16. GRAFURI

16.1 Structura de date de tip graf

Proiectarea unui sistem informatic care sa gestioneze reteaua
nationala de cai ferate presupune crearea unui mediu de lucru capabil sa
utilizeze baza de date a statiilor si pe cea a liniilor de cale ferate pentru a
oferi solutii optime si reale care sa minimizeze costurile si timpul de folosire
a retelei. Luand de exemplu situatia reala din figura 16.1, se pune problema
parcurgerii traseului Arad - Bucuresti cu cost redus, acest lucru implicand
parcurgerea distantei cea mai scurta.

Constanta

Bucuresti
209

Figura 16.1 O parte a retelei de cale ferata

Sistemul prelucreaza informatiile initiale, aflate in doua multimi N si
A, unde N = {Arad, Bucuresti, Cluj, Craiova, Constanta, Timisoara} este
multimea oraselor iar A = {Arad - Timisoara = 59 km, Timisoara — Craiova
= 324 km, Craiova - Bucuresti = 209 km, Bucuresti - Constanta = 225 km,
Arad - Cluj = 274 km, Cluj — Craiova = 331 km, Cluj - Bucuresti = 497
km?} este multimea distantelor dintre doua orase si ofera solutia cautata.

Reprezentarea in memorie a acestor informatii care au multiple
legaturi intre ele, astfel incat sa permita parcurgerea completa a zonelor
sau localizarea unui element din structurda, se face in situatia de fata
utilizand graful.

Graful, asemenea arborelui, este o structura in care relatia dintre
nodul parinte si nodul fiu este una ierarhica, dar care este mai putin
restrictivda in sensul cd un nod are mai multi succesori dar si mai multi
predecesori. El este definit ca o colectie de date reunite in doua multimi:
multimea N = {N;, Ny, ..., N, | n = numarul de noduri al grafului} ce contine
toate nodurile grafului si multimea A = {(Ni, N;) = A;j | Ni, Nj < Nsi i,j =
1, ..., ncui=#j} care contine arcele dintre doua noduri vecine.

Graful este larg utilizat In domeniile: ciberneticii, matematicii,
cercetarilor operationale in vederea optimizarii diferitelor activitati
economice, chimiei pentru descrierea structurii cristalelor, retelelor de
transport de toate tipurile pentru optimizarea traseelor, circuitelor electrice
pentru simularea functionari corecte, inteligentei artificiale si nu in ultimul
rand in domeniul analizei aplicatiilor software.

Graful este de mai multe tipuri, fiind clasificat in functie de :

- directia arcelor — in cazul in care arcele dintre nodurile grafului

sunt nedirectionate atunci graful este unul neorientat; cand exista

sens intre doua noduri N;, Nj si arcul este directionat (N; — N; sau
Ni < Njsau Ni<> N;j) atunci graful este unul orientat;

O O O 0
© ©

Graf neorientat Graforientat

Figura 16.2 Graf orientat si neorientat

- greutatea arcelor - daca oricare arc dintre doua noduri al grafului
are asociata o valoare numerica (care reprezintd de cele mai
multe ori distanta, durata de timp sau costul) atunci graful este
cu greutate; in cazul in care arcele nu au asociate valori
numerice, graful este unul fara greutate;

Figura 16.3 Graf orientat cu greutate

- existenta arcelor; daca intr-un graf nu exista nici un nod izolat,
altfel spus pentru oricare nod N; cu i = 1..n exista cel putin un
nod N;j cu 1<j<n si i#j pentru care exista arcul A; asociat,
atunci graful este conectat; un graf este neconectat daca exista
cel putin un nod izolat.

° e @ - Nod liber

Figura 16.4 Graf orientat neconectat

La randul lui graful orientat este puternic conectat daca intre oricare
doua noduri N; si Nj cu i, j = 1..n exista drum (un drum este format din
unul sau mai multe arce) orientat de la i la j, Ni —> N;. Graful orientat este
slab conectat dacd intre oricare doud noduri N; si N; cu i, j = 1..n exista
drum orientat de laila j, Ni &> N;sau delajlai, Ni < N; (doar unul dintre
ele).

() (&

Graf orientat puternic conectat Graforientat slab conectat

Figura 16.5 Tipuri de graf orientat

De exemplu in figura 16.5 se observa ca al doilea graf orientat este
slab conectat pentru ca intre nodul A si D exista drum orientat, insa de la D
la A nu exista drum.

16.2 Implementarea grafului

Existd numeroase metode de reprezentare in memoria calculatorului
a grafului, fiecare cu avantajele si dezavantajele ei:

- matricea de adiacenta;

- liste inlantuite;

- un vector de pointeri la liste simple sau dublu inlantuite de noduri

adiacente;
- o lista simplu sau dublu inlantuita de pointeri la liste simple sau
dublu inlantuite de noduri adiacente;

- un vector de pointeri la liste simple sau dublu inlantuite de arce.

Dintre toate, cele mai utilizate metode sunt primele doua.

Reprezentarea prin matrice de adiacentd a grafului este eficienta
cand se cunoaste numarul nodurilor si numarul mediu al arcelor; acesta din
urma trebuie sa fie mare pentru ca gradul de umplere al matricei de
adiacenta sa fie scazut. Cum crearea de software optimizat inseamna si
generalizarea problemei, lucru care da putine sanse sa se cunoasca numarul
nodurilor si cel al arcelor, singurul argument pro pentru acea§té metoda
este dat doar de usurinta implementarii si utilizarii matricelor. In cele mai
multe situatii reale, cea mai mare parte a memoriei necesara stocarii
matricei de adiacenta este nefolosita.

Pentru un graf cu n noduri este necesara o matrice patratica M de
dimensiuni nxn, care pentru un n foarte mare ocupa mult spatiu.

Initial matricea de adiacenta are toate elementele egale cu valoarea
0. Pentru a reprezenta arcul A; dintre nodurile N; si N; (orientat de la N; la
N;) la intersectia liniei i cu coloana j se trece valoarea 1, in cazul grafului cu
fara greutate, sau greutatea arcului, pentru graful cu greutate.

