15. HEAP

15.1 Structura de tip Heap

Heap-ul, figura 15.1, este un arbore binar care respecta proprietatile
de structura si de ordonare. Fiecare nod al arborelui trebuie sa contina o
valoare asociata numita cheie si poate contine alte informatii suplimentare.
Cheia trebuie sa permitd definirea unei relatii de ordine totald pe multimea
nodurilor. In functie de obiectivul urmarit, heap-ul poate fi organizat sub
forma de max-heap sau min-heap. Cele doua tipuri de heap sunt
echivalente. Transformarea unui max-heap in min-heap, sau invers, se
poate realiza prin simpla inversare a relatiei de ordine.

Figura 15.1 Reprezentarea grafica a structurii heap

Proprietatea de structura specifica faptul ca elementele sunt
organizate sub forma unui arbore binar complet. Prin arbore binar complet
intelegem un arbore binar in care toate nodurile, cu exceptia celor de pe
ultimul nivel, au exact doi fii, iar nodurile de pe ultimul nivel sunt
completate de la stanga la dreapta.

Proprietatea de ordonare impune ca valoarea asociata fiecarui nod, cu
exceptia nodului radacina, sa fie mai mica sau egala decat valoarea asociata
nodului parinte. Se observa ca, spre deosebire de arborii binari de cautare,
nu se impune nici o regula referitoare la pozitia sau relatia dintre nodurile
fiu.

Structura heap este preferata pentru multe tipuri de aplicatii. Cele
mai importante utilizari sunt:

e implementarea cozilor de prioritate utilizate pentru simularea pe

baza de evenimente sau algoritmi de alocare a resurselor;

e implementarea selectiei in algoritmi de tip greedy cum ar fi
algoritmul lui Prim pentru determinarea arborelui de acoperire
minima sau algoritmul lui Dijkstra pentru determinarea drumului
minim;

e sortarea masivelor utilizand algoritmul HeapSort.

Operatiile principale care se executa pe o structura heap sunt cele de
construire a heap-ului pornind de la un masiv unidimensional oarecare,
inserarea unui element in structura si extragerea elementului maxim sau
minim pentru un min-heap.

Construirea structurii se face utilizand o procedura ajutatoare numita
procedura de filtrare. Rolul acesteia este de a transforma un arbore in care
doar subarborii radacinii sunt heap-uri ale caror indltime difera cu cel mult o
unitate intr-un heap prin coborarea valorii din radacina pe pozitia corecta.
Structura rezultata in urma aplicarii procedurii de filtrare este un heap
(respecta proprietatile de structura si ordonare).

) Situatia initial3 b) Arborele dupa aplicarea primului pas

Subarbori organizati sub

forma de heap (respecta
proprietatile de structura si e e e e

ordonare)

c) Arborele la sfarsitul procedurii de filtrare

Figura 15.2 Aplicarea algoritmului de filtrare

Algoritmul de filtrare, figura 15.2, presupune parcurgerea
urmatoarelor etape incepand cu nodul radacina:

e se determina maximul dintre nodul curent, fiul stanga si fiul

dreapta (daca exista).

e daca maximul se afla in nodul curent, atunci algoritmul se opreste.

e daca maximul de afla intr-unul dintre fii, atunci se interschimba

valoarea din nodul curent cu cea din fiu si se continua executia
algoritmului cu nodul fiu.

Construirea heap-ului pornind de la un arbore binar care respecta
doar proprietatea de structura se face aplicand procedura de filtrare pe
nodurile non frunza ale arborelui incepand cu nodurile de la baza arborelui
si continuand in sus pana cand se ajunge la nodul radacina. Corectitudinea
algoritmului este garantata de faptul ca la fiecare pas subarborii nodului
curent sunt heap-uri (deoarece sunt noduri frunza sau sunt noduri pe care a
fost aplicata procedura de filtrare).

