim

Daca specificarea Tinceputului listei prin pointerul prim este
obligatorie, utilizarea pointerului de sfarsit ultim este optionalda, insa
eficienta atunci cand se doreste crearea listei in ordine naturald printr-o

insertie a noilor noduri la sfarsitul acesteia. In practicd, parcurgerea intregii
liste pentru a determina ultima pozitie a acesteia este o solutie ineficienta,
convenabila fiind cunoasterea, cu ajutorul pointerului wu/tim, a nodului
terminal al acesteia. In prezenta lui ultim, secventa de program care
insereaza un nod la sfarsitul unei liste liniare si concomitent il actualizeaza
pe ultim este urmatoarea:

void Lista::inserare sfarsit (TINFO val)

{

ElementLista* ptr=new ElementLista(val) ;

if (ptr==NULL)

{ cout<<"Eroare alocare spatiu la inserare";
return;

}

Ultim->urm=ptr;

Ultim=ptr;

if (Prim==NULL) Prim=Ultim;

cout<<"Inserare la sfarsitul listei cu succes!\n";

Se observa ca dupa adaugarea unui nou element la sfarsitul listei, se
actualizeaza pointerul Ultim, care va pastra adresa noului element ultim al
listei.

Daca elementul adaugat la sfarsitul listei este primul element al listei
(caz in care pointerul Prim contine valoarea NULL), vom actualiza si
valoarea pointerului Prim, elementul adaugat fiind in acelasi timp primul si
ultimul element al listei.

Daca se doreste crearea unei liste prin insertia noilor noduri la
inceputul acesteia, se va apela metoda inserare_inceput, aceasta fiind
valabila si in cazul unei liste vide.

void Lista::inserare_ inceput (TINFO val)

{

ElementLista* ptr=new ElementLista(val) ;

if (ptr==NULL)

{ cout<<"Eroare alocare spatiu la inserare";
return;

}

if (Prim==NULL) Ultim=ptr;
ptr->urm=Prim;

Prim=ptr;

cout<<"Inserare la inceputul listei cu succes!'\n";

Daca elementul adaugat la inceputul listei este primul element al
listei (caz in care pointerul Prim contine valoarea NULL), vom actualiza si
valoarea pointerului Ultim, elementul addugat fiind in acelasi timp ultimul si
primul element al listei.

Operatia de inserare a unui nod intr-o listd nu se reduce numai la
cele doua situatii prezentate, ci implica de asemenea posibilitatea inserarii

acestuia intr-o pozitie oarecare a listei, si anume, dupa sau inaintea unui
anumit nod specificat prin referinta sa spec. Schematic cele doua situatii
sunt prezentate in figurile urmatoare, observandu-se o oarecare dificultate
la operatia de insertie a noului nod inaintea celui specificat.

spec

---- &—> *--—-—F—-———-—=-= == > oty — — -

Figura 10.4 Insertia unui nod dupa un nod specificat

void Lista::inserare dupa un_element (TINFO X, TINFO cheie)
{
ElementLista* q, *spec;
for (spec=Prim;specé&&spec->info!=cheie;spec=spec->urm) ;
if (spec)
{
g=new ElementLista (X) ;
if (g==NULL)
{
cout<<"Eroare alocare spatiu la inserare";
return;
}
if (spec==Ultim) Ultim=q;
g->urm=spec->urm;
spec->urm=q;
cout<<"Inserare dupa element cu succes!\n";
}

else cout<<"Nu exista cheia specificata!\n";

spec X

- ——> ® .-\T ———————— > T

Figura 10.5 Inserarea unui nod inaintea unui nod specificat

Inserarea noului nod Tnaintea celui referit prin spec se implementeaza
ca o inserare dupa acesta, noul nod preluand continutul campului info al
acestuia, in care apoi se va memora informatia X.

void Lista::inserare inaintea_unui_elem(TINFO X,TINFO cheie)
{
ElementLista* q, *spec;
for (spec=Prim;specé&&spec->info!=cheie;spec=spec->urm) ;
if (spec)
{
g=new ElementLista (X) ;
if (g==NULL)
{
cout<<"Eroare alocare spatiu la inserare";
return;
}
if (spec==Ultim) Ultim=q;
g->info=spec->info;
g->urm=spec->urm;
spec->urm=q;
spec->info=X;
cout<<"Inserare inaintea unui element cu succes!'!\n";
}

else cout<<"Nu exista cheia specificata!\n";

Se pune problema creadrii unei liste inlantuite ordonate dupa campul
info, caz in care inserarea unui nod nou nu trebuie sa afecteze relatia de
ordonare existentda. Vom traversa lista utilizand doi pointeri consecutivi si
vom identifica astfel pozitia de inserare a noului nod. Inserarea noului nod
se va face dupa nodul referit de pointerul q1.