1, daca exista arc intre nodul N; si N;j;
Asadar: M[i][j] =
0, daca nu exista arc intre nodul N; si N;;

in cazul grafului fara greutate si:

a;j, daca exista arc intre nodul N; si N;, iar a;;
reprezinta greutatea arcului;
MLi10]=

0, daca nu exista arc intre nodul N; si N;;

In cazul unui graf neorientat, matricea de adiacentd asociata este
simetrica. Pentru graful cu 5 noduri din figura 16.6, Matricele de adiacenta
corespunzatoare grafurilor sunt prezentate in figura 16.7.

0 :Q

Figura 16.6 Graf orientat cu greutate si fara greutate

7
5

07|50 0 (1]1]0
0 (0] 8|1 0(0]1]1
00|03 0(0]0]1
0(0]0|0 0 (0]0]|0

Figura 16.7 Matrice de adiacenta

Lungimea drumului dintre doua noduri ale unui graf orientat fara
greutate este data de numarul de arce. Astfel in cazul grafului din figura
16.6, intre nodul A si D exista trei drumuri posibile, unul de lungime 3 (A-B-
C-D) si doua de lungime 2 (A-C-D si A-B-D).

Usurinta lucrului cu matricea de adiacenta consta si in faptul ca prin
simple ridicari la putere se verifica daca exista drum intre doua noduri si
care este lungimea acestuia (doar in cazul grafului orientat fara greutate).

Fie M[4][4] matricea de adiacenta din figura 16.7 asociata grafului
orientat fara greutate, atunci obtinem:

001 2 000 1 000 0

, 100 01 , 10000 , 0000

M2 = M? = M* = (16.1)
000 0 0000 000 0
000 0 0000 000 0

Dupd cum se observd, dacd MY[i][j] = val # 0 atunci intre nodurile N;
si N; exista val drumuri pe directia N; — N;, drumuri de lungime k.

In cazul lui M? existd 2 drumuri de lungime 2 de la nodul A la nodul D
(A-B-D si A-C-D), un drum de lungime 2 de la nodul A la nodul C (A-B-C) si
un drum de lungime 2 de la nodul B la nodul D (B-C-D).

Pentru k = 3 exista drumul de lungime 3 de la nodul a la nodul D (A-
B-C-D).

Procesul de ridicare la putere se opreste cand se ajunge la k = n,
unde n este dimensiunea matricei.

Clasa graf care implementeaza diferite operatii cu grafuri
reprezentate prin intermediul matricei de adiacenta este:

#ifndef GRAF MATRICE_H
#define GRAF_MATRICE H

#include <iostream>
using namespace std;

class graf matrice

{

public:
static const int MaxN = 50; // numarul maxim de noduri
static const int Infinit = INT MAX; // nu exista drum intre noduri

enum TipMatrice

{
MatriceAdiacenta = 1,
MatriceCosturi = 2

}:

private:

//matricea de adiacenta (l=exista, O=nu exista)
int matm[MaxN] [MaxN] ;

//matricea de costuri (Infinit=nu e drum)
long matc[MaxN] [MaxN] ;

int nr noduri;

int nr_arce;

protected:
int vect_rez[MaxN]; //vectorul in care se tin minte drumuri
int nr_rez; //nr. nodurilor din rezultat
int matr[MaxN] [MaxN] ; //matricea rezultatelor obtinute din
prelucrari
int valid(int) ; //testez daca int se afla deja in vect solutie
int suma (int); //calculeazid lungimea drumului
public:

graf matrice();
void init(TipMatrice tip); //initializare graf

void vect r(); //afiseazd vectorul rezultat

void matr_r(); //afiseazd matricea rezultat

void matr_rl();

void drum_minim();/* se calculeazid drumul minim intre oricare 2
noduri */

void este_drum() ; //verif. existenta drumului intre 2 noduri

void drum minim(int, int); //drumul minim intre 2 noduri date
void toate_drm(int,int); //toate drumurile dintre 2 noduri
bool este_arbore() ; //verificd daca este sau nu arbore
void componente conexe () ; //determind componentele conexe
bool graf matrice::este_eulerian();

void parcurgere bf (int) ; //parcurgerea grafului in latime

void parcurgere df (int) ; //parcurgerea grafului in adancime

void hamiltonian() ; //verif. exist. cicluri hamiltoniene

void prim() ; //det. arbore partial de cost minim

};

graf matrice::graf matrice()
{
nr noduri = 0;
nr_arce = 0;
nr rez = 0
for(int i

{

I~

0; i < MaxN; i++)

for(int j = 0; j < MaxN; j++)
{
matm[i] []]
matc[i] []]

0;
Infinit;

}

void graf matrice::init(TipMatrice tip)

{
cout << "Introduceti numarul de noduri: ";
Do

{
cin >> nr noduri;
if (nr_noduri <= 0)
{
cout << "EROARE: Numar invalid de noduri" << endl;

}

} while(nr_noduri <= 0);

if (tip == MatriceAdiacenta)

{
cout << "Se va introduce matricea de adiacenta" << endl;
cout << "Se introduc valorile (l-e drum; 0- nu e drum\n";

cout << "Se va introduce matricea de costuri" << endl;

}

for (int j = 0; j < nr_noduri; j++)
{
for (int i = 0; 1 < j; i++)
{
cout << "m[" << i+ 1< "TI" << J + 1 << "=";

if (tip == MatriceAdiacenta)

{

do
{
cin >> matm[i] []j];
matm[j] [i] = matm[i] [j]~
} while (matm[i][j] '= 0 && matm[i] [j] '= 1)
if (matm[i] [j] !'= 0)
{
nr_arce++;
matc[i] [j] = matc[]j][i] = 1;
}

else

matc[i] [j]=Infinit;
matc[j] [1]=Infinit;

else
{
do
{
cin >> matc[i] [F];
matc[j] [i] = matc[i] [j];
} while (matc[i][j] < 0);
if (matc[i][3j] !'= 0)
{
nr_;rce++;
matm[j][i] = matm[i][j] = 1;
}
else
{
matc[i] [j] = matc[j][i] = Infinit;
matm[i] [j] = matm[j][i] = O;
}
}
} // for j

} // for i
}

void graf matrice::vect r()
{
cout << "Vectorul rezultat este:" << endl;
for (int i = 0; i < nr_rez; i++)
{
cout << vect rez[i] << " " << endl;
}
}

void graf matrice::matr r()
{ for (int i = 0; i < nr _noduri; i++)
{ for (int j = 0; j < i; j++)
{ cout << "Intre " << i + 1 <K< " si " <K<K j + 1<
(matr[i] [j] '= 0 ? "" : " nu") << "exista drum.\n";

