
16. GRAFURI 
 
 

16.1 Structura de date de tip graf 
 
Proiectarea unui sistem informatic care să gestioneze reţeaua 

naţională de căi ferate presupune crearea unui mediu de lucru capabil să 
utilizeze baza de date a staţiilor şi pe cea a liniilor de cale ferate pentru  a 
oferi soluţii optime şi reale care să minimizeze costurile şi timpul de folosire 
a reţelei. Luând de exemplu situaţia reală din figura 16.1, se pune problema 
parcurgerii traseului Arad – Bucureşti cu cost redus, acest lucru implicând 
parcurgerea distanţei cea mai scurtă.  
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Figura 16.1 O parte a reţelei de cale ferată 

 
Sistemul prelucrează informaţiile iniţiale, aflate în două mulţimi N şi 

A, unde N = {Arad, Bucureşti, Cluj, Craiova, Constanţa, Timişoara} este 
mulţimea oraşelor iar A = {Arad – Timişoara = 59 km, Timişoara – Craiova 
= 324 km, Craiova – Bucureşti = 209 km, Bucureşti – Constanţa = 225 km, 
Arad – Cluj = 274 km, Cluj – Craiova = 331 km, Cluj – Bucureşti = 497 
km} este mulţimea distanţelor dintre două oraşe şi oferă soluţia căutată. 

Reprezentarea în memorie a acestor informaţii care au multiple 
legături între ele, astfel încât să permită parcurgerea completă a zonelor 
sau localizarea unui element din structură, se face în situaţia de faţă  
utilizând graful. 

Graful, asemenea arborelui, este o structură în care relaţia dintre 
nodul părinte şi nodul fiu este una ierarhică, dar care este mai puţin 
restrictivă în sensul că un nod are mai mulţi succesori dar şi mai mulţi 
predecesori. El este definit ca o colecţie de date reunite în două mulţimi: 
mulţimea N = {N1, N2, …, Nn | n – numărul de noduri al grafului} ce conţine 
toate nodurile grafului şi mulţimea A = {( Ni, Nj ) = Aij | Ni, Nj   N şi  i,j = 
1, ..., n cu i j} care conţine arcele dintre două noduri vecine.  

Graful este larg utilizat în domeniile: ciberneticii, matematicii, 
cercetărilor operaţionale în vederea optimizării diferitelor activităţi 
economice, chimiei pentru descrierea structurii cristalelor, reţelelor de 
transport de toate tipurile pentru optimizarea traseelor, circuitelor electrice 
pentru simularea funcţionări corecte, inteligenţei artificiale şi nu în ultimul 
rând în domeniul analizei aplicaţiilor software.  

Graful este de mai multe tipuri, fiind clasificat în funcţie de : 
- direcţia arcelor – în cazul în care arcele dintre nodurile grafului 

sunt nedirecţionate atunci graful este unul neorientat; când există 



sens între două noduri Ni, Nj şi arcul este direcţionat (Ni   Nj sau 
Ni   Nj sau Ni   Nj) atunci graful este unul orientat; 
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Figura 16.2 Graf orientat şi neorientat 

 
- greutatea arcelor – dacă oricare arc dintre două noduri al grafului 

are asociată o valoare numerică (care reprezintă de cele mai 
multe ori distanţa, durata de timp sau costul) atunci graful este 
cu greutate; în cazul în care arcele nu au asociate valori 
numerice, graful este unul fără greutate; 
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Figura 16.3 Graf orientat cu greutate 
 
- existenţa arcelor; dacă într-un graf nu există nici un nod izolat, 

altfel spus pentru oricare nod Ni cu i = 1..n există cel puţin un 
nod Nj cu nj 1  şi i j pentru care există arcul Aij asociat, 
atunci graful este conectat; un graf este neconectat dacă există 
cel puţin un nod izolat. 
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Figura 16.4 Graf orientat neconectat 
 
La rândul lui graful orientat este puternic conectat dacă între oricare 

două noduri Ni şi Nj cu i, j = 1..n există drum ( un drum este format din 
unul sau mai multe arce ) orientat de la i la j, Ni   Nj. Graful orientat este 
slab conectat dacă între oricare două noduri Ni şi Nj cu i, j = 1..n există 
drum orientat de la i la j, Ni   Nj sau de la j la i, Ni   Nj ( doar unul dintre 
ele). 
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Figura 16.5 Tipuri de graf orientat 

 
De exemplu în figura 16.5 se observă că al doilea graf orientat este 

slab conectat pentru că între nodul A şi D există drum orientat, însă de la D 
la A nu există drum.  

 
 
16.2 Implementarea grafului 
 
Există numeroase metode de reprezentare în memoria calculatorului 

a grafului, fiecare cu avantajele şi dezavantajele ei:  
- matricea de adiacenţă; 
- liste înlănţuite; 
- un vector de pointeri la liste simple sau dublu înlănţuite de noduri 

adiacente; 
- o listă simplu sau dublu înlănţuită de pointeri la liste simple sau 

dublu înlănţuite de noduri adiacente; 
- un vector de pointeri la liste simple sau dublu înlănţuite de arce. 
Dintre toate, cele mai utilizate metode sunt primele două. 
Reprezentarea prin matrice de adiacenţă a grafului este eficientă 

când se cunoaşte numărul nodurilor şi numărul mediu al arcelor; acesta din 
urmă trebuie să fie mare pentru ca gradul de umplere al matricei de 
adiacenţă să fie scăzut. Cum crearea de software optimizat înseamnă şi 
generalizarea problemei, lucru care dă puţine şanse să se cunoască numărul 
nodurilor şi cel al arcelor, singurul argument pro pentru această metodă 
este dat doar de uşurinţă implementării şi utilizării matricelor. În cele mai 
multe situaţii reale, cea mai mare parte a memoriei necesară stocării 
matricei de adiacenţă este nefolosită. 

Pentru un graf cu n noduri este necesară o matrice pătratică M de 
dimensiuni nxn, care pentru un n foarte mare ocupă mult spaţiu.  

Iniţial matricea de adiacenţă are toate elementele egale cu valoarea 
0. Pentru  a reprezenta arcul Aij dintre nodurile Ni şi Nj (orientat de la Ni la 
Nj) la intersecţia liniei i cu coloana j se trece valoarea 1, în cazul grafului cu 
fără greutate, sau greutatea arcului, pentru graful cu greutate.  

 
   1, dacă există arc între nodul Ni şi Nj; 
Aşadar: M[i][j] =         
   0, dacă nu există arc între nodul Ni şi Nj; 
 

în cazul grafului fără greutate şi: 
 



       aij, dacă există arc între nodul Ni şi Nj, iar aij  
reprezintă greutatea arcului; 

 M[i][j] =   
       0, dacă nu există arc între nodul Ni şi Nj; 

 
 
În cazul unui graf neorientat, matricea de adiacenţă asociată este 

simetrică. Pentru graful cu 5 noduri din figura 16.6, Matricele de adiacenţă 
corespunzătoare grafurilor sunt prezentate în figura 16.7. 
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Figura 16.6 Graf  orientat cu greutate şi fără greutate 
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Figura 16.7 Matrice de adiacenţă 

 
Lungimea drumului dintre două noduri ale unui graf orientat fără 

greutate este dată de numărul de arce. Astfel în cazul grafului din figura 
16.6, între nodul A şi D există trei drumuri posibile, unul de lungime 3 (A-B-
C-D) şi două de lungime 2 (A-C-D şi A-B-D). 

Uşurinţa lucrului cu matricea de adiacenţă constă şi în faptul că prin 
simple ridicări la putere se verifică dacă există drum între două noduri şi 
care este lungimea acestuia (doar în cazul grafului orientat fără greutate).  

Fie M[4][4] matricea de adiacenţă din figura 16.7 asociată grafului 
orientat fără greutate, atunci obţinem: 

 





























































0000

0000

0000

0000

    

0000

0000

0000

1000

      

0000

0000

1000

2100

432 MMM  (16.1) 

 
După cum se observă, dacă Mk[i][j] = val   0 atunci între nodurile Ni 

şi Nj există val drumuri pe direcţia Ni   Nj, drumuri de lungime k.  
În cazul lui M2 există 2 drumuri de lungime 2 de la nodul A la nodul D 

(A-B-D şi A-C-D), un drum de lungime 2 de la nodul A la nodul C (A-B-C) şi 
un drum de lungime 2 de la nodul B la nodul D (B-C-D). 



Pentru k = 3 există drumul de lungime 3 de la nodul a la nodul D (A-
B-C-D). 

Procesul de ridicare la putere se opreşte când se ajunge la k = n, 
unde n este dimensiunea matricei. 