Cei doi pointeri g; si g, avanseaza simultan de-a lungul listei pana
cand valoarea g; -> info devine mai mare sau egala cu valoarea de inserat
X. Inserarea noului nod va avea loc intre nodurile referite de g; si g..

void Lista::inserare ordonata (TINFO X)
{
ElementLista *ql=NULL,*q2;
ElementlLista* ptr=new ElementLista (X) ;
if (ptr==NULL)
{
cout<<"Eroare la alocare spatiu pentru inserare";
return;
}
for (g2=Prim;q2&&q2->info<X;ql=q2,gq2=q2->urm) ;
if (g2==Prim)
{
if (Prim==NULL) Ultim=ptr;
ptr->urm=Prim;
Prim=ptr;

else

{
if (gq2==NULL) Ultim=ptr;
gl->urm=ptr;
ptr->urm=q2;

}

cout<<"Inserare ordonata cu succes'\n";

10.2.2 Localizarea unui nod

Identificarea unui nod in cadrul unei liste se poate efectua aplicand
metoda de cautare liniara, aceasta presupunand parcurgerea elementelor
listei, nod cu nod, fie pana se localizeaza nodul dorit, fie pana la sfarsitul
listei daca elementul cautat este inexistent.

/* cautd nodul X in cadrul listei si returnezd
pointerul spre nodul identificat si 0 in caz
contrar */

ElementlLista *Lista::cautare (TINFO X)

{
ElementLista *q;

for (g=Prim;q&&g->info!=X;g=gq->urm) ;
if(q)

return(q) ;
else
return(0) ;

Sa se ofere o implementare a problemei concordantei, inserarea unui
nou nod realizdndu-se la inceputul listei. In final, lista va contine toate
“cuvintele” X distincte si numarul de aparitii ale acestora.

#include<iostream.h>
class Lista;
class ElementLista
{ int info,contor;
ElementLista *urm;
public:
ElementLista(int wval=0) ;
friend class Lista;
};
class Lista
{
protected:
ElementLista *Ultim, *Prim;
public:
Lista()
{ Prim = NULL;
Ultim = new ElementLista();
}
~Lista();
void traversare() ;
void inserare (int) ;

};

ElementLista: :ElementLista(int wval)
{

info=val;

contor=1l;

urm=NULL;
}

Lista::~Lista()
{
ElementLista* ptr=Prim;
while (Prim)
{
Prim=Prim->urm;
delete ptr;
ptr=Prim;
}
}

void Lista::traversare()
{
ElementLista* p=Prim;
if (p==NULL)
cout << "\n Lista este vida! \n";
else
while (p!=NULL)
{
cout<<p->info<<" numar de aparitii: "<<p->contor<<"\n";
p=p->urm;

}
cout<<"\n";

}

void Lista::inserare(int X)
{
ElementLista *p;
for (p=Prim;p&&p->info!=X;p=p->urm) ;
if(p)
p->contor++;
Else
{
p=new ElementLista (X) ;
p->urm=Prim;
Prim=p;

}

void main ()
{

Lista Listamea;

int cheie;

cout<<"Introduceti cheia de inserat:";

cin>>cheie;

while (cheie)

{ Listamea.inserare (cheie) ;
cout<<"Introduceti cheia de inserat:";
cin>>cheie;

}

cout<<"Inserare incheiata!'\n";

cout<<"\nTraversare lista:\n";

Listamea. traversare() ;

O Tmbunatatire substantiala a procesului de cautare poate avea loc
prin aplicarea asa-numitei metode de cautare cu reordonare. Ori de cate ori
un cuvant se cauta si se localizeaza in lista, el va fi mutat la inceputul
acesteia, astfel incat la proxima aparitie sa fie gasit imediat. Cu alte
cuvinte, lista se reordoneaza dupa fiecare cautare finalizata cu succes. Daca

un nod nu este gasit in lista, atunci el va fi inserat la inceputul acesteia.

g2 (o]} prim l

v

INFO X

&——>---0— URM A'/’ “-[*1 NULL

. fanion
prim 2 !

Figura 10.6 Mutarea nodul X la inceputul listei

void Lista::inserare (int X)
{
ElementLista *ql, *g2=NULL, *p;
for (ql=Prim;ql&&ql->info!=X;g2=ql,gql=ql->urm) ;

if (ql)
{
gl->contor++;
if (q2)
{
g2->urm=ql->urm;
ql->urm=Prim;
Prim=ql;

else
p=new ElementLista (X) ;

p->urm=Prim;
Prim=p;

10.2.3 Suprimarea nodurilor

Se propune eliminarea unui anumit nod, referit prin g1, din cadrul
unei liste liniare inlantuite. Pentru aceasta vom folosi un pointer auxiliar, q2,
care indica predecesorul elementului ce urmeaza sa fie suprimat .

void suprima (TNOD *q) ;
{
ElementLista *ql=NULL, *q2;
for (q2=Prim;q2&&g2->info!=X;ql=q2,g2=g2->urm) ;
if (q2)
{
if (g2==Prim) Prim=q2->urm;
if (gq2==Ultim) Ultim=ql;
if(ql) gl->urm=g2->urm;
delete(gq2) ;
cout<<Suprimare cu succes!\n";
}
Else
cout<<"Nodul nu exista!\n";

10.3 Lista circulara simplu inlantuita

Listele circulare sunt liste inlantuite ale caror inlantuiri se inchid, in
aceste conditii disparand notiunea de inceput si de sfarsit al listei. Pentru
gestiunea unei astfel de lista, vom pastra un pointer spre ,ultimul” element
al listei.

include <iostream.h>

define TINFO int

class Lista;

class ElementLista

{ TINFO info;
ElementLista *urm;

public:
ElementLista(int wval=0) ;
friend class Lista;