}

void graf matrice::matr rl()
{
for (int i = 0; i < nr_noduri; i++)
{
for (int j = 0; j < i; j++)
{
if (matr[i][j] '= Infinit)
{
cout << "Intre " << i + 1 <K< " si " KK J + 1
"exista drum de cost minim " << matr[i] []j] <<
endl;

else

Cout << "Intre " << i + 1 << " si " << j + 1
"nu exista drum." << endl;

}

void graf matrice::drum minim()

{

for (int i = 0; i < nr_noduri; i++)
{
for (int j = 0; j < nr_noduri; j++)
{
matr[i] [j] = matc[i][]];
}

}

for (int k = 0; k < nr _noduri; k++)
{ for (int i = 0; i < nr_noduri; i++)
{ for (int j=0; j < nr_noduri; Jj++)
{ matr[i] [j] = min(matr[i] [j],matr[i] [k]+matr[k] [j])
}

void graf matrice::este_drum()

{

for (int i = 0; i < nr noduri; i++)
{
for (int j = 0; j < nr_noduri; j++)
{
matr[i] [j] = matm[i][]j];
}

}

for (int k = 0; k < nr_noduri; k++)
{ for (int i = 0; i < nr _noduri; i++)
{ for (int j = 0; j < nr_noduri; j++)
{ matr[i] [J]=matr[i] [j]|| (matr[i] [k]&&matr[k][]])’
}

}

int graf matrice::valid(int k)
{
if (matc[vect_rez[k-1]][vect_rez[k]] == Infinit)
{
return 0;

}

for (int i = 0; i < k; i++)
{
if (vect_rez[i] == vect_rez[k])

{

return O;

}
}

return 1;

}

int graf matrice::suma(int k)
{
int suma = 0;
for (int i=0; i<k; i++)
{
suma += matc[vect_rez[i]][vect rez[i+l]];

}

return suma;

}

void graf matrice::drum minim(int a, int b)

{

int h, vect[MaxN], lgdrum, min = Infinit;

for (int £ = 0; £ < MaxN; f++)
{
vect _rez[f] = -1;

}

vect rez[0] = a;
h=1;

while(h >= 1)
{ while (vect_rez[h] < nr_ noduri)
{ vect _rez[h]++;
if (valid(h))
{ if (vect_rez[h] == b)
{ lgdrum = suma (h) ;
if (1gdrum < min)
{ for (int e = 0; e <= h; e++)
{ vect[e] = vect_rez[e];

}

min = lgdrum;
nr rez = h + 1;

else

h++;
vect _rez[h] = -1;
}
} // if (valid(h))

h--;
}

for (int e = 0; e < nr_rez; e++)
{
vect _rez[e] = vect[e];
}
}

bool graf matrice::este_arbore()

{
int b[MaxN], i, j, v, s;

for (i = 0; i < nr_noduri; i++)
for(j =i + 1; j < nr_noduri; Jj++)

v += (matm[i] []] == 1);

for (int i = 0; i < nr_noduri; b[i] = 0, i++);
b[0]=1;

for (i=0;i<nr noduri;i++)
{ for (j=0;j<nr_noduri;j++)
{ if ((matm[i][j] == 1) && (b[i] == 1))
{ b[j] = 1;
}

}

s=0;
for (i = 0; i < nr_noduri; i++)
{
s += (b[i] == 0);
}

return (s == 0) && (v == nr_noduri - 1);

}

bool graf matrice::este_eulerian()

{
int b[MaxN],i,j,k,v,s;

for (int i = 0; i < nr_noduri; b[i] = 0, i++);
b[0] = 1;

for (i=0;i<nr_ noduri;i++)
{
for (j=0;j<nr_noduri;j++)
{
if((matm[i] [j] == 1) && (b[i] == 1))
{

b[j] = 1;

}

s=0;
for (i = 0; i < nr_noduri; i++)
{

s += (b[i] == 0);
}
for(i = 0; i < nr_noduri; i++)
{

k =0;

for(j = 0; j < nr_noduri; j++)
{
k += (matm[i] [j]==1);
v=%k/ 2;

if ((k - 2 * v) > 0)
s =1;

}

return s <= 0;

}

void graf matrice::parcurgere bf (int i)
{
int j,u,p,v,c[MaxN] ,vizitat[MaxN];

for (int i = 0; i < nr_noduri; vizitat[i] = 0, i++);
c[1l] =i; u=1; vizitat[i] = 1;

for(p = 1; p <= u; p++)
{

v = c[pl;
for(j = 0; j < nr_noduri; j++)
{
if ((matm[v][j] == 1) && (vizitat[j] == 0))
{
u++;
clu] = 37

vizitat[j] = 1;

}

cout << "lista vf. parcurse cu metoda BF pornind de la varful "
<< i +1<< ": " << endl;

for(j = 2; j <= u; j++)
cout << c[j] + 1 << endl;
}

void graf matrice::parcurgere df (int i)
{

int vizitat[MaxN], urmator[MaxN], s[MaxN], k, v, Jj, ps;

for (int i=0; i < nr_noduri; urmator[i] = 0, vizitat[i] = 0, i++);

}

s[l] = i; ps = 1; vizitat[i] = 1;
cout << "ordinea in DF este " << i+l << " ";

while(ps >= 1)
{
j = slpsl;
k = urmator[j] + 1;
while ((k <= nr noduri) &&

((matm[j] [k]==0) || (matm[]j][k]==1)&&(vizitat[k]==1)))

{
k++;

}
urmator[j] = k;
if(k == nr_noduri + 1)
{

ps--=;
}
else
{

cout << k +1 " ";
vizitat[k] = 1;

ps++;

s[ps] = k;

void graf matrice::prim()

{

int s[MaxN], t[MaxN] ,hp[MaxN];
int min,k,1,c,i,j,v;

cout << "Nodul de pornire: ";
cin >> v;
for (int i = 0; i < nr_noduri; s[i] = t[i] = p[i] = 0, i++);
s[v - 1] = 1;

for(k = 1; k <= nr_noduri - 1; k++)

{

min = Infinit;

for(i = 0; i < nr_noduri; i++)