Clasa graf care implementează diferite operaţii cu grafuri 
reprezentate prin intermediul matricei de adiacenţă este: 

 
#ifndef GRAF_MATRICE_H 
#define GRAF_MATRICE_H 
 
#include <iostream> 
using namespace std; 
 
class graf_matrice 
{ 
public: 
 static const int MaxN = 50;   // numarul maxim de noduri 
 static const int Infinit = INT_MAX;  // nu exista drum intre noduri 
 
 enum TipMatrice 
 { 
  MatriceAdiacenta = 1, 
  MatriceCosturi = 2 
 }; 
 
private: 
 
 //matricea de adiacenta (1=exista, 0=nu exista) 
 int matm[MaxN][MaxN];  
 
 //matricea de costuri (Infinit=nu e drum) 
 long matc[MaxN][MaxN];   
 int nr_noduri; 
 int nr_arce; 
 
protected: 
 int vect_rez[MaxN]; //vectorul în care se ţin minte drumuri 
 int nr_rez;   //nr. nodurilor din rezultat 
 int matr[MaxN][MaxN];   //matricea rezultatelor obţinute din 
prelucrări 
 int valid(int); //testez daca int se afla deja in vect soluţie 
 int suma(int); //calculează lungimea drumului 
 
public: 
 graf_matrice(); 
 void init(TipMatrice tip); //iniţializare graf  
 
 void vect_r(); //afişează vectorul rezultat 
 void matr_r(); //afişează matricea rezultat 
 void matr_r1(); 
 void drum_minim();/* se calculează drumul minim intre oricare 2 
noduri */ 
 void este_drum(); //verif. existenta drumului intre 2 noduri 
 void drum_minim(int, int);   //drumul minim între 2 noduri date  
 void toate_drm(int,int);     //toate drumurile dintre 2 noduri 
 bool este_arbore();          //verifică daca este sau nu arbore 
 void componente_conexe();    //determină componentele conexe 
 bool graf_matrice::este_eulerian();  
 void parcurgere_bf(int);     //parcurgerea grafului în lăţime 
 void parcurgere_df(int);     //parcurgerea grafului în adâncime 



 void hamiltonian();          //verif. exist. cicluri hamiltoniene 
 void prim();                 //det. arbore parţial de cost minim 
};  
 
graf_matrice::graf_matrice() 
{ 
 nr_noduri = 0; 
 nr_arce = 0; 
 nr_rez = 0; 
 for(int i = 0; i < MaxN; i++) 
 { 
  for(int j = 0; j < MaxN; j++) 
  { 
   matm[i][j] = 0; 
   matc[i][j] = Infinit; 
  } 
 } 
} 
 
void graf_matrice::init(TipMatrice tip) 
{ 
 cout << "Introduceti numarul de noduri: "; 
 Do 
 { 
  cin >> nr_noduri; 
  if (nr_noduri <= 0)  
  { 
   cout << "EROARE: Numar invalid de noduri" << endl; 
  } 
 } while(nr_noduri <= 0); 
 
 if (tip == MatriceAdiacenta) 
 { 
  cout << "Se va introduce matricea de adiacenta" << endl; 
  cout << "Se introduc valorile (1-e drum; 0- nu e drum\n"; 
 } 
 else  
 { 
  cout << "Se va introduce matricea de costuri" << endl; 
 } 
 
 for (int j = 0; j < nr_noduri; j++) 
 { 
  for (int i = 0; i < j; i++) 
  { 
   cout << "m[" << i + 1 << "][" << j + 1 << "]="; 
 
   if (tip == MatriceAdiacenta) 
   { 
    do 
    { 
     cin >> matm[i][j]; 
     matm[j][i] = matm[i][j]; 
    } while (matm[i][j] != 0 && matm[i][j] != 1); 
 
    if (matm[i][j] != 0) 
    { 
     nr_arce++; 
     matc[i][j] = matc[j][i] = 1; 
    } 
    else 



    { 
     matc[i][j]=Infinit; 
     matc[j][i]=Infinit; 
    } 
   } 
   else 
   { 
    do 
    { 
     cin >> matc[i][j]; 
     matc[j][i] = matc[i][j]; 
    } while (matc[i][j] < 0); 
 
    if (matc[i][j] != 0) 
    { 
     nr_arce++; 
     matm[j][i] = matm[i][j] = 1; 
    } 
    else 
    { 
     matc[i][j] = matc[j][i] = Infinit;  
     matm[i][j] = matm[j][i] = 0;   
    } 
   } 
  } // for j 
 } // for i 
} 
 
void graf_matrice::vect_r() 
{ 
 cout << "Vectorul rezultat este:" << endl; 
 for (int i = 0; i < nr_rez; i++) 
 { 
  cout << vect_rez[i] << " " << endl; 
 } 
} 
 
void graf_matrice::matr_r() 
{ 
 for (int i = 0; i < nr_noduri; i++) 
 { 
     for (int j = 0; j < i; j++) 
  { 
   cout << "Intre " << i + 1 << " si " << j + 1 <<  
     (matr[i][j] != 0 ? "" : " nu") << "exista drum.\n"; 
  } 
 } 
} 
 
void graf_matrice::matr_r1() 
{ 
 for (int i = 0; i < nr_noduri; i++) 
 { 
     for (int j = 0; j < i; j++) 
  { 
   if (matr[i][j] != Infinit)    
   { 
    cout << "Intre " << i + 1 << " si " << j + 1 <<  
        "exista drum de cost minim " << matr[i][j] << 
endl; 
   } 



   else 
   { 
    Cout << "Intre " << i + 1 << " si " << j + 1 <<  
     "nu exista drum." << endl; 
   } 
  } 
 } 
} 
 
void graf_matrice::drum_minim() 
{ 
 for (int i = 0; i < nr_noduri; i++) 
 { 
  for (int j = 0; j < nr_noduri; j++) 
  { 
   matr[i][j] = matc[i][j]; 
  } 
 } 
 
 for (int k = 0; k < nr_noduri; k++) 
 { 
  for (int i = 0; i < nr_noduri; i++) 
  { 
   for (int j=0; j < nr_noduri; j++) 
   { 
      matr[i][j] = min(matr[i][j],matr[i][k]+matr[k][j]); 
   } 
  } 
 } 
} 
 
 
void graf_matrice::este_drum() 
{ 
 for (int i = 0; i < nr_noduri; i++) 
 { 
  for (int j = 0; j < nr_noduri; j++) 
  { 
   matr[i][j] = matm[i][j]; 
  } 
 } 
 
 for (int k = 0; k < nr_noduri; k++) 
 { 
  for (int i = 0; i < nr_noduri; i++) 
  { 
   for (int j = 0; j < nr_noduri; j++) 
   { 
    matr[i][j]=matr[i][j]||(matr[i][k]&&matr[k][j]); 
   } 
  } 
 } 
} 
 
int graf_matrice::valid(int k) 
{ 
 if (matc[vect_rez[k-1]][vect_rez[k]] == Infinit)  
 { 
  return 0; 
 } 
 



 for (int i = 0; i < k; i++) 
 { 
  if (vect_rez[i] == vect_rez[k])  
  { 
   return 0; 
  } 
 } 
 
 return 1; 
} 
 
int graf_matrice::suma(int k) 
{ 
 int suma = 0; 
 for (int i=0; i<k; i++) 
 { 
  suma += matc[vect_rez[i]][vect_rez[i+1]]; 
 } 
 
 return suma; 
} 
 
void graf_matrice::drum_minim(int a, int b) 
{ 
 int h, vect[MaxN], lgdrum, min = Infinit; 
 
 for (int f = 0; f < MaxN; f++) 
 { 
  vect_rez[f] = -1; 
 } 
 
 vect_rez[0] = a;  
 h = 1; 
 
 while(h >= 1) 
 { 
  while(vect_rez[h] < nr_noduri) 
  { 
   vect_rez[h]++; 
   if(valid(h)) 
   { 
    if(vect_rez[h] == b) 
    { 
     lgdrum = suma(h); 
     if(lgdrum < min) 
     { 
      for (int e = 0; e <= h; e++) 
      { 
       vect[e] = vect_rez[e]; 
      } 
 
      min = lgdrum; 
      nr_rez = h + 1; 
     } 
    } 
    else 
    { 
     h++; 
     vect_rez[h] = -1; 
    } 
   } // if (valid(h)) 



  } 
 
  h--; 
 } 
  
 for (int e = 0; e < nr_rez; e++) 
 { 
  vect_rez[e] = vect[e]; 
 } 
} 
 
bool graf_matrice::este_arbore() 
{  
 int b[MaxN], i, j, v, s; 
 
 v = 0; 
 
 for (i = 0; i < nr_noduri; i++) 
 { 
  for(j = i + 1; j < nr_noduri; j++) 
  { 
   v += (matm[i][j] == 1); 
  } 
 } 
 
 for (int i = 0; i < nr_noduri; b[i] = 0, i++); 
 b[0]=1; 
 
 for(i=0;i<nr_noduri;i++) 
 { 
  for(j=0;j<nr_noduri;j++) 
  { 
   if((matm[i][j] == 1) && (b[i] == 1))  
   { 
    b[j] = 1; 
   } 
  } 
 } 
 
 s=0; 
 for (i = 0; i < nr_noduri; i++) 
 { 
  s += (b[i] == 0); 
 } 
 
 return (s == 0) && (v == nr_noduri - 1); 
} 
 
bool graf_matrice::este_eulerian() 
{ 
 int b[MaxN],i,j,k,v,s; 
  
 for (int i = 0; i < nr_noduri; b[i] = 0, i++); 
 b[0] = 1; 
 
 for(i=0;i<nr_noduri;i++) 
 { 
  for(j=0;j<nr_noduri;j++) 
  { 
   if((matm[i][j] == 1) && (b[i] == 1))  
   { 



    b[j] = 1; 
   } 
  } 
 } 
 
 s=0; 
 for (i = 0; i < nr_noduri; i++) 
 { 
  s += (b[i] == 0); 
 } 
 
 for(i = 0; i < nr_noduri; i++) 
 { 
  k = 0; 
  for(j = 0; j < nr_noduri; j++) 
  { 
   k += (matm[i][j]==1); 
   v = k / 2; 
    
