
15. HEAP

15.1 Structura de tip Heap

Heap-ul, figura 15.1, este un arbore binar care respectă proprietăţile

de structură şi de ordonare. Fiecare nod al arborelui trebuie să conţină o
valoare asociată numită cheie şi poate conţine alte informaţii suplimentare.
Cheia trebuie să permită definirea unei relaţii de ordine totală pe mulţimea
nodurilor. În funcţie de obiectivul urmărit, heap-ul poate fi organizat sub
formă de max-heap sau min-heap. Cele două tipuri de heap sunt
echivalente. Transformarea unui max-heap în min-heap, sau invers, se
poate realiza prin simpla inversare a relaţiei de ordine.

32

24

3

17

2312

8

2

97

Figura 15.1 Reprezentarea grafică a structurii heap

Proprietatea de structură specifică faptul că elementele sunt

organizate sub forma unui arbore binar complet. Prin arbore binar complet
înţelegem un arbore binar în care toate nodurile, cu excepţia celor de pe
ultimul nivel, au exact doi fii, iar nodurile de pe ultimul nivel sunt
completate de la stânga la dreapta.

Proprietatea de ordonare impune ca valoarea asociată fiecărui nod, cu
excepţia nodului rădăcină, să fie mai mică sau egală decât valoarea asociată
nodului părinte. Se observă că, spre deosebire de arborii binari de căutare,
nu se impune nici o regulă referitoare la poziţia sau relaţia dintre nodurile
fiu.

Structura heap este preferată pentru multe tipuri de aplicaţii. Cele
mai importante utilizări sunt:

 implementarea cozilor de prioritate utilizate pentru simularea pe
bază de evenimente sau algoritmi de alocare a resurselor;

 implementarea selecţiei în algoritmi de tip greedy cum ar fi
algoritmul lui Prim pentru determinarea arborelui de acoperire
minimă sau algoritmul lui Dijkstra pentru determinarea drumului
minim;

 sortarea masivelor utilizând algoritmul HeapSort.
Operaţiile principale care se execută pe o structură heap sunt cele de

construire a heap-ului pornind de la un masiv unidimensional oarecare,
inserarea unui element în structură şi extragerea elementului maxim sau
minim pentru un min-heap.

Construirea structurii se face utilizând o procedură ajutătoare numită
procedură de filtrare. Rolul acesteia este de a transforma un arbore în care
doar subarborii rădăcinii sunt heap-uri ale căror înălţime diferă cu cel mult o
unitate într-un heap prin coborârea valorii din rădăcină pe poziţia corectă.
Structura rezultată în urma aplicării procedurii de filtrare este un heap
(respectă proprietăţile de structură şi ordonare).

23

32

3

17

2412

8

2

97

32

23

3

17

2412

8

2

97

32

24

3

17

2312

8

2

97

Subarbori organizaţi sub
formă de heap (respectă

proprietăţile de structură şi
ordonare)

a) Situaţia iniţială b) Arborele după aplicarea primului pas

c) Arborele la sfârşitul procedurii de filtrare

Figura 15.2 Aplicarea algoritmului de filtrare

Algoritmul de filtrare, figura 15.2, presupune parcurgerea
următoarelor etape începând cu nodul rădăcină:

 se determină maximul dintre nodul curent, fiul stânga şi fiul
dreapta (dacă există).

 dacă maximul se află în nodul curent, atunci algoritmul se opreşte.
 dacă maximul de află într-unul dintre fii, atunci se interschimbă

valoarea din nodul curent cu cea din fiu şi se continuă execuţia
algoritmului cu nodul fiu.

Construirea heap-ului pornind de la un arbore binar care respectă
doar proprietatea de structură se face aplicând procedura de filtrare pe
nodurile non frunză ale arborelui începând cu nodurile de la baza arborelui
şi continuând în sus până când se ajunge la nodul rădăcină. Corectitudinea
algoritmului este garantată de faptul că la fiecare pas subarborii nodului
curent sunt heap-uri (deoarece sunt noduri frunză sau sunt noduri pe care a
fost aplicată procedura de filtrare).

