11. STIVE SI COZI

11.1 Consideratii privind structurilor de date de tip stiva si
coada

O stiva, stack in limba engleza, este o structura de tip LIFO (Last In First
Out =ultimul intrat primul iesit) si este un caz particular al listei liniare in care
toate inserarile (depunerile -in engleza push) si stergerile (sau extragerile -in
engleza pop) (in general orice acces) sunt facute la unul din capetele listei,
numit varful stivei. Acest nod poate fi citit, poate fi sters sau in fata Iui se
poate insera un nou nod care devine cap de stiva.

N 7

push pop

N 7

Figura 11.1 Mecanismul de stiva

Pentru Iintelegerea mecanismului unei stive, se poate folosi
reprezentarea manevrarii intr-un depou a vagoanelor de cale ferata sau a unui
vraf de farfurii din care putem depune si extrage doar in si din varful vrafului.
Stivele sunt legate si de algoritmii recursivi, la care salvarea variabilelor dintr-o
functie care se apeleaza recursiv se face avand la baza un mecanism de tip
stiva.

O stiva poate fi implementata ca o lista liniara pentru care operatiile de
acces (inserare, stergere, accesare element) sunt restrictionate astfel:

- inserarea se face doar in fata primului element al listei, capul listei;

- accesarea respectiv stergerea actioneaza doar asupra primului

element al listei.

O stiva poate fi implementata folosind o structura de date statica sau
dinamica.

In abordarea static3, stiva poate fi organizatd pe un spatiu de memorare
de tip tablou unidimensional.

In abordarea dinamica, implementarea unei stive se poate face folosind
o structura de tip lista liniara simplu inlantuita in care inserarea se va face tot
timpul in capul listei iar stergerea de asemenea se va face in capul listei.

O coada (in engleza gueue) este o structura de tip FIFO (First In First
Out = Primul venit primul servit), in care toate inserarile se fac la un capat al
ei (numit capul cozii) iar stergerile (extragerile) (In general orice acces) se fac
la celdlalt capat (numit sfarsitul cozii). In cazul cozii, avem nevoie de doi
pointeri, unul catre primul element al cozii (capul cozii), iar altul catre ultimul
sau element (sfarsitul cozii). Existd si o varianta de coada circulara, in care
elementele sunt legate in cerc, iar cei doi pointeri, indicand capul si sfarsitul
cozii, sunt undeva pe acest cerc.

——push—» ——pop—»

Figura 11.2 Mecanismul de coada

Se face o analogie cu o cale ferata pe un singur sens sau cu obisnuita
coada la un ghiseu oarecare la care primul venit este si primul servit.

Pentru gestiunea unei cozi sunt necesari doi indicatori:

- un indicator care indica primul element ce urmeaza a fi scos;

- un indicator care indica unde va fi pus urmatorul element adaugat la

_ coada.

Intr-o abordare statica, o coada poate fi implementata folosind un spatiu
de memorare de tip tablou unidimensional. In acest caz, addugari si stergeri
repetate in coada deplaseaza continutul cozii la dreapta, fata de inceputul
vectorului. Pentru evitarea acestei deplasari, o solutie este ca fiecare operatie
de extragere din coadd sd fie acompaniata de deplasarea la stanga a
continutului cozii cu o pozitie. In acest caz, primul element care urmeaza sa fie
eliminat din coada va fi intotdeauna pe prima pozitie, indicatorul care sa indice
elementul ce urmeaza sa fie scos pierzandu-si utilitatea. Dezavantajul acestei
solutii il reprezinta necesitatea deplasarii intregului set de elemente din coada
rdmase cu o pozitie.

Intr-o abordare dinamica, o coada poate fi implementata folosind o lista
liniara simplu inlantuita la care operatile de acces sunt restrictionate
corespunzator. Exista doua abordari:

-una in care addugarea se face tot timpul la inceputul listei liniare simplu
inlantuite iar extragerea se face de la sfarsitul listei

-cea de a doua, in care adaugarea se face la sfarsitul listei iar extragerea se
face din capul listei.

Pentru implementarea unei cozi, vom folosi aspectele tratate in capitolul
de liste liniare.