   if ((k - 2 * v) > 0) 
    s = 1; 
  } 
 } 
 
 return s <= 0; 
} 
 
void graf_matrice::parcurgere_bf(int i) 
{ 
 int j,u,p,v,c[MaxN],vizitat[MaxN]; 
 
 for (int i = 0; i < nr_noduri; vizitat[i] = 0, i++);  
 c[1] = i; u = 1; vizitat[i] = 1; 
 
 for(p = 1; p <= u; p++) 
 { 
  v = c[p]; 
  for(j = 0; j < nr_noduri; j++) 
  { 
   if ((matm[v][j] == 1) && (vizitat[j] == 0)) 
   { 
    u++; 
    c[u] = j; 
    vizitat[j] = 1; 
   } 
  } 
 } 
 
 cout << "lista vf. parcurse cu metoda BF pornind de la varful " 
  << i + 1 << ": " << endl; 
  
 for(j = 2; j <= u; j++)  
  cout << c[j] + 1 << endl; 
} 
 
void graf_matrice::parcurgere_df(int i) 
{ 
 int vizitat[MaxN], urmator[MaxN], s[MaxN], k, v, j, ps; 
 
 for (int i=0; i < nr_noduri; urmator[i] = 0, vizitat[i] = 0, i++); 
 



 s[1] = i; ps = 1; vizitat[i] = 1; 
 
 cout << "ordinea in DF este " << i+1 << " "; 
 
 while(ps >= 1) 
 { 
  j = s[ps]; 
  k = urmator[j] + 1; 
  while ((k <= nr_noduri) &&  
   ((matm[j][k]==0) || (matm[j][k]==1)&&(vizitat[k]==1))) 
  { 
                k++; 
  } 
 
  urmator[j] = k; 
   
  if(k == nr_noduri + 1) 
  { 
   ps--; 
  } 
  else 
  { 
   cout << k + 1 << " "; 
   vizitat[k] = 1; 
   ps++; 
   s[ps] = k; 
  } 
 } 
} 
 
void graf_matrice::prim() 
{ 
 int s[MaxN],t[MaxN],p[MaxN]; 
 int min,k,l,c,i,j,v; 
 
 cout << "Nodul de pornire: "; 
 cin >> v; 
 
 for (int i = 0; i < nr_noduri; s[i] = t[i] = p[i] = 0, i++); 
 s[v - 1] = 1; 
 
 for(k = 1; k <= nr_noduri - 1; k++) 
 { 
  min = Infinit; 
 
  for(i = 0; i < nr_noduri; i++) 
  { 
   for(j = 0; j < nr_noduri; j++) 
   { 
    if ((s[i]==1)&&(s[j]==0) && (min > matc[i][j])) 
    { 
     min = matc[i][j]; 
     l = i; c = j; 
    } 
   } 
  } 
 
       s[c] = 1; 
       t[c] = l + 1; 
       p[c] = matc[l][c]; 
 } 



 
 for(i = 0; i < nr_noduri; i++) 
 { 
  cout << t[i] << " "; 
 } 
 cout << endl; 
 
 for(i = 0; i < nr_noduri; i++) 
 { 
  cout << p[i] << " "; 
 } 
} 
 
void graf_matrice::hamiltonian() 
{ 
 int x[MaxN], v, k, j, sol, i; 
 sol = 0; 
 x[1] = 1; x[2] = 1; k = 2;  
 
 while(k > 1) 
 { 
  v = 0; 
  while((x[k] + 1 <= nr_noduri) && (v == 0)) 
  { 
   x[k]++; 
   v = 1; 
   for(i = 1;i <= k - 1; i++) 
   { 
    if(x[k] == x[i]) 
    { 
     v = 0; 
     break; 
    } 
   } 
 
   if(matm[x[k - 1] - 1][x[k] - 1] == 0)  
   { 
    v = 0; 
   } 
  } 
 
  if(v == 0)  
  { 
   k--; 
  }   
  else  
  { 
   if ((k==nr_noduri)&&(matm[x[nr_noduri]-1][x[1]-1]==1)) 
   { 
    sol++; 
     
    if(sol==1)  
    { 
     cout << "Cicluri hamiltoniene:" << endl; 
    } 
     
    for (int j = 1; j <= nr_noduri; j++) 
     cout << x[j] << " "; 
    cout << endl; 
   } 
   else  



   { 
    if(k < nr_noduri) 
    { 
     k++; 
     x[k] = 1; 
    } 
   } 
  } 
 } 
  
 if (sol == 0)  
  cout << "Graful nu este hamiltonian."; 
} 
 
void graf_matrice::componente_conexe() 
{ 
 int b[MaxN],k,j,i; 
  
 for(i = 0; i < nr_noduri; i++) 
 { 
  for(j = 0; j < nr_noduri; j++) 
  { 
   matr[i][j] = matm[i][j]; 
  } 
 } 
 
 cout << "Componentele conexe sunt: "; 
 for(k = 0; k < nr_noduri; k++) 
 { 
  for(j = 0; j < nr_noduri; j++)  
  { 
   b[j] = -2; 
  } 
 
  b[k] = k; 
 
  if(matr[k][k] > -1) 
   cout << endl << "   "; 
 
  for(i = 0; i < nr_noduri; i++) 
  { 
   for(j = 0;j < nr_noduri; j++) 
   { 
    if((matr[i][j] == 1) && (b[i] == k)) 
    { 
     b[j] = k; 
     matr[i][j] = 0; 
     matr[j][i] = 0; 
    } 
   } 
 
   for(j = 0; j < nr_noduri; j++)  
   { 
    if((b[j] == k) && (matr[j][j] > -1)) 
    { 
     matr[j][j] = -1; 
     cout << " " << j + 1; 
    } 
   } 
  } 
 } 



} 
 
void graf_matrice::toate_drm(int a, int b) 
{ 
 int h; 
  
 for (int f = 0; f < MaxN; f++) 
  vect_rez[f] = -1; 
 
 vect_rez[0] = a; 
 h = 1; 
 while(h >= 1) 
 { 
  while(vect_rez[h] < nr_noduri) 
  { 
   vect_rez[h]++; 
   if(valid(h)) 
   { 
    if(vect_rez[h] == b) 
    { 
     cout << endl; 
     for (int e = 0; e <= h; e++) 
      cout << vect_rez[e] + 1 << " "; 
    } 
    else 
    { 
     h++; 
     vect_rez[h] = -1; 
    } 
   } 
  } 
  h--; 
 } 
} 
 
#endif //GRAF_MATRICE_H 

 
De cele mai multe ori nu se cunoaşte numărul de noduri ale grafului, 

apelându-se la construirea dinamică a grafului pe parcursul  rezolvării 
problemei, deci nu se cunoaşte dimensiunea matricei de adiacenţă. În 
aceste situaţii graful este reprezentat printr-o reţea de liste înlănţuite, liste 
de adiacenţă. Asemenea matricei de adiacenţă descrierea grafului cuprinde 
mulţimea de noduri şi pe cea de arce, precizând orientarea arcului şi după 
caz greutatea lui. 

Se defineşte structura arc care este asociată elementelor din 
mulţimea arcelor: 

 
struct arc   
{ 
 struct nodgraf * destinaţie; /*adresa nodului către care  
       există arc;*/ 
 struct arc* next_arc; /*referinţă către elementul următor  
    din lista de arce;*/   

 int greutate; };    //greutatea arcului; 

 
Este vorba de o listă a arcelor ce este construită dinamic. Structura 

este cea a unei liste oarecare, cuprinzând informaţia propriu-zisă, greutatea 
arcului, precum şi cea necesară înlănţuirii în listă, adresa elementului 



următor. Cu toate că nodgraf * destinaţie este un pointer, el face parte din 
informaţia de bază şi nu din cea destinată regăsirii în listă. În listă există 
mai multe liste, organizate pe principiul descendenţei dintr-un nod. Cum 
fiecare nod din graf este unic, se elimină astfel posibilitatea ca un arc să fie 
în mai multe liste. 

Tipul de structura  nodgraf  este tot o structură de tip listă. Pe lângă 
informaţia nodului şi adresa următorului nod, ea conţine şi adresa de start a 
listei ce cuprinde arcele descendente din nodul respectiv. 

 
struct nodgraf { 
 int info;  //informaţia nodului; 
 struct nodgraf* next;  //referinţă către următorul nod; 
 struct arc *capat; //capătul listei de arce; 
} 

 
La crearea grafului se introduc iniţial informaţiile nodurilor, creându-

se astfel lista lor. După aceasta se vor crea listele de arce introducându-se 
informaţia nodului sursă, a nodului destinaţie şi greutatea arcului. 