{
for(j = 0; j < nr_noduri; j++)
{

if ((s[i]==1)é&&(s[j]==0) && (min > matc[i][j]))

{
min = matc[i] [j];
l=4i; c¢c=3;

1;
1+ 1;
matc[l] [c];

s[c]
tlc]
plc]

}

for(i = 0; i < nr_noduri; i++)
{
cout << t[i] <<« " ";

}
cout << endl;

for(i = 0; i < nr_noduri; i++)
{

cout << p[i] << " ";
}

void graf matrice::hamiltonian()

{

int x[MaxN], v, k, j, sol, i;
sol = 0;
x[1] = 1; x[2] =1; k = 2;

while(k > 1)
{

v=20;
while((x[k] + 1 <= nr_noduri) && (v == 0))
{

x[k]++;

v=1;

for(i = 1;i <= k - 1; i++)
{

if (x[k] == x[i])
{
v=20;
break;
}
}
if (matm[x[k - 1] - 1][x[k] - 1] == 0)
{
v=20;

if ((k==nr_noduri) &&(matm[x[nr noduri]-1][x[1]-1]==1))

{
sol++;

if (sol==1)
{

cout << "Cicluri hamiltoniene:" << endl;

}

for (int j = 1; j <= nr_noduri; j++)

cout << x[j] << " ";
cout << endl;

else

if(k < nr_noduri)
{

k++;

x[k] = 1;

}

if (sol == 0)
cout << "Graful nu este hamiltonian.";

}

void graf matrice::componente_ conexe ()

{
int b[MaxN] ,k,j,i;

for(i = 0; i < nr_noduri; i++)
{
for(j = 0; j < nr_noduri; j++)
{
matr[i] [j] = matm[i] []]~
}
}

cout << "Componentele conexe sunt: ";
for(k = 0; k < nr_noduri; k++)
{
for(j = 0; j < nr_noduri; j++)
{
b[j] = -2;
}

b[k] = k;

if (matr[k] [k] > -1)
cout << endl << " ";

for(i = 0; i < nr_noduri; i++)

{
for(j = 0;J < nr_noduri; j++)
{

if ((matr[i][j] == 1) && (b[i] == k))
{

b[j] = k;

matr[i][j] = O;

matr[j][i] = O;

}

for(j = 0; j < nr_noduri; j++)
{
if((b[j] == k) && (matr[j][j] > -1))
{
matr[3j][j] = -1;
cout << " " < j + 1;

}

void graf matrice::toate_drm(int a, int b)

{

}

int h;

for (int £ = 0; £ < MaxN; f++)
vect _rez[f] = -1;

vect_rez[0] = a;
h=1;
while(h >= 1)
{
while (vect rez[h] < nr noduri)
{
vect _rez[h]++;
if(valid(h))
{
if (vect_rez[h] == b)

cout << endl;

for (int e = 0; e <= h; e++)
cout << vect rezfe] + 1 << " ";

h++;
vect _rez[h] = -1;

h--;

#endif //GRAF MATRICE H

De cele mai multe ori nu se cunoaste numarul de noduri ale grafului,
apelandu-se la construirea dinamica a grafului pe parcursul
problemei, deci nu se cunoaste dimensiunea matricei de adiacent. in
aceste situatii graful este reprezentat printr-o retea de liste inlantuite, liste
de adiacentd. Asemenea matricei de adiacenta descrierea grafului cuprinde
multimea de noduri si pe cea de arce, precizand orientarea arcului si dupa

caz greutatea lui.

Se defineste structura arc care este asociatda elementelor din

multimea arcelor:

struct arc

{
struct nodgraf * destinatie; /*adresa nodului cdtre care
existd arc;*/

struct arc* next_arc; /*referintd cdtre elementul urmitor
din lista de arce;*/

int greutate; }; //greutatea arcului;

Este vorba de o lista a arcelor ce este construita dinamic. Structura
este cea a unei liste oarecare, cuprinzand informatia propriu-zisa, greutatea
arcului, precum si cea necesara inlantuirii in lista, adresa elementului

rezolvarii

urmator. Cu toate ca nodgraf * destinatie este un pointer, el face parte din
informatia de baza si nu din cea destinata regasirii in lista. In lista exista
mai multe liste, organizate pe principiul descendentei dintr-un nod. Cum
fiecare nod din graf este unic, se elimina astfel posibilitatea ca un arc sa fie
in mai multe liste.

Tipul de structura nodgraf este tot o structura de tip lista. Pe langa
informatia nodului si adresa urmatorului nod, ea contine si adresa de start a
listei ce cuprinde arcele descendente din nodul respectiv.

struct nodgraf {

int info; //informatia nodului;
struct nodgraf* next; //referinta catre urmatorul nod;
struct arc *capat; //capdtul listei de arce;

La crearea grafului se introduc initial informatiile nodurilor, creandu-
se astfel lista lor. Dupa aceasta se vor crea listele de arce introducédndu-se
informatia nodului sursa, a nodului destinatie si greutatea arcului.

Pentru graful cu greutate din figura 16.6 reprezentarea sa in
memorie prin intermediul listelor de liste este data in figura 16.8.

A ~ B ~ C ~ D ~
A \ 4 \ \
&B | 7 &C | 8 &D |3 NULL
‘// NULL
&C 5 &D 1 NULL
NULL NULL &nod — reprezintd adresa Iui ,;,nod”

Figura 16.8 Reprezentarea in memorie a unui graf cu ajutorul listelor

Clasa graf_liste care implementeaza graful definit cu ajutorul listelor
inlantuite este:

#ifndef GRAF LISTE H
#define GRAF_LISTE H

#include <iostream>
using namespace std;

typedef struct arc

{
struct nodgraf *destinatie; // adresa nodului catre care e arc;
int greutate; // greutatea arcului;

// referinta catre elementul urmator din lista de arce
struct arc *next_arc;
} arc;

typedef struct nodgraf

{

int info; //informatia nodului;
struct nodgraf *next; //referinta catre urmatorul nod;
struct arc *capat; //capatul listei de arce;

} nodgraf;

typedef struct stiva

{

nodgraf *n; //elementul stivei
struct stiva *next; //referinta catre urmatorul element;
} stiva;

struct lista

{

nodgraf *n; //elementul listei
struct lista *next; //referinta catre urmatorul element;

};

typedef struct coada

{

struct lista *pred;
struct lista *succ;