Inserarea elementelor intr-un heap se poate face si dupa etapa
initiala de constructie. In acest caz addugarea elementului nou trebuie
facuta astfel incat structura rezultata sa pastreze proprietatea de ordonare.
Inserarea unui element, figura 15.3, in heap presupune parcurgerea
urmatoarelor etape:

e se adauga elementul ca nod frunza la sfarsitul arborelui pentru a
pastra proprietatea de structura;

e se compara nodul curent cu nodul parinte;

e daca nodul parinte este mai mic se interschimba nodul curent cu
nodul parinte;

e daca nodul parinte este mai mare sau egal atunci algoritmul se
opreste.

a) Heap-ul inaintea inserarii elementului 28 b) Elementul este inserat la sfarsitul structurii
(=) (=)
(2) () (=) ()
@ &0 © @ &0 ©
QIOROIO QIOROIO

¢) Elementul ridicat in arbore deoarece nu se d) Algoritmul este incheiat deoarece valoarea
respecta proprietatea de ordonare nodului inserat este mai mica decéat valoarea
nodului parinte

Figura 15.3 Aplicarea algoritmului de inserare

Procedura prezentata permite inserarea rapida a oricarei valori in
cadrul heap-ului cu pastrarea proprietatilor de structura si de ordonare.
Stergerea elementelor dintr-un heap se poate efectua doar prin
extragerea elementului maxim sau minim in cazul unui min-heap. Pentru
pastrarea structurii de heap se utilizeaza procedura de filtrare prezentata
anterior. Algoritmul de extragere al elementului maxim, figura 15.4,
presupune parcurgerea urmatoarelor etape:
e se interschimba valoarea din nodul radacind cu valoarea din
ultimul nod al arborelui;
e se elimina ultimul nod din arbore;
e se aplica procedura de filtrare pe nodul radacina pentru a pastra
proprietatea de ordonare;
e se returneaza valoarea din nodul eliminat.

a) Heap-ul inaintea extragerii elementului

. b) Se interschimba radacina cu ultimul nod
maxim

¢) Se aplica procedura de filtrare pentru d) Dupa incheierea procedurii de filtrare se
coborarea nodului pe pozitia corectd elimina ultimul nod din structura

Figura 15.4 Aplicarea algoritmului extragere element maxim

Operatiile prezentate in sectiunea 15.1 permit utilizarea structurii
heap ca punct de plecare pentru implementarea eficienta a cozilor de
prioritate si a algoritmului de sortare HeapSort.

15.2 Implementarea structurii Heap

Desi este posibila implementarea structurii heap folosind arbori
binari, datorita particularitatilor arborelui de tip heap, stocarea eficienta a
acestuia poate realizeaza fara ajutorul pointerilor, folosind un masiv
unidimensional. Elementele arborelui se stocheaza in masiv incepand cu
nodul radacina si continuand cu nodurile de pe nivelurile urmatoare preluate
de la stdnga la dreapta. Reprezentarea sub forma de masiv a heap-ului din
figura 15.1 este prezentata in figura 15.5.

‘32‘24‘8‘12‘23‘2‘3‘7‘9‘17‘
o 1 2 3 4 5 6 7 8 9

Figura 15.5 Reprezentarea in memorie pentru structura heap

Navigarea intre elementele arborelui se poate face in ambele directii
folosind urmatoarele formule:

Parinte(i) = L%J Stanga(i) =2-i+1, Dreapta(i)=2-i+2 (15.1)

Pentru implementarea structurii heap 1in limbajul C++ a fost
construita o clasa template denumita Heap care implementeaza algoritmii
prezentati anterior. Clasa permite construirea de heap-uri pentru orice tip
de date care implementeaza operatorul ,<” (necesar pentru construirea
relatiei de ordine pe multimea nodurilor) si un constructor implicit.