Pentru graful  cu greutate din figura 16.6 reprezentarea sa în 
memorie  prin intermediul listelor de liste este dată în figura 16.8. 
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Figura 16.8 Reprezentarea în memorie a unui graf cu ajutorul listelor 

 
Clasa graf_liste care implementează graful definit cu ajutorul listelor 

înlănţuite este: 
 

#ifndef GRAF_LISTE_H 
#define GRAF_LISTE_H 
 
#include <iostream> 
 
using namespace std; 
 
typedef struct arc 
{ 
 struct nodgraf *destinatie;  // adresa nodului catre care e arc; 
 int greutate;   // greutatea arcului; 
  
 // referinta catre elementul urmator din lista de arce 
 struct arc *next_arc;   
} arc; 
 



typedef struct nodgraf 
 { 
 int info;   //informatia nodului; 
 struct nodgraf *next; //referinta catre urmatorul nod; 
 struct arc *capat; //capatul listei de arce; 
 } nodgraf; 
 
typedef struct stiva 
 {  
 nodgraf *n;   //elementul stivei 
 struct stiva *next; //referinta catre urmatorul element; 
 } stiva; 
 
struct lista 
{  
 nodgraf *n;   //elementul listei 
 struct lista *next; //referinta catre urmatorul element; 
}; 
 
typedef struct coada 
{  
 struct lista *pred; 
 struct lista *succ; 
} coada; 
 
class graf_liste 
{  
 int nr; 
   
public: 
 
 static const int MaxN = 50;  // numarul maxim de noduri 
 static const int Infinit = INT_MAX;  /* nu exista drum intre 
noduri */ 
 
 graf_liste(){} 
 graf_liste(int nrnoduri){ nr=nrnoduri;} 
 nodgraf *inserare_nod(nodgraf *,int); //insereaza un nod in graf 
 nodgraf *gaseste_nod(nodgraf *, int); //gaseste un nod in graf 
 void inserare_arc(nodgraf *,int,int,int); //insereaza arc  
 int adiacent(nodgraf *,nodgraf *); /* vf dc 2 noduri sunt 
adiacente */ 
 int sterge_arc(nodgraf *,nodgraf *); //sterge arcul  
 
 void vizitare(nodgraf *nd,int vizitat[]) /* march. nodul ca 
vizitat */  
 {  
  vizitat[nd->info]=1; 
  cout<<nd->info<<" - "; 
 } 
 
 stiva *push(stiva *stk,nodgraf *nd) //pune un element in stiva 
 {   
  stiva *t = new stiva(); 
  t->n = nd; 
  t->next = stk; 
  return t; 
 } 
 
 stiva *pop(stiva *stk, nodgraf **nd) /* scoate un element din 
stiva */ 



    { 
  if(!stk)  
  { 
   return NULL; 
  } 
  else 
  { 
   stiva *t = stk->next; 
   (*nd) = stk->n; 
   delete stk; 
 
   return t; 
  } 
 } 
 
 void depth(nodgraf *); //parcurgere in adancime 
 
 void put(struct coada *q, nodgraf *nd) 
 {              
  lista *t = new lista(); 
  t->n=nd; 
  t->next=NULL; 
 
  lista *keep = q->succ; 
  if (keep != NULL) 
  { 
   keep->next=t; 
  } 
  else  
  { 
   q->pred=t; 
  } 
 
  q->succ = t; 
 } 
 
 nodgraf *get(struct coada *q) //scoate un element din coada 
 { 
  if(q->pred == NULL)  
  { 
   return NULL; 
  } 
  else  
  {  
   lista* t = q->pred; 
   nodgraf* n=t->n; 
    
   if(q->pred == q->succ) 
   { 
    q->succ = NULL; 
   } 
 
   q->pred = q->pred->next; 
 
   delete t; 
   return n; 
  } 
 } 
 
 void breadth(nodgraf *); //parcurgere in latime 
 int drum_minim(nodgraf *,int,int,int[]); //gaseste drumul minim 



 void stergere_nod(nodgraf *&,int);// sterge un nod din graf 
}; 
 
nodgraf* graf_liste::inserare_nod(nodgraf *cap,int info) 
{ 
   
  nodgraf *nou= new nodgraf(); 
  nou->info=info; 
  nou->next=NULL; 
  nou->capat=NULL; 
 
  if(cap==NULL) 
  { 
   return nou; 
  } 
  else 
  {  
      nodgraf *temp = cap; 
      while(temp->next != NULL)  
   { 
    temp=temp->next; 
   } 
 
      temp->next = nou; 
      return nou; 
  } 
} 
 
nodgraf* graf_liste::gaseste_nod(nodgraf *cap, int info) 
{ 
 while(cap != NULL && cap->info != info) 
 { 
  cap = cap->next; 
 } 
 
 return cap; 
} 
 
void graf_liste::inserare_arc(nodgraf *cap,int sursa,int dest,int 
greutate) 
{  
 nodgraf* s = gaseste_nod(cap,sursa); 
 if(s == NULL)  
 { 
  s = inserare_nod(cap,sursa); 
 } 
  
 nodgraf* d=gaseste_nod(cap,dest); 
 if(d == NULL)  
 { 
  d = inserare_nod(cap,dest); 
 } 
  
 arc *temp = s->capat,*keep=NULL; 
 int gasit = 0; 
 
 while(temp != NULL && !gasit) 
 { 
  if(temp->destinatie == d) 
  { 
   temp->greutate = greutate; 



   gasit = 1; 
  } 
  else  
  {  
   keep = temp; 
   temp = temp->next_arc; 
   } 
 } 
 
 if(!gasit) 
 {          
  temp= new arc(); 
  temp->destinatie=d; 
  temp->greutate=greutate; 
  temp->next_arc=NULL; 
   
  if(keep == NULL)  
  { 
   s->capat=temp; 
  } 
  else  
  { 
   keep->next_arc=temp; 
  } 
 } 
} 
 
int graf_liste::adiacent(nodgraf *s,nodgraf *d) 
{ 
  arc *temp = s->capat; 
   
  while(temp != NULL && temp->destinatie != d) 
  { 
   temp=temp->next_arc; 
  } 
 
  return temp != NULL ? temp->greutate : 0; 
} 
 
int graf_liste::sterge_arc(nodgraf *s,nodgraf *d) 
{  
 arc *keep = NULL;   
 arc* temp=s->capat; 
 
 while(temp != NULL) 
 { 
  if(temp->destinatie == d) 
  {  
   if(keep == NULL)  
   { 
    s->capat=temp->next_arc; 
   } 
   else  
   { 
    keep->next_arc=temp->next_arc; 
   } 
    
   delete temp; 
   return 1; // nodul a fost şters 
  } 
  else  



  {  
   keep = temp; 
   temp = temp->next_arc; 
  } 
 } 
 
 return 0; // nodul nu a fost şters 
} 
 
void graf_liste::depth(nodgraf *g) 
{   
 int vizitat[MaxN]; 
 for(int i=0; i < MaxN; i++)  
 { 
  vizitat[i] = 0; 
 } 
 
 nodgraf *curent,**nd; 
 arc *temp; 
 stiva *stk=NULL; 
 
 while(g != NULL) 
    {  
  if(!vizitat[g->info]) 
  {  
   cout << endl << "Componenta : " <<endl; 
   stk = push(stk,g); 
      
   do 
   {  
    stk = pop(stk,nd); 
    curent = *nd; 
    vizitare(curent,vizitat); 
    temp=curent->capat; 
   
    while(temp) 
    {  
     if(!vizitat[temp->destinatie->info]) 
      stk=push(stk,temp->destinatie); 
      
     temp=temp->next_arc; 
    } 
   } while(stk != NULL); 
  } 
  g=g->next; 
 } 
} 
 
void graf_liste::breadth(nodgraf *g) 
{  
 nodgraf *curent; 
 arc *temp; 
 coada *q,coada={NULL,NULL}; 
 q = &coada; 
 
 int vizitat[MaxN]; 
 for(int i = 0; i < MaxN; i++) 
 { 
  vizitat[i] = 0; 
 } 
 



 while(g != NULL) 
 {  
  if(!vizitat[g->info]) 
  {  
   cout << endl << "Componenta : " << endl; 
   put(q,g); 
    
   do 
   {  
    curent = get(q); 
   
    if(!vizitat[curent->info]) 
    {  
     vizitare(curent,vizitat); 
     temp = curent->capat; 
       
     while(temp) 
     {  
      if(!vizitat[temp->destinatie-
>info]) 
        put(q,temp->destinatie); 
       
      temp=temp->next_arc; 
     } 
    } 
   } while(q->pred != NULL); 
  } 
 
  g = g->next; 
 } 
} 
 
int graf_liste::drum_minim(nodgraf *g,int sursa,int dest,int 
precede[MaxN]) 
{  
   nodgraf *tmp; 
   arc *temp; 
 
 int distanta[MaxN],i,k,min,curent, perm[MaxN], dc, distanta_noua; 
   
 for(i = 0; i < MaxN; i++) 
 {  
  distanta[i]=precede[i]=graf_liste::Infinit; 
  perm[i]=-1; 
 } 
 
 distanta[sursa] = 0; 
 curent = sursa; 
 perm[sursa] = 1; 
 
 while(curent != dest) 
 {  
  dc = distanta[curent]; 
  tmp = gaseste_nod(g,curent); 
  temp = tmp->capat; 
       
  while(temp) 
  { 
   distanta_noua = dc + temp->greutate; 
   tmp = temp->destinatie; 
     



   if(distanta_noua < distanta[tmp->info]) 
            {         
    distanta[tmp->info] = distanta_noua; 
    precede[tmp->info] = curent; 
   } 
 
   temp = temp->next_arc; 
  } 
 
  for(i = 0; i < MaxN && perm[i] > 0; i++); 
 
  k = i; 
  min = distanta[k]; 
  for(i = k; i < MaxN; i++) 
  { 
   if(perm[i] < 0 && distanta[i] < min) 
   {  
    min = distanta[i]; 
    k = i; 
   } 
  } 
  curent = k; 
  perm[k] = 1; 
 } 
  
 return distanta[dest]; 
} 
 
void graf_liste::stergere_nod(nodgraf *&temp,int sursa) 
{ 
 if(temp->info == sursa) 
 { 
  nodgraf *a = temp; 
  temp = a->next; 
  delete a; 
 } 
 else  
 { 
  stergere_nod(temp->next, sursa); 
 } 
} 
 
#endif //GRAF_LISTE_H 

 
 
16.3 Traversarea unui graf 
 
Un graf este în esenţă o reţea, care de cele mai multe ori are 

corespondenţă în lume reală. Cum principala caracteristică a unei reţele 
este mobilitatea continuă din interiorul său, se pune problema parcurgerii 
grafului. În cazul altor structuri de date, vectori, liste şi chiar arbori lucrurile 
sunt clare: se pornea de la un capăt şi trecându-se de la un element la 
următorul se parcurgea integral structura fără ca un element să fie vizitat 
de mai multe ori.  