Inserarea elementelor într-un heap se poate face şi după etapa
iniţială de construcţie. În acest caz adăugarea elementului nou trebuie
făcută astfel încât structura rezultată să păstreze proprietatea de ordonare.
Inserarea unui element, figura 15.3, în heap presupune parcurgerea
următoarelor etape:

 se adaugă elementul ca nod frunză la sfârşitul arborelui pentru a
păstra proprietatea de structură;

 se compară nodul curent cu nodul părinte;
 dacă nodul părinte este mai mic se interschimbă nodul curent cu

nodul părinte;
 dacă nodul părinte este mai mare sau egal atunci algoritmul se

opreşte.

Figura 15.3 Aplicarea algoritmului de inserare

Procedura prezentată permite inserarea rapidă a oricărei valori în
cadrul heap-ului cu păstrarea proprietăţilor de structură şi de ordonare.

Ştergerea elementelor dintr-un heap se poate efectua doar prin
extragerea elementului maxim sau minim în cazul unui min-heap. Pentru
păstrarea structurii de heap se utilizează procedura de filtrare prezentată
anterior. Algoritmul de extragere al elementului maxim, figura 15.4,
presupune parcurgerea următoarelor etape:

 se interschimbă valoarea din nodul rădăcină cu valoarea din
ultimul nod al arborelui;

 se elimină ultimul nod din arbore;
 se aplica procedura de filtrare pe nodul rădăcină pentru a păstra

proprietatea de ordonare;
 se returnează valoarea din nodul eliminat.

Figura 15.4 Aplicarea algoritmului extragere element maxim

Operaţiile prezentate în secţiunea 15.1 permit utilizarea structurii

heap ca punct de plecare pentru implementarea eficientă a cozilor de
prioritate şi a algoritmului de sortare HeapSort.

15.2 Implementarea structurii Heap

Deşi este posibilă implementarea structurii heap folosind arbori

binari, datorită particularităţilor arborelui de tip heap, stocarea eficientă a
acestuia poate realizează fără ajutorul pointerilor, folosind un masiv
unidimensional. Elementele arborelui se stochează în masiv începând cu
nodul rădăcină şi continuând cu nodurile de pe nivelurile următoare preluate
de la stânga la dreapta. Reprezentarea sub formă de masiv a heap-ului din
figura 15.1 este prezentată în figura 15.5.

32 1797322312824

0 987654321

Figura 15.5 Reprezentarea în memorie pentru structura heap

Navigarea între elementele arborelui se poate face în ambele direcţii

folosind următoarele formule:

22)(Dreapta ,12)(Stânga ,
2

1
)(Parinte 



 

 iiii
i

i (15.1)

Pentru implementarea structurii heap în limbajul C++ a fost
construită o clasă template denumită Heap care implementează algoritmii
prezentaţi anterior. Clasa permite construirea de heap-uri pentru orice tip
de date care implementează operatorul „<” (necesar pentru construirea
relaţiei de ordine pe mulţimea nodurilor) şi un constructor implicit.

Interfaţa clasei este următoarea:

template <class T>
class Heap
{
public:

 // --- Constructori şi destructor --- //

 // Construire heap nou (cu dimensiunea specificată)
 Heap(int capacitateInitiala = DimensiuneMinima);

 // Construire heap pe baza unor elemente date
 Heap(T elemente[], int numarElemente);

 // Constructor de copiere
 Heap(Heap& heap);

 ~Heap() { delete [] this->elemente; }

 // --- Metode coada prioritate --- //

 // Inserează un element în structură
 void Insereaza(T element);

 // Intoarce elementul maxim si il elimina din structura
 T ExtrageMaxim();

 // Intoarce elementul maxim dar nu il elimina din structura
 T CitesteMaxim();

 // --- Acces la elemente --- //

 int GetNumarElemente() { return this->dimensiuneHeap; }

 T operator[] (int index) { return this->elemente[index]; }

private:

 // --- Datele structurii --- //

 T* elemente; // pointer la vectorul de elemente

 // Invariant: dimensiuneHeap <= memorieAlocata
 int memorieAlocata; // dimensiunea mem alocate (ca nr de elem)
 int dimensiuneHeap; // nr de elemente existente în heap

 static const int DimensiuneMinima = 10;

 // --- Functia de reordonare a elementelor --- //

 void Filtrare(int index);

 // --- Calculare pozitie elemente --- //

 inline int Parinte(int i)
 {
 // <=> i / 2 cu indici pe 1..n
 return (i - 1) / 2;
 }
 inline int Stanga(int i)
 {
 // <=> i * 2 cu indici pe 1..n
 return 2 * i + 1;
 }
 inline int Dreapta(int i)
 {
 // <=> i * 2 + 1 cu indici pe 1..n
 return 2 * i + 2;
 }

 inline void Interschimb(int index1, int index2)
 {
 T temp = this->elemente[index1];
 this->elemente[index1] = this->elemente[index2];
 this->elemente[index2] = temp;
 }

 //--- Metode folosite pt realocarea dinamica a structurii --//

 void CresteMemoriaAlocata();
 void ScadeMemoriaAlocata();

 // Nu permitem operatii de atribuire intre obiecte de tip Heap
 Heap operator= (const Heap&);
};

Se observă că, în afara datelor efective stocate în masiv, este

necesară stocarea a două informaţii suplimentare:
 dimensiunea memoriei alocate pentru structură;
 numărul de elemente prezente efectiv în structură.
Memoria necesară stocării masivului este alocată dinamic şi

gestionată automat de către clasa Heap prin intermediul metodelor
CresteMemoriaAlocata şi ScadeMemoria alocată:

template <class T>
void Heap<T>::CresteMemoriaAlocata()
{
 // alocăm un vector nou de dimensiune dublă şi copiem elem
 T* masivNou = new T[this->memorieAlocata * 2];
 for (int i = 0; i < this->memorieAlocata; i++)
 {
 masivNou[i] = this->elemente[i];
 }

 // înlocuim vectorul existent cu cel nou şi actualizăm dim
 delete [] this->elemente;
 this->elemente = masivNou;

 this->memorieAlocata = this->memorieAlocata * 2;
}

template <class T>
void Heap<T>::ScadeMemoriaAlocata()

{
 // alocăm un vector nou mai mic şi copiem elementele
 T* masivNou = new T[this->memorieAlocata / 2];
 for (int i = 0; i < this->memorieAlocata / 2; i++)
 {
 masivNou[i] = this->elemente[i];
 }

 // înlocuim vectorul existent cu cel nou şi actualizăm dim
 delete [] this->elemente;
 this->elemente = masivNou;

 this->memorieAlocata = this->memorieAlocata / 2;
}

Memoria alocată de către instanţele clasei este dealocată de către

destructor. Pentru a evita cazul în care două instanţe ale clasei Heap conţin
referinţe către aceleaşi elemente a fost interzisă operaţia de atribuire prin
supraîncărcarea privată a operatorului corespunzător.

Pentru construirea structurii heap pe baza unui masiv oarecare şi
pentru asigurarea proprietăţii de ordonare în cazul metodei de extragere
maxim a fost implementată metoda ajutătoare Filtrare conform algoritmului
prezentat în secţiunea 15.1:

template <class T>
void Heap<T>::Filtrare(int index)
{
 // 1. Determinam maximul dintre elemente[index],
 // elemente[Stanga(index)] si elemente[Dreapta(index)]
 int indexMax = index;
 int indexStanga = this->Stanga(index);
 int indexDreapta = this->Dreapta(index);

 if (indexStanga < this->dimensiuneHeap &&
 this->elemente[indexStanga] > this->elemente[indexMax])
 {
 indexMax = indexStanga;
 }

 if (indexDreapta < this->dimensiuneHeap &&
 this->elemente[indexDreapta] > this->elemente[indexMax])
 {
 indexMax = indexDreapta;
 }