} coada;

class graf liste

{

int nr;

public:

static const int MaxN = 50; // numarul maxim de noduri
static const int Infinit = INT MAX; /* nu exista drum intre

noduri */

graf liste(){}

graf liste(int nrnoduri){ nr=nrnoduri;}

nodgraf *inserare nod(nodgraf *,int); //insereaza un nod in graf

nodgraf *gaseste nod(nodgraf *, int); //gaseste un nod in graf

void inserare_ arc(nodgraf *,int,int,int); //insereaza arc

int adiacent(nodgraf *,nodgraf *); /* vf dc 2 noduri sunt
adiacente */

int sterge_arc(nodgraf *,nodgraf *); //sterge arcul

void vizitare (nodgraf *nd,int vizitat[]) /* march. nodul ca

vizitat */

{

stiva

}

stiva
stiva */

vizitat[nd->info]l=1;
cout<<nd->info" - ";

*push (stiva *stk,nodgraf *nd) //pune un element in stiva
stiva *t = new stiva();
t->n = nd;

t->next = stk;
return t;

*pop (stiva *stk, nodgraf **nd) /* scoate un element din

if (!'stk)
{

return NULL;
}

else

{
stiva *t = stk->next;
(*nd) = stk->n;
delete stk;

return t;

}
void depth(nodgraf *); //parcurgere in adancime

void put(struct coada *q, nodgraf *nd)

{

lista *t = new lista();
t->n=nd;
t->next=NULL;

lista *keep = g->succ;
if (keep !'= NULL)
{

keep->next=t;

g->pred=t;
}

g->succ = t;

}

nodgraf *get(struct coada *q) //scoate un element din coada
{
if (g->pred == NULL)
{
return NULL;
}

else

{
lista* t = g->pred;
nodgraf* n=t->n;

if (g->pred == g->succ)
{

g->succ = NULL;
}

g->pred = g->pred->next;

delete t;
return n;

}

void breadth(nodgraf *); //parcurgere in latime
int drum minim(nodgraf *,int,int,int[]); //gaseste drumul minim

void stergere nod(nodgraf *&,int);// sterge un nod din graf

};

nodgraf* graf liste::inserare nod(nodgraf *cap,int info)

{

nodgraf *nou= new nodgraf () ;
nou->info=info;
nou->next=NULL;
nou->capat=NULL;

if (cap==NULL)
{

return nou;

}

else
{
nodgraf *temp = cap;
while (temp->next != NULL)
{
temp=temp->next;
}

temp->next = nou;
return nou;

}

nodgraf* graf liste::gaseste_nod(nodgraf *cap, int info)
{
while(cap !'= NULL && cap->info != info)
{
cap = cap->next;

}

return cap;

}

void graf liste::inserare arc(nodgraf *cap,int sursa,int dest,int
greutate)
{
nodgraf* s = gaseste nod(cap,sursa);
if (s == NULL)
{
s = inserare nod(cap,sursa);

}

nodgraf* d=gaseste nod(cap,dest);
if (d == NULL)
{

d = inserare nod(cap,dest);

}

arc *temp s->capat, *keep=NULL;
int gasit = 0;

while (temp != NULL && !gasit)

{
if (temp->destinatie == d)
{

temp->greutate = greutate;

gasit = 1;

else

keep temp;
temp = temp->next_arc;

}

if(!'gasit)

{
temp= new arc() ;
temp->destinatie=d;
temp->greutate=greutate;
temp->next arc=NULL;

if (keep == NULL)
{

s->capat=temp;

keep->next_arc=temp;

}

int graf liste::adiacent(nodgraf *s,nodgraf *d)
{

arc *temp = s->capat;

while(temp != NULL && temp->destinatie != d)
{
temp=temp->next_arc;

}

return temp != NULL ? temp->greutate : 0;
}

int graf liste::sterge_arc(nodgraf *s,nodgraf *d)
{

arc *keep = NULL;

arc* temp=s->capat;

while (temp != NULL)
{
if (temp->destinatie == d)
{
if (keep == NULL)
{

s->capat=temp->next arc;

keep->next arc=temp->next_arc;

}

delete temp;
return 1; // nodul a fost sters

else

keep
temp

temp;
temp->next_arc;

}

return 0; // nodul nu a fost sters

}

void graf liste::depth(nodgraf *g)
{
int vizitat[MaxN];
for(int i=0; i < MaxN; i++)
{
vizitat[i] = 0;

}

nodgraf *curent,**nd;
arc *temp;
stiva *stk=NULL;

while (g !'= NULL)

if(!'vizitat[g->info])

{
cout << endl << "Componenta : " <<endl;
stk = push(stk,q);

do
{
stk = pop(stk,nd);
curent = *nd;
vizitare (curent,vizitat);
temp=curent->capat;

while (temp)
{

if(!'vizitat[temp->destinatie->info])
stk=push (stk, temp->destinatie) ;

temp=temp->next_arc;
}
} while(stk !'= NULL);

}
g=g->next;

}

void graf liste::breadth(nodgraf *qg)
{

nodgraf *curent;

arc *temp;

coada *q,coada={NULL,NULL};

q = &coada;

int vizitat[MaxN];
for(int i = 0; i < MaxN; i++)
{

vizitat[i] 0;

}

while(g != NULL)
{
if ('vizitat[g->info])
{
cout << endl << "Componenta : " << endl;

put(q,q9);

do

{
curent = get(q);

if(!'vizitat[curent->info])

{
vizitare (curent,vizitat);
temp = curent->capat;

while (temp)
{

if('vizitat[temp->destinatie-
>info])
put (g, temp->destinatie) ;

temp=temp->next arc;
}
}
} while(g->pred !'= NULL) ;
}

g = g->next;
}

int graf liste::drum minim(nodgraf *g,int sursa,int dest,int
precede [MaxN])
{

nodgraf *tmp;

arc *temp;

int distanta[MaxN],i,k,min,curent, perm[MaxN], dc, distanta noua;

for(i = 0; i < MaxN; i++)

{
distanta[i]=precede[i]=graf liste::Infinit;
perm[i]=-1;

}

distanta[sursa] = 0;
curent = sursa;
perm[sursal] = 1;
while (curent !'= dest)

{
dc = distanta[curent];
tmp = gaseste_nod(g,curent);
temp = tmp->capat;

while (temp)