Graful fiind o structură de date mai generală în care nodurile au mai 
mult de un predecesor se pune deci problema trecerii  o singură dată prin 
fiecare nod. Pentru a complica mai mult problema se ia în considerare şi 
faptul că oricare nod al grafului este un posibil punct de start al traversării, 



lucru care demonstrează că aceasta nu este unică, rezultatele variind de la 
caza la caz. 

Evitarea revenirii într-un nod vizitat se face asociind acestuia o 
etichetă care să indice acest lucru. Metodele de traversare a grafului sunt 
bazate pe acest principiu, deosebindu-le  doar modul în care stochează şi 
revin asupra unor direcţii necercetate. 

Cele două metode sunt : 
- traversarea în adâncime (depth-first traversal); 
- traversarea în lăţime (breadth-first traversal). 
Pe scurt, cele două traversări sunt asemenea drumului parcurs de 

exploratori într-o peşteră, numai că în cazul traversării în adâncime avem 
un singur explorator care se întoarce de fiecare dată când ajunge la un 
capăt de drum la ultima intersecţie, iar în cazul traversării în lăţime sunt o 
echipă, fiecare luând-o pe un drum.  

Odată traversat graful cu una dintre aceste metode, se creează o 
pădure acoperitoare pentru el, lucru util pentru punerea în evidenţă a 
componentelor sale conexe, dar şi un arbore acoperitor. Arborele acoperitor 
este un subgraf ce conţine nodurile grafului iniţial şi doar atâtea arce încât 
să fie construit un arbore.  

 Pentru un graf implementat prin intermediul unei matrice de 
adiacenţă, ordinul de complexitate al operaţiei de traversare este O (n2). 
Graful cu n noduri, are matricea asociată  de dimensiune nxn. Rezultă că 
timpul alocat  prelucrării unui nod în vederea  găsirii tuturor nodurilor 
adiacente este O (n); se parcurge linia de n elemente a nodului. Deci pentru 
n noduri timpul necesar traversării este de n*O (n) = O (n2). După cum se 
observă, indicatorul depinde doar de numărul nodurilor, numărul arcelor 
dintre noduri neavând nici o influenţă.  

În cealaltă situaţie, pentru un graf  reprezentat cu ajutorul listelor 
înlănţuite, ordinul de complexitate al operaţiei de traversare este cuprins 
între O (n) şi O (n2). Indicatorul depinde aici de numărul de arce al fiecărui 
nod. Cel mai fericit caz este acela când nu există nici un arc între noduri şi 
atunci traversarea are ordinul de complexitate minim O(n). Dacă fiecare nod 
al grafului are arce către toate celelalte n-1 noduri ale grafului, se obţine 
complexitatea maximă O (n2).     

Procesul de traversare în adâncime a unui graf, este unul de tip 
backtracking, analogic cu traversarea în preordine a unui arbore. 

Algoritmul foloseşte în acest scop un vector sau o listă în care pune 
nodurile vizitate şi o stivă în care sunt puse nodurile adiacente nodului 
curent. Odată vizitat un nod, traversarea se îndepărtează în adâncime până 
când ajunge la un capăt de drum. 

Fie nodul de start al parcurgerii, nodul notat cu X. Acesta este 
etichetat ca vizitat şi este trecut în listă. Toate n nodurile adiacente lui X, Xi 
cu i = 1..n, sunt puse în stiva de aşteptare. Primul nod din stivă, X1, este 
verificat dacă nu este în listă, caz în care este vizitat, fiind scos şi pus în 
listă. În cealaltă situaţie, nodul se afla deja în listă, el este scos din stivă şi 
este verificat nodul de sub el. Aceşti paşi sunt repetaţi pentru fiecare nod 
adiacent al lui X1. 

Altfel spus, se pleacă pe drumul dat de primul nod adiacent al nodului 
de start, primul nod adiacent al nodului deja vizitat şi tot aşa până când se 
ajunge la un nod al cărui  prim nod adiacent a fost vizitat sau nu există fiind 
un capăt de drum. Atunci se trece la următorul nod adiacent pe care se 
continuă, dacă este posibil, sau în acest moment, algoritmul se întoarce la 



penultimul nod vizitat şi pleacă pe al doilea nod adiacent al acestuia, în 
condiţiile în care el nu  a fost  vizitat şi există. Algoritmul se întoarce atâta 
timp cât există noduri în stivă. 
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Figura 16.9 Graf orientat 
 
Parcurgerea în adâncime a grafului orientat din figura 16.9 presupune 

parcurgerea etapelor : 
1. se alege nodul A ca punct de start al traversării. Nodul A este 

vizitat şi este trecut în lista nodurilor pe la care s-a trecut. În stivă 
sunt trecute nodurile către care are arce direcţionate: B şi C; 
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Figura 16.10 Paşii primei etape 
 
2. se scoate primul nod din stivă, C, şi cum acesta nu a fost vizitat 

(nu se afla în lista nodurilor vizitate) este trecut acum în listă. 
Nodurile sale adiacente, doar D, sunt trecute în stivă; 
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Figura 16.11 Paşii etapei 2 
 
3. se scoate nodul D din stivă şi este pus în listă, deoarece nu a fost 

vizitat. Nodurile sale adiacente, F şi E, se pun în stivă;  
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Figura 16.12 Paşii etapei 3 
 
4. se scoate nodul din stivă nodul F şi este etichetat ca vizitat. În 

acest punct se ajunge la un sfârşit de drum şi astfel trece la 
următorul element din stivă; 
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Figura 16.13 Paşii etapei 4 
 
5. se vizitează  nodul E. Iniţial se trece în stivă nodul adiacent lui E, 

anume  nodul F, dar el este scos apoi din stivă existând, deja în 
lista nodurilor vizitate. În stivă rămâne doar nodul B; 
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Figura 16.14 Lista nodurilor vizitate 
 

6. traversarea este completată prin vizitarea nodului B. Cele două 
noduri adiacente ale sale, F şi C, sunt trecute în stivă, însă sunt 
scoase apoi unul câte unul, ele fiind deja însemnate ca vizitate. 
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Figura 16.15 Arbore acoperitor în adâncime  

pentru graful din figura 16.9 
 
La scrierea codului sursă, algoritmul se îmbunătăţeşte făcându-se o 

căutare în listă a nodurilor care se introduc în stivă pentru a se vedea dacă 
sunt sau nu deja vizitate. Traversarea grafului neorientat nu implică 



modificarea în vreun fel a algoritmului, acesta fiind aplicat fără nici o 
restricţie. 

Arborele acoperitor este construit odată cu lista nodurilor vizitate, 
adăugând un nod la listă se completează şi arborele.  

Traversarea grafului, folosind acest procedeu, dă un rezultat diferit 
pentru un nod de start altul decât A, acest lucru fiind valabil şi pentru 
arborele acoperitor din figura 16.9.  

Procesul de traversare în lăţime a unui graf  orientat sau neorientat, 
este analog procesului de traversare în inordine a unui arbore, şi constă în 
parcurgerea o singură dată a tuturor nodurilor din graf. 

Deosebirile de cealaltă metodă constau în folosirea unei cozi de data 
aceasta pentru a păstra nodurile de verificat, şi în faptul că algoritmul se 
îndepărtează de nodul vizitat doar după ce a examinat şi vizitat, dacă este 
posibil, toţi succesorii săi. În schimb şi această metodă este aplicabilă atât 
grafului orientat cât şi neorienatat dând rezultate ce variază în funcţie de 
alegerea nodului de pornire. 

Parcurgerea în lăţime a grafului din figura 16.9, presupune paşii: 
1. se alege nodul A ca punct de start al traversării. Nodul A este 

vizitat şi este trecut în lista nodurilor pe la care s-a trecut. În 
coadă sunt trecute nodurile către care are arce (direcţionate sau 
nedirecţionate, în funcţie de tipul grafului): B şi C; 
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Figura 16.16 Paşii primei etape 
 

2. sunt verificate nodurile adiacente şi sunt vizitate dacă nu se află 
deja în listă. În momentul trecerii în lista nodurilor deja parcurse, 
nodurile lor adiacente sunt adăugate la coadă, nodul F şi C 
adiacente lui B şi nodul D adiacent lui C; 
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Figura 16.17 Paşii etapei 2 
 
3. din coadă trec în lista nodurilor traversate, nodurile F şi D. Nodul 

C există deja în listă şi doar este scos din coadă. Nodul F nu are 
adiacenţi şi reprezintă un capăt de drum, nici un nod nefiind 
adăugat în coadă. În schimb, coada este completată cu nodurile E 
şi F, care sunt adiacente lui D;    
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Figura 16.18 Paşii etapei 3 
 

4. traversarea este încheiată prin adăugarea nodului E la listă. 
Nodurile F şi C au fost vizitate şi nu se mai pun iar în listă. 