Interfata clasei este urmatoarea:

template <class T>
class Heap
{
public:
// --- Constructori si destructor --- //

// Construire heap nou (cu dimensiunea specificati)
Heap (int capacitateInitiala = DimensiuneMinima) ;

// Construire heap pe baza unor elemente date
Heap (T elemente[], int numarElemente) ;

// Constructor de copiere
Heap (Heap& heap) ;

~Heap () { delete [] this->elemente; }
// --- Metode coada prioritate --- //

// Insereazd un element in structurid
void Insereaza (T element);

// Intoarce elementul maxim si il elimina din structura
T ExtrageMaxim() ;

// Intoarce elementul maxim dar nu il elimina din structura
T CitesteMaxim() ;

// --- Acces la elemente --- //
int GetNumarElemente() { return this->dimensiuneHeap; }

T operator[] (int index) { return this->elemente[index]; }

private:
// --- Datele structurii --- //
T* elemente; // pointer la vectorul de elemente

// Invariant: dimensiuneHeap <= memorieAlocata

int memorieAlocata; // dimensiunea mem alocate (ca nr de elem)
int dimensiuneHeap; // nr de elemente existente in heap
static const int DimensiuneMinima = 10;

// --- Functia de reordonare a elementelor --- //

void Filtrare (int index) ;

// --- Calculare pozitie elemente --- //

inline int Parinte (int i)

{
// <=> i / 2 cu indici pe 1l..n
return (i - 1) / 2;

}

inline int Stanga(int i)

{
// <=> i * 2 cu indici pe 1..n
return 2 * i + 1;

}

inline int Dreapta(int i)

{
// <=>1i
return 2

* 2 + 1 cu indici pe 1..n
* i+ 2;
}

inline void Interschimb (int indexl, int index2)

{

T temp = this->elemente[indexl1];

this->elemente[indexl] = this->elemente[index2];
this->elemente[index2] = temp;

}

//--- Metode folosite pt realocarea dinamica a structurii --//

void CresteMemoriaAlocata() ;
void ScadeMemoriaAlocata() ;

// Nu permitem operatii de atribuire intre obiecte de tip Heap
Heap operator= (const Heapé§) ;

Se observa ca, in afara datelor efective stocate in masiv, este

necesara stocarea a doua informatii suplimentare:

e dimensiunea memoriei alocate pentru structura;
e numarul de elemente prezente efectiv in structura.
Memoria necesara stocdrii masivului este alocata dinamic si

gestionata automat de catre clasa Heap prin intermediul metodelor

CresteMemoriaAlocata si ScadeMemoria alocata:

template <class T>
void Heap<T>::CresteMemoriaAlocata ()

{

for (int 1 = 0; i < this->memorieAlocata;

{

masivNou[i] = this->elemente[i];

}

delete [] this->elemente;
this->elemente = masivNou;

}

template <class T>
void Heap<T>: :ScadeMemoriaAlocata ()

// alocdm un vector nou de dimensiune dubla si copiem elem
T* masivNou = new T[this->memorieAlocata * 2];

// inlocuim vectorul existent cu cel nou si actualizdm dim

this->memorieAlocata = this->memorieAlocata * 2;

it++)

// alocdm un vector nou mai mic si copiem elementele
T* masivNou = new T[this->memorieAlocata / 2];
for (int i = 0; i < this->memorieAlocata / 2; i++)
{
masivNou[i] = this->elemente[i];
}
// inlocuim vectorul existent cu cel nou si actualizidm dim
delete [] this->elemente;
this->elemente = masivNou;

this->memorieAlocata = this->memorieAlocata / 2;

Memoria alocatd de catre instantele clasei este dealocatd de catre
destructor. Pentru a evita cazul in care doua instante ale clasei Heap contin
referinte catre aceleasi elemente a fost interzisa operatia de atribuire prin
supraincarcarea privata a operatorului corespunzator.