};

class Lista

{

protected:
ElementLista *Ultim;
public:
Lista()
{ Ultim = NULL;}
~Lista();

void traversare();

void inserare sfarsit (TINFO) ;

void inserare_inaintea_ unui_elem(TINFO, TINFO) ;
ElementLista *cautare (TINFO) ;

void suprimare (TINFO) ;

};

ElementLista: :ElementLista (TINFO val)
{

info=val;

urm=NULL;
}

Lista::~Lista()
{
ElementLista* ptr;
if (Ultim!=NULL)
{ while (Ultim->urm!=Ultim)
{
ptr=Ultim->urm;
Ultim->urm=Ultim->urm->urm;
delete ptr;

}
delete Ultim;

}

void Lista::traversare()
{
ElementLista* ptr=Ultim;
if (Ultim==NULL)
cout << "\n Lista este wvida! \n";
else
{ while (ptr->urm!=Ultim)
{
ptr=ptr->urm;
cout << ptr->info<<" ";
}
cout << ptr->urm->info<<" ";
cout<<"\n";

}

void Lista::inserare sfarsit (TINFO val)

{

ElementLista* ptr=new ElementLista(val) ;
if (ptr==NULL)
{

cout<<"Eroare la alocare spatiu pentru inserare";
return;
}
if (Ultim)
{
ptr->urm=Ultim->urm;
Ultim->urm=ptr;
Ultim=ptr;

else

Ultim=ptr;
ptr->urm=ptr;
}
cout<<"Inserare sfarsit cu succes!\n";

}

void Lista::inserare inaintea_unui_elem(TINFO X,TINFO cheie)
{
ElementLista* ptr, *ql=Ultim, *qg2;
if (Ultim==NULL)
{
cout<<"Lista vida! Inserare fara succes!'\n";
return;
}
for (q2=Ultim->urm;q2'=Ultim&&qg2->info!=cheie;ql=q2,q2=q2->urm) ;
if (g2->info==cheie)
{
ptr=new ElementLista (X) ;
if (ptr==NULL)
{
cout<<"Eroare alocare spatiu la inserare";
return;
}
gl->urm=ptr;
ptr->urm=q2;
cout<<"Inserare cu succes!'!\n";
}

else cout<<"Nu exista cheia specificata!\n";

}

ElementlLista *Lista::cautare (TINFO X)
{
ElementLista *ptr;
if (Ultim==NULL) return(O0) ;
for (ptr=Ultim->urm;ptr!=Ultim&&ptr->info!=X;ptr=ptr->urm) ;
if (ptr->info==X)
return (ptr) ;
else
return (0) ;

}

void Lista: :suprimare (TINFO X)
{
ElementLista *ql=Ultim, *qg2;
if (Ultim==NULL)
{
cout<<"Lista vida! Suprimare fara succes!\n";
return;

}
for (q2=Ultim->urm;q2'=Ultim&&q2->info!=X;ql=q2 ,q2=q2->urm) ;

if (gq2->info==X)
{
if (gq2->urm==gq2)
{
Ultim=NULL;
delete(qg2) ;

else

if (gq2==Ultim) Ultim=ql;
ql->urm=g2->urm;
delete(q2) ;

}

cout<<"Suprimare cu succes!'!\n";

else
cout<<"Nodul nu exista'\n";

}

void main ()
{
Lista Listamea;
int opt;
TINFO valoare,cheie;
do
{
cout<<"\n Optiuni de lucru cu lista:";
cout<<"\n - Afisare lista";
cout<<"\n - Inserare element la sfarsitul listei";
cout<<"\n Inserare element inaintea unui elem specificat";
cout<<"\n - Cautarea unui element specificat";
cout<<"\n - Suprimarea unui element";
cout<<"\n - Terminare lucru \n\n";
cout<<"Introduceti optiunea dorita:";
cin>>opt;
switch (opt)
{
case 1:
{
cout<<"Traversare lista:";
Listamea. traversare() ;
break;
}
case 2:
{
cout<<"Introduceti elementul de inserat:";
cin>>valoare;
Listamea.inserare sfarsit(valoare);
break;
}
case 3:

{

cout<<"Introduceti elementul de inserat:";

ouUld WNR
1

cin>>valoare;

cout<<"Introduceti elem inaintea caruia inseram:";
cin>>cheie;
Listamea.inserare inaintea unui_elem(valoare, cheie);
break;

}

case 4:

{

cout<<"Introduceti elementul cautat:";
cin>>valoare;
if (Listamea.cautare (valoare))
cout<<"Elementul a fost gasit!\n";
else
cout<<"Elementul nu exista in lista!'\n";
break;
}
case 5:
{
cout<<"Introd elem pe care doriti sa-1 suprimati:";
cin>>valoare;
Listamea.suprimare (valoare) ;
break;
}
case 9: break;
default:
cout<<"\n Nu exista optiunea! \n ";

}
}while (opt!=9);

10.4 Structuri de date dinamice necontigue

Structurile de date statice sunt cele care se definesc in program, iar
in faza de compilare se calculeaza deplasari pentru fiecare camp elementar
sau grup de campuri, astfel incat dupa editarea de legaturi orice evaluare
de adresa sa permita referirea corecta a structurilor sau a componentelor
lor.