{
distanta noua = dc + temp->greutate;
tmp = temp->destinatie;

if (distanta_noua < distanta[tmp->info])

distanta[tmp->info] = distanta_noua;
precede[tmp->info] = curent;

}

temp = temp->next_arc;

}
for(i = 0; i < MaxN && perm[i] > 0; i++);

k =1i;
min = distantal[k];
for(i = k; i < MaxN; i++)
{
if (perm[i] < 0 && distanta[i] < min)
{
min = distantali];
k =1i;
}
}

curent = k;
perm[k] = 1;
}

return distanta[dest]:;

}
void graf liste::stergere nod(nodgraf *&temp,int sursa)
{ if (temp->info == sursa)

nodgraf *a = temp;

temp = a->next;
delete a;

stergere nod (temp->next, sursa);

#endif //GRAF LISTE H

16.3 Traversarea unui graf

Un graf este in esentda o retea, care de cele mai multe ori are
corespondenta in lume realda. Cum principala caracteristica a unei retele
este mobilitatea continua din interiorul sau, se pune problema parcurgerii
grafului. In cazul altor structuri de date, vectori, liste si chiar arbori lucrurile
sunt clare: se pornea de la un capat si trecandu-se de la un element la
urmatorul se parcurgea integral structura fara ca un element sa fie vizitat
de mai multe ori.

Graful fiind o structura de date mai generalad in care nodurile au mai
mult de un predecesor se pune deci problema trecerii o singura data prin
fiecare nod. Pentru a complica mai mult problema se ia in considerare si
faptul ca oricare nod al grafului este un posibil punct de start al traversarii,

lucru care demonstreaza ca aceasta nu este unica, rezultatele variind de la
caza la caz.

Evitarea revenirii intr-un nod vizitat se face asociind acestuia o
eticheta care sa indice acest lucru. Metodele de traversare a grafului sunt
bazate pe acest principiu, deosebindu-le doar modul in care stocheaza si
revin asupra unor directii necercetate.

Cele doua metode sunt :

- traversarea in adancime (depth-first traversal);

- traversarea in latime (breadth-first traversal).

Pe scurt, cele douad traversari sunt asemenea drumului parcurs de
exploratori intr-o pestera, numai ca in cazul traversarii in adancime avem
un singur explorator care se intoarce de fiecare data cand ajunge la un
capat de drum la ultima intersectie, iar in cazul traversarii in latime sunt o
echipa, fiecare luand-o pe un drum.

Odata traversat graful cu una dintre aceste metode, se creeaza o
padure acoperitoare pentru el, lucru util pentru punerea in evidenta a
componentelor sale conexe, dar si un arbore acoperitor. Arborele acoperitor
este un subgraf ce contine nodurile grafului initial si doar atatea arce incéat
sa fie construit un arbore.

Pentru un graf implementat prin intermediul unei matrice de
adiacentd, ordinul de complexitate al operatiei de traversare este O (n?).
Graful cu n noduri, are matricea asociata de dimensiune nxn. Rezulta ca
timpul alocat prelucrarii unui nod in vederea gasirii tuturor nodurilor
adiacente este O (n); se parcurge linia de n elemente a nodului. Deci pentru
n noduri timpul necesar traversarii este de n*0 (n) = O (n?). Dupd cum se
observa, indicatorul depinde doar de numarul nodurilor, numarul arcelor
dintre noduri neavand nici o influenta.

In cealalta situatie, pentru un graf reprezentat cu ajutorul listelor
inlantuite, ordinul de complexitate al operatiei de traversare este cuprins
intre O (n) si O (n?). Indicatorul depinde aici de numarul de arce al fiecarui
nod. Cel mai fericit caz este acela cand nu exista nici un arc intre noduri si
atunci traversarea are ordinul de complexitate minim O(n). Daca fiecare nod
al grafului are arce catre toate celelalte n-1 noduri ale grafului, se obtine
complexitatea maxima O (n?).

Procesul de traversare in addncime a unui graf, este unul de tip
backtracking, analogic cu traversarea in preordine a unui arbore.

Algoritmul foloseste in acest scop un vector sau o lista in care pune
nodurile vizitate si o stiva in care sunt puse nodurile adiacente nodului
curent. Odata vizitat un nod, traversarea se indeparteaza in adancime pana
cand ajunge la un capat de drum.

Fie nodul de start al parcurgerii, nodul notat cu X. Acesta este
etichetat ca vizitat si este trecut in lista. Toate n nodurile adiacente Iui X, X;
cu i = 1..n, sunt puse in stiva de asteptare. Primul nod din stiva, X;, este
verificat daca nu este in lista, caz in care este vizitat, fiind scos si pus in
lista. In cealalta situatie, nodul se afla deja in lista, el este scos din stiva si
este verificat nodul de sub el. Acesti pasi sunt repetati pentru fiecare nod
adiacent al lui X;.

Altfel spus, se pleaca pe drumul dat de primul nod adiacent al nodului
de start, primul nod adiacent al nodului deja vizitat si tot asa pana cand se
ajunge la un nod al carui prim nod adiacent a fost vizitat sau nu exista fiind
un capat de drum. Atunci se trece la urmatorul nod adiacent pe care se
continua, daca este posibil, sau in acest moment, algoritmul se intoarce la

penultimul nod vizitat si pleaca pe al doilea nod adiacent al acestuia, in
conditiile in care el nu a fost vizitat si exista. Algoritmul se intoarce atata
timp céat exista noduri in stiva.