Pentru construirea structurii heap pe baza unui masiv oarecare si
pentru asigurarea proprietatii de ordonare in cazul metodei de extragere
maxim a fost implementata metoda ajutatoare Filtrare conform algoritmului
prezentat in sectiunea 15.1:

template <class T>
void Heap<T>::Filtrare (int index)
{
// 1. Determinam maximul dintre elemente[index],
// elemente[Stanga(index)] si elemente[Dreapta (index)]
int indexMax = index;
int indexStanga = this->Stanga (index) ;
int indexDreapta = this->Dreapta (index) ;

if (indexStanga < this->dimensiuneHeap &&
this->elemente[indexStanga] > this->elemente[indexMax])
{
indexMax = indexStanga;

}

if (indexDreapta < this->dimensiuneHeap &&
this->elemente[indexDreapta] > this->elemente[indexMax])
{
indexMax = indexDreapta;

}

// 2. Daca varful actual nu respecta prop de ordonare atunci
// coboram nodul in arbore si reapelam recursiv procedura
if (index '= indexMax)
{
this->Interschimb (index, indexMax) ;
this->Filtrare (indexMax) ;

Constructorii clasei Heap realizeaza initializarea structurii in trei
cazuri distincte:
— construirea unei structuri noi cu o capacitate initiala specificata
optional de catre utilizator;

— construirea structurii noi pe baza elementelor unui masiv
unidimensional primit ca parametru, folosind algoritmul de filtrare
prezentat in sectiunea 15.1;

— construirea unui heap prin copierea datelor dintr-o structura heap
existenta.

Implementarea constructorilor in cadrul clasei Heap este urmatoarea:

template <class T>
Heap<T>: :Heap (int capacitateInitiala)
{
// ne asiguram cad dimensiunea initiald a structurii este
// cel putin dimensiunea minimi
capacitateInitiala = max(capacitateInitiala, DimensiuneMinima) ;

// alocdm memoria pentru elemente si initializam campurile
this->elemente = new T[capacitateInitiala];
this->memorieAlocata = capacitatelInitiala;
this->dimensiuneHeap = 0;

}

template <class T>
Heap<T>: :Heap (T elemente[], int numarElemente)
{
// initializam campurile
this->memorieAlocata =
max (numarElemente, DimensiuneMinima) ;
this->dimensiuneHeap = numarElemente;

// copiem elementele din vector in structurad
this->elemente = new T[this->memorieAlocata];
for (int i = 0; i < numarElemente; i++)
{

this->elemente[i] = elemente[i];

}

// Rearanjam elem a.i. sd satisfacd prop de ordonare folosind
// metoda Filtrare pt coborirea elem in arbore (elementele din
// a doua jumatate a masivului respecta implicit proprietatea
// de heap deoarece reprezinta subarbori cu maxim un element)
for (int i = (numarElemente - 1) / 2; i >= 0; i--)
{
this->Filtrare (i) ;

}

}

template <class T> Heap<T>::Heap (Heap& heap)
{

this->memorieAlocata heap->memorieAlocata;
this->dimensiuneHeap = heap->dimensiuneHeap;

this->elemente = new T[this->memorieAlocata];
for (int i = 0; i < numarElemente; i++)
{

this->elemente[i] = heap->elemente[i];

}

Medodele de inserare si extragere nod au fost implementate conform
algoritmilor prezenzatii in sectiunea 15.1.

template <class T>
void Heap<T>: :Insereaza (T element)

{

}

// verificam faptul cd avem memorie disponibila
if (this->dimensiuneHeap == this->memorieAlocata)
{

this->CresteMemoriaAlocata() ;
}

// expandam heap-ul
this->dimensiuneHeap++;

// adaugam elementul nou la sfarsitul heap-ului
int index = this->dimensiuneHeap - 1;
this->elemente[index] = element;

// si il urcam in arbore atit cit este cazul
// pentru a pastra proprietatea de heap
while (this->Parinte(index) >= 0 &&
this->elemente[index] > this->elemente[Parinte (index)])
{
this->Interschimb (index, this->Parinte (index)) ;
index = this->Parinte (index) ;

template <class T>
T Heap<T>::ExtrageMaxim/()

{

}

// ne asiguram ca avem cel putin un element in heap
assert(this->dimensiuneHeap > 0) ;