 
 A B C E F D 

 
 

Figura 16.19 Lista nodurilor vizitate 
 
Ca şi în cazul metodei precedente, algoritmul se optimizează 

verificându-se înainte de a fi pus în coada de aşteptare dacă nodul respectiv 
se află în listă sau nu. 
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Figura 16.20 Arbore acoperitor în lăţime  
pentru graful din figura 16.9 

 
Arborele acoperitor este construit odată cu lista nodurilor vizitate. 

Adăugând un nod la listă se completează şi arborele, iar toate nodurile 
adiacente cu acesta şi care nu au fost vizitate sunt adăugate la arbore ca 
noduri copii (ulterior devin noduri părinte pentru nodurile adiacente din 
graf).  

În concordanţă cu rezultatul dat de traversarea în lăţime a arborelui, 
şi forma arborelui acoperitor variază în funcţie de nodul de start. 

 
 
16.4 Închiderea tranzitivă a grafului 
 
Graful este de cele mai multe ori reprezentarea matematică a 

problemelor economice şi nu numai, legate de transport, de costul 
deplasării dintr-un punct în altul, de durata realizării acestuia. Cea mai 
sugestivă aplicaţie legată de implicarea grafului în rezolvarea acestor 
probleme este cea a drumului minim, însă de multe ori este necesar să se 
ştie doar dacă este drum între două noduri. Soluţia acestei probleme este 
dată de realizarea unei matrice, numită închiderea tranzitivă a matricei de 



adiacenţă, care să arate pentru fiecare nod în parte unde se poate ajunge 
plecând din el. 

O modalitate de creare a acesteia este dată de traversarea în 
adâncime a grafului. Traversând graful din fiecare nod al său, se obţin 
atâtea liste câte noduri sunt, liste care arată în ce noduri se ajunge din 
nodul de start. Acestea din urmă se transpun într-o matrice M[n][n], care 
are elementul mij =1 dacă există drum de la nodul Ni la nodul Nj şi 0 în rest.     
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Figura 16.21 Exemplu de structură de graf 
 

Pentru graful din figura 16.21 traversarea prin metoda DFS pornind 
din fiecare nod are ca rezultat următoarele liste : 

- pornind din A avem: A, C, D, F, E, B; 
- pornind din B avem: B, C, D, F, E; 
- pornind din C avem: C, D, F, E; 
- pornind din D avem: D, F, E, C; 
- pornind din E avem: E, F, C, D; 
- pornind din F avem: F. 
Matricea închiderii tranzitive obţinute prin intermediul listelor este: 
 





























100000

111100

111100

111100

111110

111111

MIT .  (16.2) 

 
Folosind matricea, creăm graful extins numit închidere tranzitivă. 

Luăm fiecare nod în parte, iar pe reprezentarea grafului iniţial  se desenează 
săgeţi punctate către nodurile la care se ajunge şi care nu sunt adiacente 
lui. 

 Închiderea tranzitivă este prezentată în figura 16.22. 
 
 



 

A 

B 

C 

D

E

F 

 
 

Figura 16.22 Închiderea tranzitivă a grafului din figura 16.9 
 
Ordinul de complexitate al acestei operaţii este foarte mare, şi anume 

O (n3), pentru că pentru fiecare dintre cele n noduri se aplică traversarea în 
adâncime, care are  complexitatea maximă O (n2). Deşi este uşor de 
implementat, pentru un graf foarte mare metoda consumă multe resurse. 

O altă soluţie, mai elegantă dar cu acelaşi grad de complexitate, a 
fost dată de Stephan Warshall. În construirea algoritmului său, el a plecat 
de la ideea următoare: luând nodurile Ni, Nj, Nk, (cu i, j, k = 1..n 
şi kji  ) şi dacă există arcele Aik şi Akj atunci există drum de la nodul Ni 
la nodul Nj, acest lucru însemnându-se în închiderea tranzitivă a matricei de 
adiacenţă.  

Algoritmul iniţializează matricea închiderii tranzitive cu valoarea 
matricei de adiacenţă a grafului şi pune valoarea 1 pe diagonala principală 
(evident există arc de la un nod la el). În urma a trei cicluri după variabilele  
i, j, k (cu i, j, k = 0 ... n-1), elementele matricei închiderii tranzitive 
A’[n][n] iau valoarea 1 dacă a’[i][k] = a’[k][j], adică: 

  
a’[i][j] = a’[i][k] & a’[k][j] (16.3) 

 
În clasa graf_matrice, metoda asociată algoritmului este:  
 

void graf_matrice::inchidere_tranzitiva() 
{ 
 int i,j,k; 
 int a_tranz[MaxLungGraf][MaxLungGraf]; 
 
//se creeza matricea închiderii tranzitive iniţială plecând de la  
//matricea de adiacenţă a grafului 
 for(i = 0; i<nr_noduri; i++) 
  for(j = 0; j<nr_noduri; j++) 
   if(i==j)  
    a_tranz[i][j] = 1; 
   else 
    a_tranz[i][j] = matm[i][j]; 
//se cerceteaza perechi de câte 3 noduri si se formeaza matricea 
 for(i = 0; i<nr_noduri; i++) 
  for(j = 0; j<nr_noduri; j++) 
   for(k = 0; k<nr_noduri; k++) 
    a_tranz[i][j] = a_tranz[i][k] && a_tranz[k][j]; 
//se afiseaza matricea de adiacenţă a grafului 
 for(i = 0; i<nr_noduri; i++) 
 { 



  for(j = 0; j<nr_noduri; j++) 
   cout << a_tranz[i][j] << " "; 
  cout << endl; 
 } 
} 

 
 
16.5 Problema drumului de lungime minimă în graf 
 
Revenim la problema iniţială, cea a parcurgerii traseului Arad – 

Bucureşti având cel mai mic cost. Soluţia constă în găsirea acelor oraşe prin 
care trece traseul astfel încât suma distanţelor parcurse să fie cea mai mică, 
în raport cu lungimea altor posibile drumuri de parcurs. La nivelul grafului în 
loc de oraşe, distanţe avem noduri şi arce cu greutate. 

Parţial, problema este rezolvată deoarece folosind cele două metode 
de traversare a unui graf avem capacitatea de a afla ce noduri se află pe 
trase şi astfel putem forma o serie de drumuri de urmat. Nu mai rămâne 
decât să vedem în cazul grafului cu greutate care drum are suma valorilor 
arcelor minimă sau în cazul grafului fără greutate care drum are mai puţine 
arce. Deşi această soluţia este simplu de implementat, ea este mare 
consumatoare de resurse în cazul unui graf mare, aşa că ne trebuie un 
program care să combine cele două etape, reducând traversările repetate 
ale grafului la una. 

Acest lucru este făcut de algoritmul Dijkstra, care examinează toate 
drumurile ce pornesc din nodul curent, actualizând distanţele dintre el şi 
celelalte noduri. Pentru a păstra nodurile prin care trece drumul cel mai 
scurt, programul le reţine într-o listă pe care o notăm cu L. În final lista 
conţine mulţimea minimă de noduri care să le conţină pe toate cele care vor 
forma efectiv drumul optim. 

Nodurile care se adaugă în această listă sunt acele noduri ale grafului 
la care se ajunge prin arce directe doar de la nodurile din lista L (ele 
reprezintă nodurile adiacente celor din L) şi care au lungimea cumulată 
până în acel moment minimă.  

Pentru a nu calcula de fiecare dată distanţa minimă până în acel nod, 
ea este atribuită ca informaţie nodului, asemenea unei etichete. Ele sunt 
implementate utilizând un vector de lungime n, unde n este numărul de 
noduri al grafului (vector[i] reţine eticheta nodului i), sau creând o listă cu n 
elemente de tip etichetă. 

Drumul minim este găsit în momentul în care în lista L se află nodul 
destinaţie. 

Algoritmul constă în paşii:  
Pasul 1. Se construieşte lista L şi elementele vectorului/listei 

distanţelor sunt iniţializate cu o valoare foarte mare; 
Pasul 2. Se alege nodul sursă, el devenind şi primul nod pus în lista 

L. Valoarea etichetei corespunzătoare lui ia valoarea 0; 
Pasul 3. Se repetă până când nodul destinaţie se află în L. Sunt 

analizate nodurile grafului care nu sunt în lista L. 
Dacă există noduri Ni în care se poate ajunge prin arce directe de la 

noduri din L, se calculează distanţa de la nodul de start până la ele:  
 

distanţa(Ni)=min(val_etichetă(Ni),val_etichetă(Nk)+greutate_arc(Nk ,Ni))   (16.4) 
 



unde: 
 
 val_etichetă(Ni)  – reprezintă valoarea etichetei  asociată nodului Ni; 
 greutate_arc(Nk,Ni))  – reprezintă valoarea arcului dintre nodurile Nk şi 

Ni; 
 Nk  – este un nod din lista L de la care se ajunge prin 

arc direct la nodul Ni care nu se află în listă. 
Se adaugă la lista L acel nod Ni care are distanţa(Ni) obţinută minimă. 