 // 2. Daca varful actual nu respecta prop de ordonare atunci
 // coboram nodul in arbore si reapelam recursiv procedura
 if (index != indexMax)
 {
 this->Interschimb(index, indexMax);
 this->Filtrare(indexMax);
 }
}

Constructorii clasei Heap realizează iniţializarea structurii în trei

cazuri distincte:
 construirea unei structuri noi cu o capacitate iniţială specificată

opţional de către utilizator;

 construirea structurii noi pe baza elementelor unui masiv
unidimensional primit ca parametru, folosind algoritmul de filtrare
prezentat în secţiunea 15.1;

 construirea unui heap prin copierea datelor dintr-o structură heap
existentă.

Implementarea constructorilor în cadrul clasei Heap este următoarea:

template <class T>
Heap<T>::Heap(int capacitateInitiala)
{
 // ne asigurăm că dimensiunea iniţială a structurii este
 // cel puţin dimensiunea minimă
 capacitateInitiala = max(capacitateInitiala, DimensiuneMinima);

 // alocăm memoria pentru elemente şi iniţializăm câmpurile
 this->elemente = new T[capacitateInitiala];
 this->memorieAlocata = capacitateInitiala;
 this->dimensiuneHeap = 0;
}

template <class T>
Heap<T>::Heap(T elemente[], int numarElemente)
{
 // iniţializăm câmpurile
 this->memorieAlocata =
 max(numarElemente, DimensiuneMinima);
 this->dimensiuneHeap = numarElemente;

 // copiem elementele din vector în structură
 this->elemente = new T[this->memorieAlocata];
 for (int i = 0; i < numarElemente; i++)
 {
 this->elemente[i] = elemente[i];
 }

 // Rearanjăm elem a.î. să satisfacă prop de ordonare folosind
 // metoda Filtrare pt coborârea elem în arbore (elementele din
 // a doua jumatate a masivului respecta implicit proprietatea
 // de heap deoarece reprezinta subarbori cu maxim un element)
 for (int i = (numarElemente - 1) / 2; i >= 0; i--)
 {
 this->Filtrare(i);
 }
}

template <class T> Heap<T>::Heap(Heap& heap)
{
 this->memorieAlocata = heap->memorieAlocata;
 this->dimensiuneHeap = heap->dimensiuneHeap;

 this->elemente = new T[this->memorieAlocata];
 for (int i = 0; i < numarElemente; i++)
 {
 this->elemente[i] = heap->elemente[i];
 }
}

Medodele de inserare şi extragere nod au fost implementate conform

algoritmilor prezenzaţii în secţiunea 15.1.

template <class T>
void Heap<T>::Insereaza(T element)
{
 // verificam faptul că avem memorie disponibilă
 if (this->dimensiuneHeap == this->memorieAlocata)
 {
 this->CresteMemoriaAlocata();
 }

 // expandam heap-ul
 this->dimensiuneHeap++;

 // adaugăm elementul nou la sfârşitul heap-ului
 int index = this->dimensiuneHeap - 1;
 this->elemente[index] = element;

 // si îl urcăm în arbore atât cât este cazul
 // pentru a păstra proprietatea de heap
 while (this->Parinte(index) >= 0 &&
 this->elemente[index] > this->elemente[Parinte(index)])
 {
 this->Interschimb(index, this->Parinte(index));
 index = this->Parinte(index);
 }
}

template <class T>
T Heap<T>::ExtrageMaxim()
{
 // ne asigurăm că avem cel puţin un element în heap
 assert(this->dimensiuneHeap > 0);

 // scădem memoria alocată dacă este cazul
 if (this->memorieAlocata > DimensiuneMinima * 2 &&
 this->dimensiuneHeap < this->memorieAlocata / 3)
 {
 this->ScadeMemoriaAlocata();
 }

 //mutăm elementul în afara heap-ului şi refacem struct de heap
 this->dimensiuneHeap--;
 Interschimb(0, this->dimensiuneHeap);

 this->Filtrare(0);

 return this->elemente[this->dimensiuneHeap];
}

template <class T>
T Heap<T>::CitesteMaxim()
{
 // ne asigurăm că avem cel puţin un element în heap
 assert(this->dimensiuneHeap > 0);

 // şi întoarcem maximul
 return this->elemente[0];
}

Metodele de inserare şi extragere utilizează funcţiile
CresteMemoriaAlocata şi ScadeMemoria pentru extinderea / restrângerea
memoriei utilizate de către heap.