Caracterul local sau global al variabilelor conduce la o abordare
diferentiala a variabilelor statice. Chiar variabilele care se definesc in cadrul
unui bloc si care au caracter local, a caror alocare de memorie si initializare
este realizata prin mecanisme proprii mediului de programare, sunt tratate
tot ca structuri sau functii apelate la cerere de catre programatori.

In continuare, se grupeaza sub denumirea de structuri dinamice acele
structuri pentru care alocarea si dezalocarea memoriei este gestionata de
programator.

Functiile care aloca memorie au ca parametri acele informatii care
conduc la raspunsuri neambigue la intrebarile:

- care este lungimea zonei de memorie care se aloca?

- unde este stocata adresa zonei de memorie alocata, pentru a fi la

dispozitia programatorului?

- se initializeaza zona de memorie alocata inainte de a fi utilizata

de programator?

Mecanismul de alocare dinamica a memoriei, are la baza faptul ca in
memoria interna a unui sistem de calcul, apare o zona disponibila delimitata
prin [Di:De I N ynde:

e D, - adresa de inceput a zonei;
e D - adresa de sféarsit a zonei.

La intrarea in executie a programului, un registru RO, sau o zona de
memorie fixata, se initializeaza cu valoarea D..

Daca intr-un program este activata functia de alocare definita prin:

y = alocare (lg (T;)) (10.1)

Si
alocare: N— [D;,D;] nN (10.2)
y=cont(RO), undetip(y)=(pointer,T,) (10.3)

RO=RO + Ig(T;) (10.4)

Daca:
cont(RO) > Df = y = 0 (10.5)

Daca intr-un program este activata functia de dezalocare a memoriei:
z = dezalocare (y) (10.6)
RO=RO-1g(T;) (10.7)
Si in cazul alocarii, daca:
tip (y) = (pointer, T;) (10.8)
si variabila x din
alocare (lg (x)) (10.9)

are tipul T;, se impune efectuarea unei conversii de tip.
Astfel,

y=convip (tip(y).tip (alocare (x))) (10, 10)

unde, convtp() este o functie de conversie a tipului de data T,.

Algoritmii de structurare a memoriei in pagini, modul in care se face
incarcarea programelor, precum si momentele uneori aleatoare din program
la care se apeleaza functiile de alocare/dezalocare, conduc in cele mai multe
cazuri ca, pentru doua apelari consecutive ale functiei de alocare, zonele
alocate sa fie necontigue.

Necesitatea definirii in programe a datelor de tip dinamic, este data
de utilizarea mai buna a memoriei, lungimea unui program variind in functie
de volumul datelor cu care se lucreaza.

In programe C/C++, pentru alocarea dinamica de memorie, se
apeleaza proceduri din biblioteca malloc.h sau operatorul new, iar pentru
dezalocare, procedura free() sau operatorul delete. Ca argumente,
operatorul new are tipul de data si numarul de elemente pentru care se face
alocarea zonei de memorie, iar free() si delete au o variabila pointer, care
indica adresa zonei ce se elibereaza.

Se considera un program P pentru calculul inversei unei matrice.
Pentru a-i oferi o mai larga aplicabilitate, se considera ca acest program
este definit asa fel incat sa inverseze o matrice cu cel mult 50 linii si 50
coloane.

Definirea statica a matricei:

int a[50][50];

determina ocuparea unei zone de 2500 * Ig (int) baiti.
Deci:

Ig (P) = 2500*Ig (baiti) + Ig (text executabil) + « (10.11)

unde « reprezinta lungimea totala a zonei de memorie rezervata altor
variabile de control sau de lucru.

Indiferent de problema de rezolvat, Ig(P) = constant.

Se stie ca in lucru multiuser, un factor care influenteaza asteptarea
intr-un fir, inainte de intrarea in prelucrare, este si lungimea programului.

In contextul definirii matricei ca operand alocat dinamic, la executia
de fiecare data a programului, se introduce dimensiunea matricei de
inversat, folosind variabila n de tip intreg.

Lungimea programului pentru rezolvarea problemei P, se determina
dinamic:

Ig (P,)=n*Ig (integer) + Ig (text executabil)+ (10.12)

si se are in vedere ca:

Ilg(P) < Ig(P) (10.13)
stiut fiind faptul ca zona la dispozitia alocarii dinamice este [Di.Deln N,
finita.

Restrictiile impuse asupra domeniul pe care este definita functia
alocare(), determina filozofia intregului proces de construire a variabilelor
dinamice.

In cazul in care:

alocare:Z—> [D;, D] N 19 14)

este creata posibilitatea efectuarii de reacoperiri de zone, deci se genereaza
mecanisme de realizare a uniunii de structuri dinamice de date.
De exemplu, se considera structurile:

int a[10];
int b[10];

si variabilele pa si pb de tip T, = (pointer, int), prin:

pa = alocare (10 * 1g (int))
pb = alocare (7 * 1lg (int))

pb = alocare (-3 * 1lg (int))

se obtinute reuniunea cu modelul grafic:

do dp do dz g ds dg ay dg dg

bo b1 b2 b8 b9

Figura 10.7 Modelul grafic al reuniunii

In cele mai multe cazuri, modul de definire al functiilor de alocare
este limitativ, dar reuniunea este totusi posibila prin aritmetica variabilelor
pointer, care se initializeaza cu aceste functii.