// scddem memoria alocatd dacd este cazul
if (this->memorieAlocata > DimensiuneMinima * 2 &&
this->dimensiuneHeap < this->memorieAlocata / 3)

{
this->ScadeMemoriaAlocata() ;

}

//mutdm elementul in afara heap-ului si refacem struct de heap
this->dimensiuneHeap--;

Interschimb (0, this->dimensiuneHeap) ;

this->Filtrare (0) ;

return this->elemente[this->dimensiuneHeap] ;

template <class T>
T Heap<T>::CitesteMaxim/()

{

// ne asigurdm cd avem cel putin un element in heap
assert (this->dimensiuneHeap > 0) ;

// si intoarcem maximul
return this->elemente[0];

Metodele de inserare Si extragere utilizeaza functiile
CresteMemoriaAlocata si ScadeMemoria pentru extinderea / restrangerea
memoriei utilizate de catre heap.

15.3 Cozi de prioritate

Cozile de prioritate sunt structuri de date care suporta urmatoarele
doua operatii de baza:

— inserarea unui element cu o prioritate asociata;

— extragerea elementului cu prioritate maxima.

Cele mai importante aplicatii ale cozilor de prioritate sunt: simularea
bazata pe evenimente, gestionarea resurselor partajate (latime de banda,
timp de procesare) si cautare in spatiul solutiilor (de exemplu, algoritmul A*
utilizeaza o coada de prioritate pentru a retine rutele neexplorate).

Structura de date de tip Heap este una dintre cele mai eficiente
modalitati de implementare a cozilor de prioritate. Prioritatea elementelor
este data de relatia de ordine existenta intre valorile asociate nodurilor.
Pentru exemplificarea modului de utilizare a clasei Heap prezentata in
sectiunea 15.2 vom construi un simulator discret pentru o coada de
asteptare la un magazin.

In simularea discretda, modul de operare al unui sistem este
reprezentat sub forma unei secvente de evenimente ordonate cronologic. In
cazul de fata evenimentele sunt sosirile clientilor in coada de asteptare si
servirea clientilor. Simulatorul contine o coada de evenimente.
Evenimentele sunt adaugate in coada pe masura ce timpul lor de producere
poate fi determinat si sunt extrase din coada pentru procesare in ordine
cronologica.

Un simulator discret pe baza de evenimente are urmatoarele
componente:

— coada de evenimente - o coada de prioritate care contine lista

evenimentelor care se vor petrece in viitor;

— starea simulatorului - contine un contor pentru memorarea
timpului curent, informatiile referitoare la starea actuala a
sistemului simulat (in cazul curent clientii aflati in coada si starea
statiei de servire) si indicatori;

— logica de procesare - extrage din coada evenimentele in ordine
cronologica si le proceseaza; procesarea unui eveniment
determina modificarea starii sistemului si generarea de alte
evenimente.

Pentru simularea propusa au fost luate in considerare urmatoarele

ipoteze:

— exista o singura statie de servire cu un timp de servire distribuit
normal, cu o medie si dispersie cunoscuta;

— exista o singura coada pentru clienti, iar intervalul de timp dintre
doua sosiri este distribuit uniform intr-un interval dat;

- durata simularii este stabilita de catre utilizator.

Simularea se realizeaza prin extragerea evenimentelor din heap si
procesarea acestora pe baza de reguli. Evenimentele de tip sosire determina
generarea evenimentului corespunzator sosirii urmatoare si a unui
eveniment de servire in cazul in care statia este liberda la momentul curent.
In cazul evenimentelor de tip servire se genereaza urmatorul eveniment de

tip servire daca mai exista clienti in coada. Pe masura ce sunt procesate
evenimentele sunt retinute si informatiile necesare pentru calcularea
indicatorilor de performanta aferenti sistemului simulat.