15.3 Cozi de prioritate

Cozile de prioritate sunt structuri de date care suportă următoarele

două operaţii de bază:
 inserarea unui element cu o prioritate asociată;
 extragerea elementului cu prioritate maximă.
Cele mai importante aplicaţii ale cozilor de prioritate sunt: simularea

bazată pe evenimente, gestionarea resurselor partajate (lăţime de bandă,
timp de procesare) şi căutare în spaţiul soluţiilor (de exemplu, algoritmul A*
utilizează o coadă de prioritate pentru a reţine rutele neexplorate).

Structura de date de tip Heap este una dintre cele mai eficiente
modalităţi de implementare a cozilor de prioritate. Prioritatea elementelor
este dată de relaţia de ordine existentă între valorile asociate nodurilor.
Pentru exemplificarea modului de utilizare a clasei Heap prezentată în
secţiunea 15.2 vom construi un simulator discret pentru o coadă de
aşteptare la un magazin.

În simularea discretă, modul de operare al unui sistem este
reprezentat sub forma unei secvenţe de evenimente ordonate cronologic. În
cazul de faţă evenimentele sunt sosirile clienţilor în coada de aşteptare şi
servirea clienţilor. Simulatorul conţine o coadă de evenimente.
Evenimentele sunt adăugate în coadă pe măsură ce timpul lor de producere
poate fi determinat şi sunt extrase din coadă pentru procesare în ordine
cronologică.

Un simulator discret pe bază de evenimente are următoarele
componente:

 coada de evenimente – o coadă de prioritate care conţine lista
evenimentelor care se vor petrece în viitor;

 starea simulatorului – conţine un contor pentru memorarea
timpului curent, informaţiile referitoare la starea actuală a
sistemului simulat (în cazul curent clienţii aflaţi în coadă şi starea
staţiei de servire) şi indicatori;

 logica de procesare – extrage din coadă evenimentele în ordine
cronologică şi le procesează; procesarea unui eveniment
determină modificarea stării sistemului şi generarea de alte
evenimente.

Pentru simularea propusă au fost luate în considerare următoarele
ipoteze:

 există o singură staţie de servire cu un timp de servire distribuit
normal, cu o medie şi dispersie cunoscută;

 există o singură coadă pentru clienţi, iar intervalul de timp dintre
două sosiri este distribuit uniform într-un interval dat;

 durata simulării este stabilită de către utilizator.
Simularea se realizează prin extragerea evenimentelor din heap şi

procesarea acestora pe bază de reguli. Evenimentele de tip sosire determină
generarea evenimentului corespunzător sosirii următoare şi a unui
eveniment de servire în cazul în care staţia este liberă la momentul curent.
În cazul evenimentelor de tip servire se generează următorul eveniment de

tip servire dacă mai există clienţi în coadă. Pe măsură ce sunt procesate
evenimentele sunt reţinute şi informaţiile necesare pentru calcularea
indicatorilor de performanţă aferenţi sistemului simulat.