Structurile de date formate din elementele omogene E;, E;, ..., En, de
un tip derivat sau fundamental TE, se numesc necontigue, daca exista cel
putin o pereche (E;, E;.;) astfel incat:

adr(Eix;) > adr(E;) + Ig(TE) (10.15)
si daca:
adr(Eiv;) = adr(E;) + Ig(TE) + & (10.16)

unde ¢ e o variabild aleatoare, de regula uniform distribuitd, pentru a avea
acces la elementele E;, E>, ..., En, sub o forma care sa permita adresarea
corecta a elementelor necontigue.

Exista posibilitatea prin definirea unor pointeri spre pointeri si
initializarea corespunzatoare a acestora, sa se procedeze la reasezarea
operanzilor alocati dinamic, in asa fel incdt sa dispara golurile dintre
operanzi, rezultate in procesul de alocare/dezalocare.

Daca se considera constantele C;, C, ..., C, avand tipul T, care
ocupa zonele de memorie Z;, Z5, ..., Z,, Si numerele aleatoare 6;, 6, ., 6, a
caror lege de distributie este, de regula, uniform distribuita, se spune ca
multimile de perechi (Z;, §;) determina o structura de date necontigua de tip
lista, daca:

succ(Z) =2Z;+1 (10.17)
pred(Z;)) =Z;-1 (10.18)
Si
adr(Zjy1) = adr(Zj) + 1g(T)) + = 6, (10.19)
Daca:
- & (10.20)

atunci se obtine cazul particular de data unidimensionala cu necontiguitate
nuld, ce corespunde masivului unidimensional contiguu, respectiv vectorul,

si zona de memorie pentru conservarea variabilei 8 ; nu se mai justifica,
intrucat ea este calculabila ca:

0;=adr(Z;) +19(T) = adr(Z;) + (j-1)*Ig(T})) (10.21)

Daca se ia In considerare mecanismul alocarii dinamice a memoriei,
atunci:

6;= cont (RO) (10.22)

la momentul t;, ce corespunde alocarii zonei de memorie pentru perechea
(Zj+1,0 j+1).

Privita din punct de vedere al tipului de data, Z; reprezinta informatia
utila, iar ¢ reprezinta informatia de identificare a succesorului.

adr(succ(Z;)) = 0 (10.23)

Perechea (Z,, 6;) defineste o structura de date de tip lista, numita TL,
unde ¢; este data de tip T, = (pointer, TL).

10.5 Modelul grafic al listei ca structura necontigua

Se considera necesar ca o matrice rara sa fie memorata fara a se
cunoaste in prealabil numarul elementelor nenule ale sale.

Rand pe rand, se introduce de la terminal linia, coloana si valoarea
elementului nenul. Se aloca dinamic o zond de memorie pentru stocarea
acestor elemente, precum si un camp pentru stocarea adresei zonei in care
se stocheaza elementul urmator.

class zona
{
int i;
int j;
float val;
zona *poz;
};

zona * pa;

Folosind succesiv operatorul new:

Pg = new zona;

unde pg este o variabila de tip pa, iar pa la randul ei este un pointer spre
structura zona, se aloca o zona de memorie de adresa cont(RO) si lungime
19(Tz0na), ce este referita folosind variabila pointer pg, care este de tipul T, =
(pointer, Tzona)-

In program, membrii structurii se refera prin:

pPg->i
pPg->J

Daca pn este variabila de tip pa si se efectueaza atribuirea pn = new
zona, variabila pn contine adresa zonei in care este stocat urmatorul
element al matricei rare.

Atribuirea:

pg->poz = pn
este echivalenta cu:

6, = adr(succ(Z;)) (10.24)

PY

01788 A 018800
2 /' A

/ new(pg) pg->poz = pn;) new (pn)
01788 A 018800

i j val | i j val
Z; poz Zj+1

Figura 10.8 Alocarea zonelor de memorie

Daca:
succ(Z,) = 6 (10.25)
atunci:
adr(succ(Z,)) = NULL (10.26)
pg->poz->poz = NULL; (10.27)
; Acest algoritm de construire a sirului 61, 6, ., 6, conduce la modelul
grafic:

AN AN o Nt
N) NN

Figura 10.9 Modelul grafic al listei simplu inlantuita

O astfel de lista se numeste lista liniara simplu inlantuita.

Incarcarea matricei rare se face exact cu atatea elemente cate valori
nenule se afla pe linii si coloane. Spre deosebire de cazul in care se foloseau
3 vectori pentru stocarea informatiilor, acum nu mai exista restrictii legate
de rezervarile predefinite ale celor 3 vectori.

Totul depinde de modul in care programul solicita spatii din zona [D,,
D¢] N N si mai ales de dimensiunile proiectate ale acestei zone la generarea
sistemului de operare.

Daca in loc de:

adr(succ(Z,)) = NULL (10.28)
se construieste:
adr(succ(Z,)) = adr(Z;) (10.29)

lista se numeste circulara si 6, <> NULL.

Pentru transformarea listei care stocheaza matricea rarda in lista
circulara, la terminarea prelucrarii:

pn—>poz = Pg;

unde pg stocheaza adresa zonei de memorie alocata pentru primul element

nenul al matricei rare.
Modelul grafic al listei circulare este:

ANREIENR N

pg->poz =pn;

Pg->poz = pg;

Figura 10.10 Modelul grafic al listei circulare

Lungimea listei liniare:

L=3 19[(Z,.6,)] (10.30)

i=1

6 <> NULL (10.31)

unde Ig[Z;, NULL] = 0.