11.2 Caracteristicile structurilor de date de tip stiva

Caracteristicile unei stive sunt puse in evidenta prin comparatie cu
structura de date de tip lista:

- in timp ce pentru gestionarea listei se vehiculeaza cu variabile de tip

T,, care stocheaza adresa componentei (Z;, 6;) a listei, componenta
numita cap de lista, in cazul stivei este memorata adresa ultimei
componente (Z',, 8',), numita varful stivei;

- in timp ce cont cont(6,) = NULL in cazul listei, cont (8';) = NULL in
cazul stivei;

- in timp ce succ (Z;) = Zj;+; in cazul listei, in cazul stivei succ(Z’;)=2".4;

- in timp ce pred (Z;) = Z.; in cazul listei, in cazul stivei
pred(Z)=Z".1;

- in tip ce parcurgerea in cazul listei este de la (Z;, 6;1) spre (Z,,), In
cazul stivei, parcurgerea este de la (Z',, 8'y) spre (Z'y, 8'1);

- in timp ce disciplina lucrului cu elementele listei este primul venit -
primul servit (FIFO), in cazul stivei regula de vehiculare a
elementelor, este ultimul venit — primul servit (LIFO).

Se observa ca stiva este o lista inversa. Totusi, multe dintre tehnicile de
rezolvare a problemelor vehiculeaza stive si nu liste, datorita disciplinei de
gestionare a elementelor.

Regulile de creare si accesare la nivel de stiva, prevad ca fiecarui
element care se adaugad, i se aloca o zona de memorie si acest element devine
varf al stivei.

Exista procese in care informatiile se stocheaza in ordinea opusa
momentului prelucrarii, iar odata folosita, aceasta devine necesara. Stocand
informatiile intr-o stiva, dupa utilizarea informatiilor continute in varful stivei,
zona de memorie alocata este eliberata (dealocata), varful stivei mutandu-se
cu o componenta spre baza stivei. A

Baza stivei este considerat elementul (Z'y, 0'1). In functie de cerintele de
prelucrare, se obtine o fluctuatie a pozitiei varfului stivei, ceea ce creeaza o
imagine mai buna pentru dinamica prelucrarii datelor. Astfel, stivele stau la
baza gestionarii adreselor parametrilor ce se transmit in functii, implementarii
mecanismelor de recursivitate din limbaje de programare.

In general, ideea de stiva sugereaza prelucrari care au un caracter
simetric. De exemplu, se considera o prelucrare completa privind:

A. incarcarea componentelor C; pentru disponibilizarea de resurse ale

unui sistem de calcul;

B. incarcarea componentei C, care este destinata lansarii in executie a
programului utilizatorului;

C. efectuarea deschiderii de fisiere in programul utilizatorului — Cs;

D. prelucrari de date si afisari de rezultate - Cy;

E. inchiderea fisierelor;

F. iesirea din programul utilizatorului sub supravegherea componentei
Cs;

G. iesirea din lucru sub componenta C;;

H. dezactivarea resurselor sistemului de calcul prin componenta C;.
Se construieste stiva din figura 11.3.

varf de stiva —» adr (Cy) (Z'4, 0%)

< adr (Cs)

(Z3, 0%)

/‘
adr (Cy) (Z2, 0%)
/'
adr (Cy) (Z1, 04)
NULL « baza activa

Figura 11.3 Structura uneij stive

Dupa parcurgerea pasului D, varfului stivei coboara la (Z's, 0's5) si
componenta (Z'4, 8'4) este dealocata, deci distrusa.

Folosind informatiile stocate in pasul C, se efectueaza stergerea fisierelor
(pasul E). Varful stivei se coboara la componenta (Z',, 6';), iar componenta
(Z's, 8'3) este eliberata.

varf de stiva —»

/‘

T
(/‘

/’
b
/‘
¢ 5
NULL <« baza activa

Figura 11.4 Structura unei stive pentru inversarea caracterelor unui sir

Se executa pasul F, care este simetricul pasului C si apoi varful coboara
spre (Z'y, 0'1) si se activeaza componentele C; pentru eliberarea resurselor pas
simetric pasului A.

Astfel, de exemplu, daca dorim sa inversam pozitia elementelor unui sir {a, b,
c, d, e}, prin crearea unei stive care sa contina aceste elemente, cu modelul
grafic din figura 11.4 si prin apelarea unei functii de parcurgere cu imprimarea
elementelor identificate, se obtine exact sirul { e, d, c, b, a }.

In cazul calculrii lui n!, se foloseste formula de recurenta:

P(n) = P(n-1) * n (11.1)

cu P(1) = 1, se creeaza o stiva care contine expresiile ce sunt evaluate cu
valorile descrescatoare ale Iui n.