Figura 16.9 Graf orientat

Parcurgerea in adancime a grafului orientat din figura 16.9 presupune
parcurgerea etapelor :
1. se alege nodul A ca punct de start al traversarii. Nodul A este
vizitat si este trecut in lista nodurilor pe la care s-a trecut. in stiva
sunt trecute nodurile catre care are arce directionate: B si C;

D Noduri
<
A C adiacente
B

Lista nodurilor vizitate _) o
Stiva nodurilor de vizitat

Figura 16.10 Pasii primei etape

2. se scoate primul nod din stiva, C, si cum acesta nu a fost vizitat
(nu se afla in lista nodurilor vizitate) este trecut acum in lista.
Nodurile sale adiacente, doar D, sunt trecute in stiva;

F Noduri
Alc D <= adiacente

E
B

Lista nodurilor vizitate

Stiva nodurilor de vizitat

Figura 16.11 Pasii etapei 2

3. se scoate nodul D din stiva si este pus in listd, deoarece nu a fost
vizitat. Nodurile sale adiacente, F si E, se pun in stiva;

Nu are noduri

Alclp F adiacente
E
Lista nodurilor vizitate B

Stiva nodurilor de vizitat

Figura 16.12 Pasii etapei 3

4. se scoate nodul din stivd nodul F si este etichetat ca vizitat. In
acest punct se ajunge la un sfarsit de drum si astfel trece la
urmatorul element din stiva;

r— Noduri adiacente
A|C|D|F|E B C

Lista nodurilor vizitate

Stiva nodurilor de vizitat

Figura 16.13 Pasii etapei 4

5. se viziteaza nodul E. Initial se trece in stiva nodul adiacent lui E,
anume nodul F, dar el este scos apoi din stiva existand, deja in
lista nodurilor vizitate. In stiva raméane doar nodul B;

A|C|D|F|E|B

Figura 16.14 Lista nodurilor vizitate

6. traversarea este completata prin vizitarea nodului B. Cele doua
noduri adiacente ale sale, F si C, sunt trecute in stiva, insa sunt
scoase apoi unul cate unul, ele fiind deja insemnate ca vizitate.

Nivel 1 ® A
Nivel 2 C
Nivel 3 D
Nivel 4 F
Nivel 5 E
Nivel 6 B

Figura 16.15 Arbore acoperitor in addncime
pentru graful din figura 16.9

La scrierea codului sursa, algoritmul se imbunatateste facandu-se o
cautare in lista a nodurilor care se introduc in stiva pentru a se vedea daca
sunt sau nu deja vizitate. Traversarea grafului neorientat nu implica

modificarea in vreun fel a algoritmului, acesta fiind aplicat fara nici o
restrictie.

Arborele acoperitor este construit odata cu lista nodurilor vizitate,
adaugand un nod la lista se completeaza si arborele.

Traversarea grafului, folosind acest procedeu, da un rezultat diferit
pentru un nod de start altul decat A, acest lucru fiind valabil si pentru
arborele acoperitor din figura 16.9.

Procesul de traversare in latime a unui graf orientat sau neorientat,
este analog procesului de traversare in inordine a unui arbore, si consta in
parcurgerea o singura data a tuturor nodurilor din graf.

Deosebirile de cealaltd metoda constau in folosirea unei cozi de data
aceasta pentru a pastra nodurile de verificat, si in faptul ca algoritmul se
indeparteaza de nodul vizitat doar dupd ce a examinat si vizitat, daca este
posibil, toti succesorii sdi. In schimb si aceasta metoda este aplicabila atat
grafului orientat cat si neorienatat dand rezultate ce variaza in functie de
alegerea nodului de pornire.

Parcurgerea in latime a grafului din figura 16.9, presupune pasii:

1. se alege nodul A ca punct de start al traversarii. Nodul A este
vizitat si este trecut in lista nodurilor pe la care s-a trecut. In
coada sunt trecute nodurile catre care are arce (directionate sau
nedirectionate, in functie de tipul grafului): B si C;

f\ Noduri
A C|B J_‘ C adiacente

Lista nodurilor vizitate Coada nodurilor de vizitat

Figura 16.16 Pasii primei etape

2. sunt verificate nodurile adiacente si sunt vizitate daca nu se afla
deja in lista. In momentul trecerii in lista nodurilor deja parcurse,
nodurile lor adiacente sunt adaugate la coada, nodul F si C
adiacente lui B si nodul D adiacent lui C;

m Noduri
A|B|C D|IC|F J_‘

Lista nodurilor vizitate Coada nodurilor de vizitat

F adiacente

Figura 16.17 Pasii etapei 2

3. din coada trec in lista nodurilor traversate, nodurile F si D. Nodul
C exista deja in lista si doar este scos din coada. Nodul F nu are
adiacenti si reprezinta un capat de drum, nici un nod nefiind
adaugat in coada. In schimb, coada este completata cu nodurile E
si F, care sunt adiacente lui D;

<< N\ Noduri
A|B|C|F|D FlE adiacente

Lista nodurilor vizitate Coada nodurilor de vizitat

Figura 16.18 Pasii etapei 3

4. traversarea este incheiata prin adaugarea nodului E la lista.
Nodurile F si C au fost vizitate si nu se mai pun iar in lista.

A|B|C|F|D|E

Figura 16.19 Lista nodurilor vizitate

Ca si in cazul metodei precedente, algoritmul se optimizeaza
verificandu-se inainte de a fi pus in coada de asteptare daca nodul respectiv
se afla in lista sau nu.

A
Nivel 1 [
B .~ ~_ C
Nivel 2
Nivel 3 F D
Nivel 4 E

Figura 16.20 Arbore acoperitor in latime
pentru graful din figura 16.9

Arborele acoperitor este construit odata cu lista nodurilor vizitate.
Adaugand un nod la lista se completeaza si arborele, iar toate nodurile
adiacente cu acesta si care nu au fost vizitate sunt adaugate la arbore ca
noduri copii (ulterior devin noduri parinte pentru nodurile adiacente din
graf).

In concordantd cu rezultatul dat de traversarea in latime a arborelui,
si forma arborelui acoperitor variaza in functie de nodul de start.

16.4 Inchiderea tranzitiva a grafului

Graful este de cele mai multe ori reprezentarea matematica a
problemelor economice si nu numai, legate de transport, de costul
deplasarii dintr-un punct in altul, de durata realizarii acestuia. Cea mai
sugestiva aplicatie legata de implicarea grafului in rezolvarea acestor
probleme este cea a drumului minim, insa de multe ori este necesar sa se
stie doar daca este drum intre doua noduri. Solutia acestei probleme este
data de realizarea unei matrice, numita inchiderea tranzitiva a matricei de

adiacenta, care sa arate pentru fiecare nod in parte unde se poate ajunge

plecand din el.

O modalitate de creare a acesteia este data de traversarea in
adancime a grafului. Traversand graful din fiecare nod al sau, se obtin
atatea liste cate noduri sunt, liste care arata in ce noduri se ajunge din
nodul de start. Acestea din urma se transpun intr-o matrice M[n][n], care
are elementul m;; =1 daca exista drum de la nodul N; la nodul N;si 0 in rest.