10.6 Operatii cu liste liniare simplu inlantuite

Parcurgerea listei liniare simplu inlantuite corespunde functiei de
extragere a adresei elementului succesor si de referire a membrilor
acestuia.

Pentru tiparirea continutului elementelor matricei rare, cu numar
necunoscut de elemente nenule, functia de parcurgere, construita recursiv
este:

parcurgere (pg)
{
while (pg->poz != NULL)
{
tipareste (pg->i, pg->j, pg->val);
parcurgere (pg->poz);

}

Considerand lista ca multimea de perechi de forma (Z, 8) de tip TL,
w=adr(Z;) (10.32)

contine adresele de regasire a elementelor listei.

parcurgere (adr (w))

{
while (w != NULL)
{
tipareste (w, z);

parcurgere (ref (w), 0);

}

Stergerea unui element (Z, 0x) al listei

Inainte de stergere lista este:

Zi1 O Zx Ok+1 Zy+1 Oi+2

A

D N

Figura 10.11 Lista inainte de stergere

Dupa efectuarea stergerii:

Zxa Ok+1 Zx Ok+1 Zy+1 O+2

Figura 10.12 Lista dupa de stergerea elementului

stergere (w, wy, Zy)
{
while (ref (w).0 '= NULL || ref (w).Z '= Z)
{
w, = ref (w, 0);
stergere (w;, w, Zy)

if(ref (wy) .2 = =Z,)
ref (w).0 = ref (w;).0;
}

Concatenarea a doua liste
Concatenarea a doua liste (Z, 6) si (U, 6), reprezinta ca ultimul
element al primei liste sa-si schimbe valoarea din NULL a lui 6, cu adresa
elementului (U;, 6;).
Deci:
ref(Z,). 6, = adr[(U, 61)] (10.33)

Functia care efectueaza concatenarea listelor este:

concatenare((Z, 0), (U, 0))
{
while (ref(Z).0 '= NULL)
{
concatenare ((ref(Z).06,0),(U,2));
}
ref (Z) .0 = adr((U,0))

Modelul grafic al concatenarii:

(Z1,01) (Z2,02) (Zs, 03) (Zn, Or)

= = N "

N~

q "= s N o [N

(Us, 61) (Uz8) T (Us, 89 ™ (Un 6n)

Figura 10.13 Modelul grafic al concatenarii listelor

Lista concatenata are ca prin element (Z;, 6;), iar ca ultim element
(Un, 6n).

Fizic, lista (U,) nu s-a modificat. Conservand (Z, 6;) si (U, 6;) se
lucreaza cu cele doua liste, ca si cum concatenarea nu s-a executat. Totusi
lista concatenatd, pentru operatia de parcurgere se comporta ca o listda cu m
+ n componente.

Modificarea unui element al listei

Fie lista (Z, @), i = 1, 2, ..., n. Pentru inlocuirea unei valori a cu
valoarea b, trebuie mai intai gasit elementul ¢, pentru care:

cont (Z) = a (10.34)

dupa care se realizeaza atribuirea:
Ze = b; (10.35)

In toate cazurile, parcurgere, stergere, concatenare, modificare,

disciplina de parcurgere este de la primul element catre ultimul, First In -
First Out.

modificare (w)
{
if (ref (w). z != a)

modificare (ref (w).0);
else

ref (w). z = b;

}

Copierea unei liste

Fie lista (Z;, 6),j = 1, 2, ..., n. Se pune problema obtinerii unei liste:

(Z,6),j=1,2,...,n (10.36)

astfel incat:

cont(Z;) = cont(Z;) (10.37)
pentruj=1, 2, ..., n.

copiere lista (w, u)
{
while (ref (w).0 '= NULL)
{
ref (u).Z = ref (w).Z;
alocare (v);

ref (u).0 = v;

copiere lista (ref (w).0), v);

}

ref (u). 60 = NULL;
}

Inserarea unui element in lista
Se spune ca o lista este ordonata crescator daca:

cont(Z;)=cont(Z;+1) (10.38)

pentruoricej=1,2, .., n - 1.

A insera un element intr-o lista, inseamna mai intai a gasi o valoare k
€ {1, 2, ..., n} astfel incat:

cont(Z,)<a«cont(Z, +1) (10.39)

sau

cont(Z,)=>a=>cont(Z, +1) (10.40)

dupd cum lista este ordonatd crescdtor sau descrescitor. In aceste conditii,
inserarea elementului a, inseamna conform modelului grafic, a trece de la
configuratia:

(Zk1 ek) (Zk+11 e|(+:|.)

a

(o, ¢)

Figura 10.14 Configuratia inainte de inserare nodului in interiorul listei

la configuratia:

(Z, adr(a)) (Zk+1, Oke1)
4 A
< -
'3
a

(o, adr (Zy+1))

Figura 10.15 Configuratia dupa inserarea nodului in interiorul listei

Exista cazuri particulare de inserare in care elementul este pozitionat
fie la inceputul listei, fie la sfarsitul acesteia, operatia numindu-se adaugare.