Se construieste stiva care are in informatia utila, de la baza spre varf: n,
n-1,n-2,.., 3,2, 1.

Valoarea initiala a functiei recursive P(1) = 1, permite prin parcurgerea
stivei de la varf spre baza, obtinerea rand pe rand a rezultatelor: P(2),
P(3),...,P(n - 2), P(n - 1), P(n) si intalnindu-se NULL la baza stivei, procesul se
incheie.

11.3 Operatii de baza cu stive

Stergerea unei stive, revine la dealocarea componentelor care formeaza
stiva. Se realizeaza prin parcurgerea integrala a stivei, cu dealocarea fiecarui
varf.

Adaugarea unui element in stiva, se face de regula cu mutarea pozitiei
varfului stivei pe componenta adaugata.

Stergerea unui element din stiva, se efectueaza de regulda asupra
elementului din varful stivei, aceasta coborand pe componenta ce il precede.

Parcurgerea stivei, se efectueaza de la varf catre baza.

Operatiile de inserare, de concatenare, de sortare a stivelor, nu difera
mult de aceleasi operatii din interiorul unei liste, dar frecventa lor de utilizare
este mult mai redusa.

Programul urmator, exemplifica unele dintre operatiile care se executa
cu structuri de date de tip stiva.

#include <iostream.h>
#include <malloc.h>

class elementstiva

{
public:
int info;
elementstiva *prec;
elementstiva()
{
prec=NULL;
}
};

class stiva

{

public:
elementstiva *vs; //varful stivei

stiva(Q)
{

vs=NULL;
void sterg(Q)

elementstiva* aux=vs;
if(vs == NULL) cout<<'\n Stiva este vida!"';

else
{
aux = vs->prec;
free(vs);
while(aux T'=NULL)
{
vsS=aux;
aux=aux->prec;
delete vs;
3
vs = NULL;
3

Y/
void tipar(Q

elementstiva* aux;
if(vs == NULL) cout<<'\n Stiva este vida!";

else
{
aux = Vs;
while(aux T'=NULL)
{
cout<<aux->info;
aux=aux->prec;
3
}
3
void inserare(int el)
{
elementstiva *aux;
aux = new elementstiva();
aux->info = el;
aux->prec = vVs;
VS = aux;
Y/

int extrag()

elementstiva* aux;

int el;

if (vs == NULL) return -1;
else

aux = vs->prec;
el = vs->info;
delete vs;

VS = aux;
return el;
3
3
¥
void main()
stiva st;
char opt;
int x,el;
do
{

cout<<'\n Optiuni de lucru cu stiva "';
cout<<'™\n P - Tiparire stiva";
cout<<’™\n A - Adaugare element Th stiva';
cout<<’\n E - Extragere element din stiva";
cout<<'\n T - Terminare lucru';
cin>>opt;
switch(opt)
{
case "a":
cout<<"element:";cin>>el;
st.inserare(el);
break;
case "e":
{
X = st.extrag();
if (x==-1)
cout<<'"\n Stiva este vidal!";
else
cout<<'"\n Element extras'<<x;
}
break;
case "s":
st.sterg(Q);
break;
case "p-":
st.tipar(Q);
break;
default:
cout<<'™\n Nu exista optiuneal!";

}
Iwhile (opt!="t");

Pe baza meniului afisat prin program, se activeaza functiile in orice
ordine, iar situatia de stiva vida, este marcata in mod corespunzator. Crearea
stivei se realizeaza prin adaugari succesive, care presupun alocari dinamice de

memorie pentru elementele componente. Procedura de stergere elibereaza
toata zona de memorie alocata stivei, iar functia de extragere, elibereaza zona
de memorie ocupata de varful stivei si initializeaza cu adresa noului varf al
stivei, variabila VS.

11.4 Evaluarea expresiilor matematice cu ajutorul stivei si
cozii

Pentru evaluarea expresiilor matematice exista diferiti algoritmi. Unul
dintre acestia foloseste ca structura principala de date stiva.

Acest algoritm presupune rearanjarea expresiei intr-o anumita forma
astfel incat ordinea operatiilor sa fie clara si evaluarea sa necesite o singura
parcurgere a expresiei. Pentru aceasta se poate folosi forma poloneza,
inventata de matematicianul de origine poloneza Jan Lukasiewicz. Acesta
presupune scrierea operatorilor inaintea operanzilor. Aceasta forma mai are o
varianta numita scrierea poloneza inversa in care operatorii sunt scrisi in urma
operanzilor.