Pentru el ca şi pentru celelalte noduri pentru care s-au calculat distanţele se 
reactualizează etichetele: 

 
val_etichetă(Ni) = min(val_etichetă(Ni), distanţa(Ni)) (16.5) 
 
Dacă nu există nici un nod de acest tip atunci nu există nici un drum 

până la destinaţie. 
Pasul 4. Dacă nodul destinaţie se află în lista L, atunci valoarea 

etichetei sale reprezintă drumul de lungime minimă. Pentru găsirea acestui 
drum, se porneşte înapoi  de la nodul final şi folosind nodurile din L.  

Pentru a nu pierde timp la Pasul 4 reconstituind drumul, aşa cum s-a 
ataşat fiecărui nod o etichetă, i se asociază o listă în care sunt memorate 
nodurile precedente care au dat valoarea etichetei în acel moment. Nodul 
nou introdus în lista L, iniţializează lista drumului deja parcurs cu valorile 
din lista predecesorului său direct şi apoi îl adaugă şi pe acesta. 
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Figura 16.23 Graf orientat cu greutate 
 
Pentru a exemplifica metoda, se aplică algoritmul lui Dijkstra pentru a 

calcula drumul minim de la nodul A la nodul F, noduri ce aparţin grafului din 
figura 16.23.  

Se fac notaţiile ajutătoare:  
 E(Ni)  – valoarea etichetei nodului Ni;  
 L(Ni)  – lista nodurilor prin care s-a ajuns la nodul Ni;  
 L  – lista nodurilor care au fost luate în considerare. 

Etapele parcurse sunt : 
- se iniţializează eticheta nodului A cu valoarea 0, E(A) = 0, iar 

pentru celelalte noduri cu o valoare foarte mare, E(B) = E(C) = 
E(D) = E(E) = E(F) =  . Se pune nodul A în lista L; 

- se calculează valoarea etichetei vecinilor nodului A, E(B) = 7 şi 
E(C) = 2. Cum nodul C are valoarea etichetei minimă şi nu se află 
în lista L, el este adăugat la aceasta. În lista nodurilor precedente 
lui C, L(C), se pune nodul A, iar L = { A, C }; 



- se calculează valoarea etichetelor vecinilor nodului C, E(B) = 5 şi 
E(E) = 4. Vechea valoare al lui E(B), care este 7, este înlocuită de 
noua valoare calculată, aceasta din urmă fiind mai mică. Cum 
nodul E are eticheta minimă şi nu se află în lista L, este adăugat la 
aceasta şi L(E) = { A, C }, iar L = { A, C, E }; 

- se  calculează etichetele pentru nodul F care este vecinul direct al 
nodului E, E(F)=13. Dintre toate etichetele, cea a nodului  are 
valoarea minimă, 5, şi cum el nu este în L, este pus în această 
listă, deci L = {A, C, E, B}. În lista predecesorilor săi sunt puşi 
predecesorii nodului de la care s-a ajuns la B, adică ai nodului C, 
şi acesta din urmă, L(B) = {A, C}; 
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Figura 16.24 Pas intermediar 
 
- se calculează valoarea etichetelor vecinilor nodului B, E(D) = 9, 

E(E) = 13 şi E(F) = = 25. În cazul nodurilor E şi F etichetele îşi 
păstrează vechile valori, care sunt mai mici. Cu toate că în acest 
moment nodul E are eticheta cu valoare minimă, el nu este ales ca 
fiind următorul nod al drumului pentru că se află deja în lista L. 
Deci nodul care se traversează este D, iar L(D) = {A, C, B} şi L = 
{A, C, E, B, D}; 

- se calculează valoarea etichetei pentru nodurile E şi F (sunt noduri 
adiacente directe pentru nodul D), E(E) = 11 şi E(F) = 10. Pentru 
nodul E valoarea etichetei nu este înlocuită cu cea nouă. Nodul 
care nu se află în lista L şi care are valoarea etichetei minimă este 
F. Este adăugat la listă şi în acest moment căutarea ia sfârşit. 
Drumul minim este  A – C – B – D – F.  
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Figura 16.25 Drumul minim  



 
Afişarea drumului minim şi a lungimii sale folosind funcţia din clasa 

graf_liste are codul sursă: 
 

int lungime = x.drum_minim(g,start,stop,precede); 
if(test != MAXINT) 
{  
      cout<<endl<<"Drum minim "<<stop<<"<-"<<start<<" are lungimea : 
"<<lungime<<" si este : "; 
     for(int i=stop;i>0&&(i !=MAXINT);i = precede[i])  
          cout<<i<<"<-"; 
} 
else  
        cout<<"Nu exista drum de la nodul "<<start<<" la nodul 
"<<stop;  

 
 
16.6 Operaţii de concatenare şi deconcatenare cu grafuri 
 
    Se defineşte concatenarea a doua grafuri ca fiind operaţia de 

adăugare a altui graf la unul din nodurile  grafului iniţial respectând 
următoarele reguli: 

- nodul capăt al grafului al doilea se va lega printr-un arc de un nod 
al primului graf; arcul este orientat pe direcţia nod graf 1 ->capăt 
graf 2; 

- se introduce de la tastatură informaţia nodului unde se va adăuga 
graful al doilea; 

- dacă nodul capăt al grafului 2 este nod în graful 1 şi concatenarea 
se face în acel nod nu se va mai face nici un arc, completându-se 
lista de arce a nodului din graful 1 cu arcele nodului din graful 2; 

- dacă nodul final al grafurilor diferă, atunci între nodul final al 
grafului 2 şi cel al primului graf se va forma un arc a cărui 
informaţie se va citi de la tastatură; 

- dacă al doilea graf se leagă la nodul final al grafului 1 atunci nodul 
final al grafului 2 devine nod final al noului graf obţinut prin 
concatenarea celor două grafuri; 

- dacă în graful al doilea se află minim două noduri  care se află şi 
în primul graf, o condiţie esenţială de a face concatenarea celor 
două grafuri este că, dacă există în ambele grafuri arc în acelaşi 
sens între cele două noduri, acesta să aibă aceeaşi greutate. 

Funcţia care verifică această ultima condiţie este următoarea: 
 

int graf_liste::verificare(nodgraf *cap,nodgraf *cap2) 
{ 
nodgraf *p,*q,*aux1,*aux2; 
int k=1; 
for(p=cap;p!=NULL;p=p->next) 
   for(q=cap2;q!=NULL;q=q->next) 
   { 
       if (q->info==p->info)  
 for(aux1=cap;aux1!=NULL;aux1=aux1->next) 
/*nodurile comune le compar 2 câte 2 să văd care este greutatea 
arcului dacă există vreunul*/ 
    for(aux2=q->next;aux2!=NULL;aux2=aux2->next) 
              { 



        if(aux2->info==aux1->info) 
   if (verif_arc(p,aux1)!=verif_arc(q,aux2)) 
   { //dacă au greutate diferită atunci 
    printf("\n Nu se poate face concatenarea !"); 
    k=0; 
    return k; 
   } 
              } 
    } 
return k; 
} 

     
    Funcţia care realizează concatenarea celor două grafuri primeşte ca 

date de intrare doi pointeri la capetele celor două grafuri şi returnează 0 
dacă nu se poate face concatenarea şi l dacă a reuşit. Funcţia respectând 
condiţiile de mai sus,  adaugă la lista nodurilor grafului 1 şi nodurile care nu 
sunt comune ale grafului 2, iar listele de arce ale acestor noduri sunt şi ele 
copiate. În cazul nodurilor comune, listele arcelor sunt doar completate cu 
arce noi. Există şi cazuri când este nevoie să se creeze arce noi (când se 
leagă de exemplu nodurile finale ale grafurilor) iar atunci greutatea lor este 
citită de la tastatură.   