Daca elementele a si b vor fi inserate la inceputul, respectiv, la
sfarsitul listei, se trece de la configuratia:

(Z1, 62) (Zn, On)

Al NULL

~ AL

a a
(o &) (B, ¢)

Figura 10.16 Configuratia inainte de inserarea nodului la un capat al listei

la configuratia:

(21, 61) (Zn, adr())
b | b [NULL
(oc,adr (Zl) (B! ¢)

Figura 10.17 Configuratia dupa inserarea nodului la un capat al listei
Interschimbul intre doua elemente ale listei
Interschimbul nu se realizeaza fizic, zonele ce corespund celor doua
elemente modificAndu-si doar adresele de referire a elementelor.

Modelul grafic al listei inainte de interschimbul elementelor (Zx, 6) si
(Z;, 6;) este:

(Z-1, Ok-1) (Zx, 6x) (Zy+1, Ok+1)
AN A
_/' _/-
(Zj1, 0j.1) (Z;, 6) (Zj+1, 6j41)
N N
\\/' \\/-

Figura 10.18 Modelul grafic al listei inainte de interschimbul nodurilor

Dupa efectuarea interschimbului, legaturile dintre componente sunt:

(Zk1 ek) (Zk+11 e|(+:|.)

(Z; 6)

(Zj+1, Bj+1)

Figura 10.19 Modelul grafic al listei dupa interschimbul nodurilor
Functia pentru efectuarea interschimbului, realizeaza atribuirile:
b-1=adr(Z;) (10.41)
0-1=adr(Zx) (10.42)
6= adr(Zx+1) (10.43)
O=adr(Zj+1) (10.44)

ceea ce inseamna ca la un moment dat sunt gestionate sase adrese de
variabile de tip TL, ale elementelor ce se interschimba, precum si a
elementelor adiacente.

Sortarea elementelor unei liste

Fiind data o structura de date de tip lista (Z, 6), j = 1, 2, ..., n,
functia de sortare transforma aceasta structura de date intr-o noua lista
(Z', 0'x), k=1, 2, ..., n astfel incat oricarui kK € [1, n] O N ii corespunde
unj € [1, n] O N si numai unul asa incét:

cont(Z'x) = cont(Z’;) (10.45)
Si

cont(Z,) < cont(Z, +1) (10.46)

pentru oricek =1, 2, ..., n - 1.

Functia de sortare apeleaza la randul ei functia de interschimb a doua
elemente adiacente, padna cand in final se obtine ordinea crescatoare sau
descrescatoare a termenilor Z; din lista initiala.

Un exemplu simplu de sortare, fara a lua in considerare multitudinea
de tehnici este:

sortare (w)

{
k=1;

while (k '= 0)
{
k =0;
while (ref (w).0 '= NULL)
{
if (ref (w).Z > ref (w).ref(0).2Z)
{
k=1;

interschimb (w, w.0);

10.7 Liste dublu inlantuite

Spre deosebire de listele simplu inlantuite care permit parcurgerea de
la primul element spre ultimul alocat dinamic, listele dublu inlantuite
realizeaza si drumul invers, permitand si parcurgerea de la ultimul element
catre primul element.

Modelul grafic al listei dublu inlantuite este:

(Zj-1, 051, 751) Z;, 9 v) Zj+1, 041, Yj1)
Y Z/J v
7 4

N \/\

Figura 10.20 Model grafic al listei dublu inlantuite

Sau:

Figura 10.21 Model grafic al listei dublu inlantuite

Lista dublu inlantuita este de fapt formata din doua liste (Z;,) si (U,
%) cu proprietatile:

adr(Z;) = adr(U;) = cont(Z;) = cont(U;)
adr (6 ;) =adr(y;) + lg(r;)
cont(Zz,,0 ;) =adr(Z;+1) (10.47)

cont(Z;,y ;) =adr(Z;-1)
cont (€, ;) = cont(y j,;)

Si cu listele dublu inlantuite se efectueaza operatii precum:

- inserarea unui element;

- adaugarea unui element;

- stergerea unui element;

- inversarea a doua elemente;

- stergerea listei;

- parcurgerea intr-un sens si in sensul opus;

- transformarea listei in lista circulara dublu inlantuita.

Un exemplu de creare, inserare, cautare, parcurgere si stergere a
unei liste dublu inlantuite, este urmatorul program:

include <iostream.h>
define TINFO int
class ListaDublulnlan;

class ElementLista
{ TINFO info;
ElementLista *pred, *suc;
public:
ElementLista(int wval=0) ;
friend class ListaDublulnlan;

};

class ListaDubluInlan
{
protected:
ElementLista *Prim;
public:
ListaDubluInlan ()
{ Prim = NULL;}
~ListaDubluInlan() ;
void traversare inainte();
void inserare inceput (TINFO) ;
void inserare_inaintea_ unui_elem(TINFO, TINFO) ;
void inserare_dupa_ elem(TINFO,TINFO) ;
ElementLista *cautare (TINFO) ;
void suprimare (TINFO) ;

}I

ElementLista: :ElementLista (TINFO wval)
{

info=val;

pred=suc=NULL;
}

ListaDubluInlan: :~ListaDublulInlan()
{
ElementLista* ptr;
while (Prim)
{
ptr=Prim;
Prim=Prim->suc;
delete ptr;
}
}

void ListaDubluInlan::traversare_inainte ()

{

ElementLista* ptr=Prim;

if (Prim==NULL)
cout << "\n Lista este vida!";

else

while (ptr)