Tabelul nr. 11.1 Forme ale scrierii unei expresii matematice

. . Expresia in forma

Expresia Expresia in forma olonezi inverss
matematica poloneza (scriere P .

(scriere infixata) prefixata) (scrjlerev
postfixata)
4 +5 + 45 45 +

4 +5*5 +4*55 455 * +
4 *2+3 +* 423 42 * 3+
4 +2+3 ++ 423 42+ 3+
4 * (2 + 3) *4 +23 423+ %*

Dupa cum se vede din tabelul 11.1, ordinea operanzilor nu se schimba,
ei gasindu-se in aceeasi ordine ca in expresia matematica.

Forma poloneza inversa are avantaje fata de scrierea prefixata sau
infixata:
ordinea in care se efectueaza operatiile este clara;
parantezele nu mai sunt necesare;

- evaluarile sunt usor de efectuat cu ajutorul calculatorului.

Un algoritm de transformare din expresie matematicd in scriere
postfixata a fost dezvoltat de catre Edsger Dijkstra (algoritmul macazului al lui
Dijkstra — Dijkstra Shunting Algorithm). Acest algoritm utilizeaza o stiva in care
sunt pastrati operatorii si din care sunt eliminati si transferati in scrierea
postfixata. Fiecare operator are atribuita o ierarhie dupa cum este prezentat in
tabelul 11.2.

Tabelul nr. 11.2 Ierarhia operatorilor

Operator Ierarhie
(L{ 1
D)1} 2

+ - 3
*/ 4

Algoritmul este:

se initializeaza stiva si scrierea postfixata;
atat timp cat nu s-a ajuns la sfarsitul expresiei matematice:
- se citeste urmatorul element din expresie;
- daca este valoare se adauga in scrierea postfixata;
- dacd este ,(” se introduce in stiva;
- daca este ,)” se transfera elemente din stiva in scrierea postfixata
pana la ,(”;
- altfel:
> atat timp cat ierarhia operatorului din varful stivei este mai
mare ierarhia operatorului curent, se trece elementul din
varful stivei in scrierea postfixata;
> se introduce operatorul curent in stiva.
se trec toti operatorii ramasi pe stiva in scrierea postfixata.

Avand expresia sub aceasta forma, se face evaluarea ei. Algoritmul de
evaluare foloseste tot o stiva pe care sunt pastrati de aceasta data operanzii.
Algoritmul este:

se initializeaza stiva;
atat timp cat nu s-a ajuns la sfarsitul scrierii postfixate:
- se citeste urmatorul element;
- daca este valoare se depune pe stiva;
- altfel (este operator):
> se extrage din stiva elementul y;
> se extrage din stiva elementul x;
> se efectueaza operatia x operator y;
> se depune rezultatul pe stiva;
ultima valoare care se afla pe stiva este rezultatul expresiei.

De exemplu, pentru expresia in scriere postfixata: 4 8 2 3 * - 2 / +,
algoritmul se executa ca in figura 11.5:

Elementul citit Stiva

oo

N

Hloo|N|w

*
(o2}

(o]

Figura 11.5 Executia algoritmului

Programul care realizeaza evaluarea expresiilor matematice prin
algoritmii prezentati a fost realizat folosind programarea orientata pe obiecte.
Astfel exista o clasa numita stiva care are rolul de a implementa operatiile cu
stiva necesare atat la generarea expresiei in scriere postfixata cat si la
evaluarea expresiei scrisa in aceasta forma. Acest obiect are la baza clasa
deque (double ended que - coada cu 2 capete - lista dublu inlantuita) care se
gaseste in biblioteca standard de C++. Fiind nevoie de doua tipuri de stiva
(una care pastreaza operanzi si una care pastreaza valori reale) s-a construit o
clasa stiva template.

Pentru pastrarea formei poloneze inverse se utilizeaza o structura de
date numita coada care este implementata tot printr-un obiect care are la baza
clasa deque.

In cadrul acestei clase sunt implementate functii care ajuta la
programarea algoritmului. Exista functii care verifica daca primul element din
coada reprezinta o valoare (eNumar()), extrag primul element ca valoare
(getNumar()).

Mai exista o clasa fisier care are rolul de a parcurge fisierul in care se
afla expresie aritmetica ce trebuie evaluata.