Codul sursă pentru implementarea simulatorului pe baza clasei Heap
prezentată în secţiunea 15.2 este următorul:

#include <cmath>
#include <ctime>
#include <iostream>

#include "Heap.h"

// --- Definirea clasei Eveniment --- //

enum TipEveniment { Sosire, Servire };

class Eveniment
{
public:

 // Constructor
 Eveniment(int timp = 0, TipEveniment tip = Sosire) :
 timp(timp), tip(tip) {}

 // Implementarea relatiei de ordine pentru min-heap
 bool operator > (Eveniment& eveniment)
 {
 return this->timp < eveniment.timp;
 }

 // Acces la elemente
 int GetTimp() { return this->timp; }
 TipEveniment GetTip() { return this->tip; }

private:
 int timp;
 TipEveniment tip;
};

// --- Generarea timpilor de sosire / servire --- //

int GenerareTimpSosire(int timpCurent,
 int minIntervalSosire, int maxIntervalSosire)
{
 return timpCurent + minIntervalSosire + rand() %
maxIntervalSosire;
}

int GenerareTimpServire(int timpCurent,
 int medieServire, int dispersieServire)
{
 // generare variabila aleatoare distribuita
 // normal folosind metoda Box - Muller
 double a = (double)rand() / RAND_MAX;
 double b = (double)rand() / RAND_MAX;

 double PI = 3.14159265358979323846;

 double c = sqrt(-2 * log(a)) * cos(2 * PI * b);

 return timpCurent + abs((int)
 (medieServire + c * dispersieServire));
}

// --- Simularea magazinului --- //

void Simulare(

 // Parametri de intrare:
 int durata, int medieServire, int dispersieServire,
 int minIntervalSosire, int maxIntervalSosire,

 // Parametri de iesire:
 double& timpMediuAsteptare,
 double& timpMediuServire,
 double& lungimeMedieCoada,
 int& numarClientiServiti)
{
 // iniţializare indicatori
 int timp = 0;
 int numarMasuratoriCoada = 0;
 timpMediuAsteptare = 0;
 timpMediuServire = 0;
 lungimeMedieCoada = 0;
 numarClientiServiti = 0;

 // lista de clienti care asteapta sa fie serviti (inclusiv
 // clientul care este servit la momentul curent)
 Heap<Eveniment> clientiInAsteptare;

 // lista de evenimente programate in viitor
 Heap<Eveniment> coadaEvenimente;

 // simularea incepe cu o sosire
 coadaEvenimente.Insereaza(Eveniment(0, Sosire));

 while(timp < durata)
 {
 // extragem ev următor din coadă (în funcţie de timp)
 Eveniment e = coadaEvenimente.ExtrageMaxim();
 timp = e.GetTimp();

 lungimeMedieCoada += clientiInAsteptare.GetNumarElemente();
 numarMasuratoriCoada++;

 if (e.GetTip() == Sosire)
 {
 // A. Eveniment de tip sosire

 // adăugăm clientul în coada de aşteptare
 clientiInAsteptare.Insereaza(e);

 // programăm sosirea următoare
 Eveniment sosire = Eveniment(GenerareTimpSosire(
 timp, minIntervalSosire, maxIntervalSosire), Sosire);

 coadaEvenimente.Insereaza(sosire);

 // dacă este unicul client din coadă
 if (clientiInAsteptare.GetNumarElemente() == 1)
 {

 // atunci programăm şi servirea
 Eveniment servire(GenerareTimpServire(
 timp, medieServire, dispersieServire), Servire);

 coadaEvenimente.Insereaza(servire);

 timpMediuServire += servire.GetTimp() - timp;
 }
 }
 else
 {
 // B. Eveniment de tip servire

 // eliminăm primul client din coadă (cel servit)
 Eveniment clientServit =
 clientiInAsteptare.ExtrageMaxim();

 timpMediuAsteptare += timp –
 clientServit.GetTimp();
 numarClientiServiti++;

 // dacă mai avem clienţi în aşteptare
 if (clientiInAsteptare.GetNumarElemente() > 0)
 {
 // programăm servirea pt clientul următor
 Eveniment servire(GenerareTimpServire(
 timp, medieServire, dispersieServire), Servire);

 coadaEvenimente.Insereaza(servire);

 timpMediuServire += servire.GetTimp() - timp;
 }
 }
 }

 // calcul indicatori
 lungimeMedieCoada = lungimeMedieCoada / numarMasuratoriCoada;
 timpMediuAsteptare = timpMediuAsteptare / numarClientiServiti;
 timpMediuServire = timpMediuServire /
 (numarClientiServiti + clientiInAsteptare.GetNumarElemente());