Codul sursa pentru implementarea simulatorului pe baza clasei Heap
prezentata in sectiunea 15.2 este urmatorul:

#include <cmath>
#include <ctime>
#include <iostream>

#include "Heap.h"
// --- Definirea clasei Eveniment --- //
enum TipEveniment { Sosire, Servire };

class Eveniment

{
public:

// Constructor
Eveniment (int timp = 0, TipEveniment tip = Sosire)
timp (timp) , tip(tip) ({}

// Implementarea relatiei de ordine pentru min-heap
bool operator > (Eveniment& eveniment)
{

return this->timp < eveniment. timp;

}

// Acces la elemente
int GetTimp() { return this->timp; }
TipEveniment GetTip() { return this->tip; }

private:
int timp;
TipEveniment tip;

};
// --- Generarea timpilor de sosire / servire --- //

int GenerareTimpSosire (int timpCurent,

int minIntervalSosire, int maxIntervalSosire)
{

return timpCurent + minIntervalSosire + rand() %
maxIntervalSosire;

}

int GenerareTimpServire (int timpCurent,
int medieServire, int dispersieServire)

{
// generare variabila aleatoare distribuita
// normal folosind metoda Box - Muller
double a = (double)rand() / RAND_ MAX;
double b = (double)rand() / RAND_ MAX;

double PI = 3.14159265358979323846;

double c = sqgrt(-2 * log(a)) * cos(2 * PI * b);

return timpCurent + abs((int)
(medieServire + c * dispersieServire));

}

// --- Simularea magazinului --- //
void Simulare (

// Parametri de intrare:
int durata, int medieServire, int dispersieServire,
int minIntervalSosire, int maxIntervalSosire,

// Parametri de iesire:
double& timpMediuAsteptare,
double& timpMediuServire,
double& lungimeMedieCoada,
int& numarClientiServiti)

// initializare indicatori
int timp = 0;

int numarMasuratoriCoada = O;
timpMediuAsteptare = 0;
timpMediuServire = 0;
lungimeMedieCoada = 0;
numarClientiServiti = 0;

// lista de clienti care asteapta sa fie serviti (inclusiv
// clientul care este servit la momentul curent)
Heap<Eveniment> clientiInAsteptare;

// lista de evenimente programate in viitor
Heap<Eveniment> coadaEvenimente;

// simularea incepe cu o sosire
coadaEvenimente.Insereaza (Eveniment (0, Sosire));

while (timp < durata)
{

// extragem ev urmdtor din coadd (in functie de timp)
Eveniment e = coadaEvenimente.ExtrageMaxim() ;
timp = e.GetTimp () ;

lungimeMedieCoada += clientiInAsteptare.GetNumarElemente () ;
numarMasuratoriCoada++;

if (e.GetTip() == Sosire)
{

// A. Eveniment de tip sosire

// addugam clientul in coada de asteptare
clientiInAsteptare.Insereaza(e) ;

// programdm sosirea urmitoare
Eveniment sosire = Eveniment (GenerareTimpSosire (
timp, minIntervalSosire, maxIntervalSosire), Sosire);

coadaEvenimente.Insereaza (sosire) ;

// dacd este unicul client din coada
if (clientiInAsteptare.GetNumarElemente() == 1)

{

// atunci programdm si servirea
Eveniment servire (GenerareTimpServire (
timp, medieServire, dispersieServire), Servire);

coadaEvenimente.Insereaza (servire) ;

timpMediuServire += servire.GetTimp () - timp;

else
// B. Eveniment de tip servire

// elimindm primul client din coadid (cel servit)
Eveniment clientServit =
clientiInAsteptare.ExtrageMaxim() ;

timpMediuAsteptare += timp -
clientServit.GetTimp () ;
numarClientiServiti++;

// dacéd mai avem clienti in asteptare

if (clientiInAsteptare.GetNumarElemente () > 0)

{
// programdm servirea pt clientul urmidtor
Eveniment servire (GenerareTimpServire (
timp, medieServire, dispersieServire), Servire)

coadaEvenimente.Insereaza (servire) ;

timpMediuServire += servire.GetTimp() - timp;