Codul sursa al programului este:

#pragma warning(disable:4786)

#include <deque>
#include <iostream>
#include <string>

using namespace std;

#include
#include
#include
#include

"ierarhie.h"
"stiva.h"
“"fisier.h"
""coada.h"

////////////7//7//7/7//77/Variabile globale
fisier T;
stiva <char> OPER;
stiva <double> EVAL;
coada POSTFIX;

void eroare(const char * text,int nr){
cout<<'\n"<<text<<'\n";
exit(nr);

}

void scrierePOSTFIX(string &op)

{

char opc;
if(op==""")

return;

int 1erOp=ierarhie(op);
//daca e valoare, se trece direct in scrierea postfixata
if(lierOp)

else

{

POSTFIX.adauga(op);

opc=op[0];
switch(ierOp)
{ //daca e paranteza deschisa, se introduce pe stiva
case PD: //([{
OPER. push(opc);
break;
//daca e paranteza inchisa, se extrag toate elementele
//de pe stiva pana la intalnirea unei paranteze deschise
case PI: //)]1}
while(ierarhie(OPER.top())!=PD)
POSTFI1X.adauga(OPER.pop());
OPER.pop();
break;
//daca e alt operator, se extrag elemente de pe stiva atat
//timp cat stiva nu este goala si ierarhia operatorului
//din varful stivel este mai mare sau egala decat ierahia
//operatoruluil curent
//1a sfTarsit operatorul curent se depune pe stiva
default:

while((10OPER.eGoala())&&ierarhie(OPER.top())>=ier0Op)

POSTFIX.adauga(OPER.pop());
OPER.push(opc);
break;

}

void evalPOSTFIX()
{ _
string op;
char opc;
double tl1, t2, rez;
//atat timp cat nu s-a ajuns la sfarsitul expresiei postfixate
while(!POSTFIX.eGoala())
{
//daca elementul curent este numar acesta se depune pe stiva
while(POSTFIX.eNumar())
EVAL . push(POSTFIX._.getNumar());
//se extrag 2 valori de pe stiva
t2=EVAL.popQ);
t1=EVAL.popQ);
op=POSTFIX.extrage();
opc=op[0];
//se efectueaza operatia dintre cele 2 valori
switch(opc)

case "+°:
rez=tl+t2;
break;

case "-":
rez=tl-t2;
break;

case "*":
rez=tl*t2;
break;

case "/":
rez=tl/t2;
break;

default:
eroare("'Operator necunoscut!', 1);

//rezultatul operatiei se depune pe stiva

EVAL .push(rez);

}

void main(int argc, char* argv[])

{

//se primeste ca parametru numele Fisierului in care se
//gaseste expresia matematica ce se doreste a fi evaluata
string numefis;

if(argc!=2)

{ cout<<"Specificati numele unui Fisier pentru care

scrierea postfixatal";

}

exit(l);
}

numefis=argv[1];

f.open(numefis.c_str());

if(f.bad())
{

cout<<"Fisierul "<<numefis<<" nu exista.\n";
exit(2);
3

cout<<"Lucrez cu Ffisierul "<<numefis<<".\n";

//parcurge fisierul primit ca parametru
string op;
while(1f.eof())

{
op=F.citeste();
scrierePOSTFIX(op);
}
f.close();

//se extrag toti operatorii ramasi pe stiva
while(10PER.eGoala())
POSTFIX.adauga(OPER.pop());

//afiseaza expresia din fisier in forma postfixata

cout<<'\n\nExpresia in scriere postfixata\n";

for(int i=0;i<POSTFIX.size();i++)
COUt<<POSTFIX[i]<<" ";

//efectueaza calculul expresiei
evalPOSTFIXQ);

doriti

//afiseaza valoarea expresiei (ultima valoare ramasa pe stiva)

cout<<'\nValoarea expresiei este: "<<EVAL.pop()<<'"\n";

//ierarhie_.h - informatii despre ierarhia operatorilor
#define PD 1

#define PI 2

#define PLUSMINUS 3

#define INMIMP 4

int ierarhie(char c)

{

switch (c¢)

{
case "+°":
case "-":

return PLUSMINUS;

break;
case "*":
case "/":
return INMIMP;
break;
case "(":
case "[":
case "{":
return PD;
break;
case ")":
case "]":
case "}":
return Pl;
break;
default:
return O;
break;

¥

int i1erarhie(string & s)
{

char c;

c=s[0];

return ierarhie(c);

3

/////coada.h - Clasa coada
void eroare(const char * text,int nr);

class coada{

private:
//implementarea cozii cu o clasa template double ended que din
//C++ Standard Template Library
deque <string> s;

public:

//verifica daca coada e goala
bool eGoala()

{
};

return s_.empty();

//adauga un element in coada
void adauga(const string & str)

{
};

s.push_back(str);

//adauga un element in coada
void adauga(char c)

{

string str;

str=c;
s.push_back(str);
¥

//intoarce si extrage primul element din coada
string extrage()

{ _
string t;
if(Is.empty())
{
t=s.front();
s.pop_front();
else eroare("Eroare de sintaxa.",2);
return t;
}:

//verifica daca primul element din coada reprezinta un numar
bool eNumar()

{
char *stop;
string st=s.front();
strtod(st.c_str(), &stop);
return (*stop) == 0;

}:

//extrage elementul din coada ca numar
double getNumar()
{
char *stop;
double v;
string st;
st=s._front();
s.pop_TFfront();
v=strtod(st.c_str(), &stop);
return v;

3

//intoarce a i-lea element din coada (0 - primul element)
string operator [] (unsigned int i)

iT((i>=0) && (i<s.size()))
return s[i];
eroare('Eroare de sintaxa.',4);

return ;

¥

//intoarce numarul de elemente din coada
int size()
{
3
¥

/////stiva.h - Clasa template stiva

return s.size();

void eroare(const char * text,int nr);

template <class T>
class stiva{

private:
//implementarea stivei cu o clasa template double ended que din
//C++ Standard Template Library
deque <T> s;

public:

//verifica daca stiva e goala
bool eGoala()

{
};

//introduce un element in stiva
void push(T str)

return s_.empty();

{
s.push_back(str);
}:
//intoarce si extrage elementul din stiva
T popQ)
{
T t;
if(Is.empty())
{
t=s.back();
s.pop_back();
}
else eroare('Eroare de sintaxa.'",5);
return t;
}:
//intoarce elementul din stiva
T top()
{
if (Is.empty())
return s.back(Q);
eroare('Eroare de sintaxa.',6);
return NULL;
}:

¥
/////Fisier.h - clasa fisier

#include <string>
#include <fstream>

using namespace std;

class fisier

{

public:
//citeste o noua secventa de caractere din fisierul de date
string citeste();
//deschide fisierul

void open(const char * numefis);

//verifica daca Ffisierul a fost deschis cu succes
bool bad();

//verifica daca s-a ajuns la sfarsitul Ffisierului
bool eof();

//inchide fisierul deschis

void close();

private:
// Tisierul din care se citesc datele
ifstream fis;
// verifica daca parametrul primit este separator sau operator
bool isSeparator(string s);
// verifica daca parametrul primit este separator sau operator
bool isSeparator(char c);
//scoate spatiile albe din datele de intrare (tab, spatiu, sfarsit
de linie)
void eatWhite();
}:

/////Fisier.cpp - clasa fisier
#include "fisier.h"

// verifica daca parametrul primit este separator sau operator
bool fisier::isSeparator(string s)

{

char c=s[0];

return (c=="+") |1 (c=="-") [l (c=="*") Il (c=="/")] (c=="() ||
Il (c=="[D Il ==L Il (=" Il (="1") Il (c=="}")
3 (c=="\n") |l (c=="\t") || (c==" ");

// verifica daca parametrul primit este separator sau operator
bool fisier::isSeparator(char c)

{

return (c=="+") || (c=="-") || (c=="*") || (c=="/") || (c=="(") ||
. =="[Il =) 1 @€==)") Il (=="1") |l (c=="}7)
, (c=="\n") Il (c=="\t") || (c==" *);
//scoate spatiile albe din datele de intrare (tab, spatiu, sfarsit de
linie)

void Fisier::eatWhite()

while((Ffis.peek(==") 11 (fis.peek(D=="\n") 11
(fis.peek()=="\t"))
fis.get();
}

//citeste o noua secventa de caractere din fisierul de date
string fisier::citeste()

{

string rez=""";

rez=fFis.get();

if(lisSeparator(rez))
while(lisSeparator(fis.peek()) && fis.eof())
rez+=Fis.get();

eatWhite();

return rez;

}

//deschide fisierul
void fisier::open(const char * numefis)

{
fis.open(numefis);
eatWhite();

}

//verifTica daca fisierul a fost deschis cu succes
bool fisier::bad()

{
}

//verifica daca s-a ajuns la sfarsitul Ffisierului
bool fisier::eof()

{
}

//inchide fisierul deschis
void Fisier::close()

{
b5

return fis.bad();

return fis.eof();

fis.close();