{
cout << ptr->info<<" ";
ptr=ptr->suc;
}

cout<<"\n";

}

void ListaDubluInlan::inserare_inceput (TINFO val)
{
ElementLista* ptr=new ElementLista(val) ;
if (ptr==NULL)
{
cout<<"Eroare la alocare spatiu pentru inserare";
return;
}
ptr->pred=NULL;
ptr->suc=Prim;
if (Prim)
Prim->pred=ptr;
else
Prim=ptr;
cout<<"Inserare la inceput cu succes!'!\n";

}

void ListaDubluInlan::inserare inaintea unui_elem(TINFO X,TINFO cheie)
{
ElementLista* ptr, *p;
if (Prim==NULL)
{
cout<<"Lista vida! Inserare fara succes!'\n";
return;
}
for (p=Prim;p&&p->info!=cheie;p=p->suc) ;
if(p)
{
ptr=new ElementLista(X) ;
if (ptr==NULL)
{
cout<<"Eroare alocare spatiu la inserare";
return;
}
if (p==Prim)
{
ptr->pred=NULL;
ptr->suc=p;
p->pred=ptr;
Prim=ptr;
}
else
{
ptr->pred=p->pred;
ptr->suc=p;
p->pred->suc=ptr;
p->pred=ptr;
}

cout<<"Inserare inainte element cu succes!'\n";

else cout<<"Nu exista cheia specificata!\n";

}

void ListaDubluInlan::inserare dupa_elem(TINFO X,TINFO cheie)
{
ElementLista* ptr, *p;
if (Prim==NULL)
{
cout<<"Lista vida! Inserare fara succes!\n";
return;
}
for (p=Prim;p&&p->info!=cheie;p=p->suc) ;
if(p)
{
ptr=new ElementLista(X) ;
if (ptr==NULL)
{
cout<<"Eroare alocare spatiu la inserare";
return;
}
ptr->suc=p->suc;
ptr->pred=p;
if (p->suc)
p->suc->pred=ptr;
pP—>suc=ptr;
cout<<"Inserare dupa element cu succes!'\n";

}

else cout<<"Nu exista cheia specificata!\n";

}

ElementlLista *ListaDubluInlan::cautare (TINFO X)
{
ElementLista *ptr;
for (ptr=Prim;ptr&&ptr->info!=X;ptr=ptr->suc) ;
if (ptr)
return (ptr) ;
else
return(0) ;

}

void ListaDublulInlan: :suprimare (TINFO X)
{
ElementLista *ptr;
if (Prim==NULL)
{
cout<<"Lista vida! Suprimare fara succes!\n";
return;
}
for (ptr=Prim;ptr&&ptr->info!=X;ptr=ptr->suc) ;
if (ptr)
{
if (ptr==Prim)
{
Prim=Prim->suc;
if (Prim) Prim->pred=NULL;

else
ptr->pred->suc=ptr->suc;

if (ptr->suc)
ptr->suc->pred=ptr->pred;

}
delete (ptr) ;
cout<<"Suprimare cu succes!'!\n";

else
cout<<"Nodul nu exista'\n";

}

void main ()
{
ListaDubluInlan Listamea;
int opt;
TINFO valoare,cheie;
do

{

cout<<"\n Optiuni de lucru cu lista:";

cout<<"\n 1 - Afisare lista";
cout<<"\n 2 - Inserare element la inceputul listei";
cout<<"\n 3 - Inserare element inaintea unui elem specificat";
cout<<"\n 4 - Inserare dupa un element specificat";
cout<<"\n 5 - Cautarea unui element specificat";
cout<<"\n 6 - Suprimarea unui element";
cout<<"\n 9 - Terminare lucru \n\n";
cout<<"Introduceti optiunea dorita:";
cin>>opt;
switch (opt)
{
case 1:
}
cout<<"Traversare lista:";
Listamea.traversare_inainte();
break;
}
case 2:
{
cout<<"Introduceti elementul de inserat:";
cin>>valoare;
Listamea.inserare_ inceput(valoare) ;
break;
}
case 3:
{
cout<<"Introduceti elementul de inserat:";
cin>>valoare;
cout<<"Introduceti elem inaintea caruia inseram:";
cin>>cheie;
Listamea.inserare inaintea unui_elem(valoare, cheie);
break;
}
case 4:
{
cout<<"Introduceti elementul de inserat:";
cin>>valoare;
cout<<"Introduceti elementul dupa care inseram:";
cin>>cheie;
Listamea.inserare dupa_elem(valoare, cheie);
break;
}
case 5:

{

cout<<"Introduceti elementul cautat:";

cin>>valoare;
if (Listamea.cautare (valoare))
cout<<"Elementul a fost gasit!\n";
else
cout<<"Elementul nu exista in lista'!\n";
break;
}
case 6:

{

cout<<"Introd elem pe care doriti sa-1 suprimati:";
cin>>valoare;

Listamea.suprimare (valoare) ;

break;

}
case 9: break;
default:
cout<<"\n Nu exista optiunea! \n ";

}
}while (opt!=9);

	Figura 10.2 Lista dublu înlănţuită
	Figura 10.4 Inserţia unui nod după un nod specificat
	Figura 10.6 Mutarea nodul X la începutul listei
	Copierea unei liste
	Interschimbul între două elemente ale listei
	Sortarea elementelor unei liste