    Funcţia este:  
 

int graf_liste::concatenaregraf(nodgraf *cap,nodgraf *cap2) 
{ 
int k; 
nodgraf *p,*q,*aux,*ultim1,*ultim2; 
arc *r; 
//verifica dacă se poate face concatenarea 
if(verificare(cap,cap2)==0) return 0;      
printf("\n La ce nod are loc concatenarea ?"); 
/*se introduce nodul unde se face concatenarea şi se verifică dacă el 
există în primul graf*/ 
k=citire(); 
 
ultim1=cauta_nodgraf_final(cap); 
// memorez ultimul nod al grafului 1  
ultim2=cauta_nodgraf_final(cap2); 
//memorez ultimul nod al grafului 2 
 
/*se inserează în lista nodurilor primului graf nodurile necomune din 
al doilea graf*/ 
for(q=cap2;q!=NULL;q=q->next) 
{ 
 p=cauta_nodgraf(cap,q->info); 
 if(p==NULL) cap=ins_nodgraf(cap,q->info); 
} 
/* se copiază pentru noduri şi lista arcelor, iar pentru acele noduri 
care existau se completează această listă*/  
for(q=cap2;q!=NULL;q=q->next) 
{ 
 p=cauta_nodgraf(cap,q->info); 
 if(p!=NULL) for(r=q->capat;r!=NULL;r=r->next_arc) 
/*functia ins_arc(nod cap,int sursă,int destinaţie,int greutate) 
inserează un nou arc catre nodul cu informaţia destinaţie de greutate 
greutate în lista arcelor nodului cu informaţia sursă din graful cu 
capăt cap */  
 ins_arc(cap,p->info,r->destinatie->info,r->weight); 
} 



 
/* dacă nodul unde se face concatenarea nu este capăt al grafului 2 
atunci se face arc între cele două cu citirea informaţiei de la 
tastatură*/ 
if(cap2->info!=aux->info) 
{ 
printf("\n Distanta dintre nodul ales si capatul grafului 2 este ?"); 
k=citire(); 
ins_arc(cap,aux->info,cap2->info,k); 
} 
/* dacă al doilea graf nu se leagă la nodul final al primului graf şi 
dacă nodurile finale nu sunt aceleaşi, atunci ele se leagă printr-un 
arc */ 
if(aux->info!=ultim1->info) 
    if(ultim1->info!=ultim2->info) 
        if(cauta_nodgraf(cap,ultim2->info)==NULL) 
/* funcţia cauta_nodgraf(nod * cap,int k) cauta un nod cu informaţia k 
în graful cu capăt cap, returnănd adresa nodului sau NULL */  
       { 
               printf("\n Distanta dintre nodul final al grafului 2 si 
cel al lui 1 este ?"); 
   k=citire(); 
//se crează arc intre nod final al grafului 1 si cel al grafului 2 
  ins_arc(cap,ultim2->info,ultim1->info,k); 
       } 
return 1; 
} 

  
Pentru a exemplifica procesul de concatenare a două grafuri luăm 

grafurile din figura 16.26. 
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Figura 16.26 Exemple de grafuri 
 

Dacă se doreşte concatenarea grafului 2 la graful 1 în nodul cu 
valoare 2 atunci graful care va rezulta va fi: 
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Figura 16.27 Concatenarea a două grafuri 

 
Informaţia arcului dintre nodul cu informaţia 6 şi cel cu informaţia 4 a 

fost introdusă de la tastatură fiind ceruta de funcţia de concatenare. 
Deconcatenarea unui graf este operaţia de rupere a acestui graf în 

două grafuri diferite din punct de vedere al nodurilor care le formează şi al 
arcelor ce le leagă. 

Funcţia care realizează deconcatenarea grafului primeşte ca date de 
intrare pointer la capătul grafului de deconcatenat şi ea va returna în 
pointer la capătul celui de-al doilea graf. 

Pentru a exemplifica deconcatenarea se consideră graful din figura 
16.28. 
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Figura 16.28. Deconcatenarea unui graf 
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Figura 16.29. Deconcatenarea unui graf 

 
În momentul lansării în execuţie se cere să se introducă informaţia 

nodurilor care formează al doilea graf. Astfel se va crea lista nodurilor 
noului graf care se va obţine. Primul lucru care se face după aceasta este 
crearea listelor de arce pentru aceste noduri. Pentru fiecare nod al noului 
graf se verifică dacă el are arce cu nodurile acestui nou graf cu ajutorul 
funcţiilor: 

 



 
/*funcţia verifică dacă nodul referit prin *s are arc către nodul 
referit prin *d, şi întoarce ca rezultat greutatea arcului sau 0 dacă 
nu este arc*/  
 
int graf_liste::verif_arc(nodgraf *s,nodgraf *d) 
{ 
arc * p,*aux; 
int gasit=0; 
for(p=s->capat;p!=NULL;p=p->next_arc) 
   if(p->destinatie==d) { 
 gasit=1; 
 aux=p; 
 return aux->weight; 
    } 
 
if (gasit==0) {   
       return 0; 
} 
else return aux->weight; 
} 
 
/* funcţia primeşte ca date de intrare pointer la capătul grafului şi 
informaţia nodului pe care îl caută şi va returna adresa nodului 
căutat sau NULL*/ 
 
nodgraf *cauta_nodgraf(nodgraf * cap,int info) 
{ 
nodgraf *p,*q; 
int gasit=0; 
for(p=cap;p!=NULL;p=p->next) 
 if(p->info==info) { 
 gasit=1; 
 q=p; 
  } 
if(gasit==0){ 
 return NULL; 
} 
  else return q; 
} 

 
Odată creată lista nodurilor noului graf şi a listelor de arce asociate 

acestora, se va reactualiza lista nodurilor şi a arcelor grafului iniţial. Pentru 
a realiza acest lucru trebuie respectate următoarele: 

- nodurile celui de-al doilea graf care se formează şi care sunt sursă 
sau destinaţie în arce numai cu noduri care formează şi ele al 
doilea graf, sunt şterse dintre nodurile grafului iniţial; 

- nodurile  grafului care se formează şi care sunt şi sursă şi 
destinaţie în arce cu noduri care nu intră în al doilea graf rămân în 
primul graf, dar se şterg arcele cu nodurile care nu rămân; funcţia 
care verifică dacă un nod respectă această condiţie sau nu este: 

  
/* funcţia primeşte ca date de intrare referinţe la capătul grafului 
iniţial, la al celui nou şi la nodul care se verifică ; ea va returna 
0 dacă nu are legătură cu noduri care rămân în graful iniţial şi o 
valoare diferită de 0 în caz contrar*/ 
 
int graf_liste::verif_stergere(nodgraf *cap,nodgraf *cap2,nodgraf *q) 
{ 



nodgraf *p,*z; 
int k=0; 
int vb=0; 
for(p=cap;p!=NULL;p=p->next) 
{ 
     if(cauta_nodgraf(cap2,p->info)==NULL) 
    { 
   z=cauta_nodgraf(cap,q->info); 
   if(z!=NULL) k=verif_arc(p,z); 
   if(k!=0) vb=k; 
   } 
} 
return vb; 
} 

 
Funcţiile care realizează deconcatenarea unui graf sunt: 
 

/* functia se apelează dupa funcţia deconcatengraf şi are ca scop 
reactualizarea listei de noduri a grafului iniţial primeste ca date de 
intrare referinta la capetele celor doua grafuri*/ 
 
void graf_liste::stergerenodgrafuri(nodgraf *&cap,nodgraf *cap2) 
{ 
int t; 
nodgraf *p,*q,*z,w; 
for(p=cap;p!=NULL;p=p->next) 
    for(q=cap2;q!=NULL;q=q->next) 
    { 
    z=cauta_nodgraf(cap,q->info); 
    if(z!=NULL) 
 if(z->capat==NULL) sterg_arc(p,z); 
   else 
   { 
        t=verif_stergere(cap,cap2,q); 
        if(t==0){ 
          z->capat=NULL; 
       } 
    } 
    } 
for(q=cap2;q!=NULL;q=q->next) 
 { 
    p=cauta_nodgraf(cap,q->info); 
    if(p!=NULL) 
  if(p->capat==NULL) cap=sterg_nodgraf(cap,p->info); 
} 
} 

 
/* funcţia realizează deconcatenarea grafului iniţial creând un nou 
graf 
primeşte ca date de intrare referinta la capătul primului graf şi 
întoarce adresa capătului noului graf*/ 
 
nodgraf * graf_liste::deconcatengraf(nodgraf * &cap) 
{ 
nodgraf *cap2,*p,*q,*w,*z; 
arc *r; 
int k,nd,arc; 
cap2=NULL; 
 
/*citeşte de la tastatură informaţia nodului capăt al noului graf*/ 



printf("\n Nodul capat al grafului al 2-lea este :"); 
k=citire2(&nd,cap,MAX); 
 
/*o dată citită informaţia este creat şi inserat un nod cu această 
informaţie în lista de noduri */ 
cap2=ins_nodgraf(cap2,nd); 
if(k==0) 
{ 
 printf("\n Urmatoarele nodgrafuri sunt:"); 
 k=citire2(&nd,cap,MAX); 
 cap2=ins_nodgraf(cap2,nd);     
 //se creează şi celelalte noduri 
 while(k==0) 
 { 
  k=citire2(&nd,cap,MAX); 
  cap2=ins_nodgraf(cap2,nd); 
 } 
} 
/* în secvenţa următoare se creează listele de arce ale nodurilor 
noului graf ; se parcurge lista nodurilor iniţiale verificându-se care 
se află în noul graf ; dacă se găseşte un astfel de nod se verifică 
dacă are arce cu alte noduri ale noului graf ; când se găsesc aceste 
arce, ele se scriu în noul graf şi se şterg din graful iniţial din 
listele acelor noduri*/ 
for(p=cap2;p!=NULL;p=p->next) 
{ 
 q=cauta_nodgraf(cap,p->info); 
           //caută echivalentul lui în graful  iniţial*/ 
 for(z=cap2;z!=NULL;z=z->next) 
 { 
      w=cauta_nodgraf(cap,z->info); 
      arc=verif_arc(q,w);    /* funcţia verifică dacă există arc 
intre nodurile cu adresele q şi w*/ 
      if(arc!=0) {    /*dacă se găseşte arc se scrie în graful 
nou şi se şterge de aici*/ 
      ins_arc(cap2,q->info,w->info,arc); 
      sterg_arc(q,w); 
                } 
 } 
} 
return cap2;//returnează adresa nodului capăt a noului graf } 

 