}

// calcul indicatori

lungimeMedieCoada = lungimeMedieCoada / numarMasuratoriCoada;
timpMediuAsteptare = timpMediuAsteptare / numarClientiServiti;
timpMediuServire = timpMediuServire /

(numarClientiServiti + clientiInAsteptare.GetNumarElemente())

void main ()

{

// --- Citirea datelor de intrare --- //

// Parametri de intrare:
int durata, medieServire, dispersieServire;
int minIntervalSosire, maxIntervalSosire;

// Parametri de iesire:
double timpMediuAsteptare;
double timpMediuServire;
double lungimeMedieCoada;
int numarClientiServiti;

// Citire parametri:
cout << "Durata simularii:";
cin >> durata;

cout << "Media timpului de servire: ";
cin >> medieServire;

cout << "Dispersia timpului de servire: ";
cin >> dispersieServire;

cout << "Intervalul minim dintre sosiri: ";
cin >> minIntervalSosire;

cout << "Intervalul maxim dintre sosiri: ";
cin >> maxIntervalSosire;

// --- Simularea procesului --- //

cout << endl;
cout << "Simulare proces cu durata " << durata << "." << endl;
cout << "Interval intre sosiri: [" << minIntervalSosire <<
", " << maxIntervalSosire << "]" << endl;
cout << "Timp servire ~N(" << medieServire << "," <<
dispersieServire << ")" << endl;
cout << endl;

Simulare (
// Parametri de intrare:
durata,
medieServire, dispersieServire,
minIntervalSosire, maxIntervalSosire,

// Parametri de iesire:
timpMediuAsteptare, timpMediuServire,
lungimeMedieCoada,numarClientiServiti) ;

// --- Afisarea rezultatelor --- //
cout << endl << "Rezultate simulare:" << endl;

cout << "Nr clienti serviti:" << numarClientiServiti << endl;
cout << "Lungime medie coada:" << lungimeMedieCoada << endl;

cout << "Timpul mediu de asteptare pentru clienti: " <<
fixed << timpMediuAsteptare << endl;
cout << "Timpul mediu de servire: " <<

fixed << timpMediuServire << endl;

15.4 Sortarea datelor prin HeapSort

O alta aplicatie a structurii heap este implementarea algoritmului de
sortare Heapsort. Sortarea presupune extragerea elementelor din heap si
stocarea acestora, in ordine inversa, la sfarsitul masivului utilizat pentru
memorarea structurii.

Codul sursa pentru implementarea algoritmului Heapsort in cadrul
clasei Heap este urmatorul:

template <class T>
void Heap<T>::SorteazaHeap (T* destinatie)
{

// salvdm numidrul de elemente din heap

int dimensiuneaInitiala = this->dimensiuneHeap;

// sortdm vectorul in cadrul structurii
for (int i = this->dimensiuneHeap - 1; i > 0; i--)
{

this->Interschimb (0, i) ;

this->dimensiuneHeap--;
this->Filtrare (0) ;
}

// copiem elementele sortate in vectorul destinatie
for (int i = 0; i < dimensiunealnitiala; i++)
{

destinatie[i] = this->elemente[i];

}

Algoritmul poate fi utilizat pentru sortarea oricarui
unidimensional pentru care a fost definita o relatie de ordine.

masiv

Codul sursa pentru sortarea unui vector de numere intregi este

urmatorul:

void main()

{

const int NumarElemente = 8;
int elemente[] = {23, 32, 2, 6, 23, 8, 3, 6};
Heap<int> heap (elemente, NumarElemente) ;

// 2. Obtinerea si afisarea vectorului sortat
int* elementeSortate = new int[NumarElemente];
heap.SorteazaHeap (elementeSortate) ;

for (int i = 0; i < NumarElemente; i++)

{

cout << elementeSortate[i] << " ";

}
cout << endl;

// 1. Construirea vectorului de sortat si a heap-ului asociat

	15. HEAP
	15.1 Structura de tip Heap
	15.2 Implementarea structurii Heap
	15.3 Cozi de prioritate
	15.4 Sortarea datelor prin HeapSort