}

void main()
{
 // --- Citirea datelor de intrare --- //

 // Parametri de intrare:
 int durata, medieServire, dispersieServire;
 int minIntervalSosire, maxIntervalSosire;

 // Parametri de iesire:
 double timpMediuAsteptare;
 double timpMediuServire;
 double lungimeMedieCoada;
 int numarClientiServiti;

 // Citire parametri:
 cout << "Durata simularii:";
 cin >> durata;

 cout << "Media timpului de servire: ";
 cin >> medieServire;

 cout << "Dispersia timpului de servire: ";
 cin >> dispersieServire;

 cout << "Intervalul minim dintre sosiri: ";
 cin >> minIntervalSosire;

 cout << "Intervalul maxim dintre sosiri: ";
 cin >> maxIntervalSosire;

 // --- Simularea procesului --- //

 cout << endl;
 cout << "Simulare proces cu durata " << durata << "." << endl;
 cout << "Interval intre sosiri: [" << minIntervalSosire <<
 ", " << maxIntervalSosire << "]" << endl;
 cout << "Timp servire ~N(" << medieServire << "," <<
 dispersieServire << ")" << endl;
 cout << endl;

 Simulare(
 // Parametri de intrare:
 durata,
 medieServire, dispersieServire,
 minIntervalSosire, maxIntervalSosire,

 // Parametri de iesire:
 timpMediuAsteptare, timpMediuServire,
 lungimeMedieCoada,numarClientiServiti);

 // --- Afisarea rezultatelor --- //

 cout << endl << "Rezultate simulare:" << endl;
 cout << "Nr clienti serviti:" << numarClientiServiti << endl;
 cout << "Lungime medie coada:" << lungimeMedieCoada << endl;
 cout << "Timpul mediu de asteptare pentru clienti: " <<
 fixed << timpMediuAsteptare << endl;
 cout << "Timpul mediu de servire: " <<
 fixed << timpMediuServire << endl;
}

15.4 Sortarea datelor prin HeapSort

O altă aplicaţie a structurii heap este implementarea algoritmului de

sortare Heapsort. Sortarea presupune extragerea elementelor din heap şi
stocarea acestora, în ordine inversă, la sfârşitul masivului utilizat pentru
memorarea structurii.

Codul sursă pentru implementarea algoritmului Heapsort în cadrul
clasei Heap este următorul:

template <class T>
void Heap<T>::SorteazaHeap(T* destinatie)
{
 // salvăm numărul de elemente din heap

 int dimensiuneaInitiala = this->dimensiuneHeap;

 // sortăm vectorul în cadrul structurii
 for (int i = this->dimensiuneHeap - 1; i > 0; i--)
 {
 this->Interschimb(0, i);

 this->dimensiuneHeap--;
 this->Filtrare(0);
 }

 // copiem elementele sortate în vectorul destinaţie
 for (int i = 0; i < dimensiuneaInitiala; i++)
 {
 destinatie[i] = this->elemente[i];
 }
}

Algoritmul poate fi utilizat pentru sortarea oricărui masiv

unidimensional pentru care a fost definită o relaţie de ordine.
Codul sursă pentru sortarea unui vector de numere întregi este

următorul:

void main()
{

 // 1. Construirea vectorului de sortat si a heap-ului asociat
 const int NumarElemente = 8;
 int elemente[] = {23, 32, 2, 6, 23, 8, 3, 6};
 Heap<int> heap(elemente, NumarElemente);

 // 2. Obtinerea si afisarea vectorului sortat
 int* elementeSortate = new int[NumarElemente];
 heap.SorteazaHeap(elementeSortate);

 for (int i = 0; i < NumarElemente; i++)
 {
 cout << elementeSortate[i] << " ";
 }
 cout << endl;
}

	15. HEAP
	15.1 Structura de tip Heap
	15.2 Implementarea structurii Heap
	15.3 Cozi de prioritate
	15.4 Sortarea datelor prin HeapSort