Figura 16.21 Exemplu de structura de graf

Pentru graful din figura 16.21 traversarea prin metoda DFS pornind

din fiecare nod are ca rezultat urmatoarele liste :
- pornind din Aavem: A, C, D, F, E, B;
E,

- pornind din B avem:
- pornind din C avem:
- pornind din D avem:
- pornind din E avem:
- pornind din F avem:

'I'II'I'IUﬁw

/

» G
» D,
F,

' F

I

1"":'"U

@]

I

!

~

UOI‘I‘I-n

I

Matricea inchiderii tranZ|t|ve obtinute prin intermediul listelor este:

1
1
1
MIT =
1
1
0

S O O O O =
S O O O = =

O = = = =

O = = = =

e U G G U S O S—y

(16.2)

Folosind matricea, cream graful extins numit inchidere tranzitiva.
Luam fiecare nod in parte, iar pe reprezentarea grafului initial se deseneaza
sageti punctate catre nodurile la care se ajunge si care nu sunt adiacente

lui.

Inchiderea tranzitivd este prezentatd in figura 16.22.

Figura 16.22 Inchiderea tranzitivd a grafului din figura 16.9

Ordinul de complexitate al acestei operatii este foarte mare, si anume
O (n®), pentru c& pentru fiecare dintre cele n noduri se aplicd traversarea in
adancime, care are complexitatea maximd O (n®). Desi este usor de
implementat, pentru un graf foarte mare metoda consuma multe resurse.

O alta solutie, mai eleganta dar cu acelasi grad de complexitate, a
fost datd de Stephan Warshall. In construirea algoritmului sdu, el a plecat
de la ideea urmatoare: luand nodurile N;, Nj, Ny, (cu i, j, k = 1..n
sii # j #k) si daca exista arcele Ay si Ay atunci exista drum de la nodul N;

la nodul N;, acest lucru insemnandu-se in inchiderea tranzitiva a matricei de
adiacenta.

Algoritmul initializeaza matricea inchiderii tranzitive cu valoarea
matricei de adiacenta a grafului si pune valoarea 1 pe diagonala principala
(evident exista arc de la un nod la el). In urma a trei cicluri dupa variabilele
i, j, k (cui, j, k = 0 ... n-1), elementele matricei inchiderii tranzitive
A’[n][n] iau valoarea 1 daca a’[i][k] = a’[k][j], adica:

alijlj] = alil[k] & aTk][j] (16.3)

In clasa graf_matrice, metoda asociata algoritmului este:

void graf matrice::inchidere tranzitiva()

{
int i,j,k;
int a_tranz[MaxLungGraf] [MaxLungGraf];

//se creeza matricea inchiderii tranzitive initiald plecand de la
//matricea de adiacentd a grafului

for(i = 0; i<nr_noduri; i++)
for(j = 0; j<nr_noduri; j++)
if (i==3)

a_tranz[i] [j] = 1;
else
a_tranz[i] [j] = matm[i] [j];
//se cerceteaza perechi de cidte 3 noduri si se formeaza matricea
for(i = 0; i<nr_noduri; i++)
for(j = 0; j<nr_noduri; j++)
for(k = 0; k<nr_noduri; k++)
a_tranz[i] []J] = a_tranz[i] [k] && a_tranz[k][]j];
//se afiseaza matricea de adiacentd a grafului
for(i = 0; i<nr_noduri; i++)

{

for(j = 0; j<nr_noduri; j++)
cout << a_tranz[i] [J] << " ";
cout << endl;

16.5 Problema drumului de lungime minima in graf

Revenim la problema initiald, cea a parcurgerii traseului Arad -
Bucuresti avand cel mai mic cost. Solutia consta in gasirea acelor orase prin
care trece traseul astfel incat suma distantelor parcurse sa fie cea mai mica,
in raport cu lungimea altor posibile drumuri de parcurs. La nivelul grafului in
loc de orase, distante avem noduri si arce cu greutate.

Partial, problema este rezolvata deoarece folosind cele doua metode
de traversare a unui graf avem capacitatea de a afla ce noduri se afla pe
trase si astfel putem forma o serie de drumuri de urmat. Nu mai ramane
decat sa vedem in cazul grafului cu greutate care drum are suma valorilor
arcelor minima sau in cazul grafului fara greutate care drum are mai putine
arce. Desi aceasta solutia este simplu de implementat, ea este mare
consumatoare de resurse in cazul unui graf mare, asa ca ne trebuie un
program care sa combine cele doua etape, reducand traversarile repetate
ale grafului la una.

Acest lucru este facut de algoritmul Dijkstra, care examineaza toate
drumurile ce pornesc din nodul curent, actualizand distantele dintre el si
celelalte noduri. Pentru a pastra nodurile prin care trece drumul cel mai
scurt, programul le retine intr-o lista pe care o notam cu L. In final lista
contine multimea minima de noduri care sa le contina pe toate cele care vor
forma efectiv drumul optim.

Nodurile care se adauga in aceasta lista sunt acele noduri ale grafului
la care se ajunge prin arce directe doar de la nodurile din lista L (ele
reprezinta nodurile adiacente celor din L) si care au lungimea cumulata
pana in acel moment minima.

Pentru a nu calcula de fiecare data distanta minima pana in acel nod,
ea este atribuita ca informatie nodului, asemenea unei etichete. Ele sunt
implementate utilizand un vector de lungime n, unde n este numarul de
noduri al grafului (vector[i] retine eticheta nodului i), sau creand o lista cu n
elemente de tip eticheta.

Drumul minim este gasit in momentul in care in lista L se afla nodul
destinatie.

Algoritmul consta in pasii:

Pasul 1. Se construieste lista L si elementele vectorului/listei
distantelor sunt initializate cu o valoare foarte mare;

Pasul 2. Se alege nodul surs3a, el devenind si primul nod pus in lista
L. Valoarea etichetei corespunzatoare lui ia valoarea 0;

Pasul 3. Se repetd pana cand nodul destinatie se afla in L. Sunt
analizate nodurile grafului care nu sunt in lista L.

Daca exista noduri N; in care se poate ajunge prin arce directe de la
noduri din L, se calculeaza distanta de la nodul de start pana la ele:

distanta(N;)=min(val_eticheta(N;),val_eticheta(N,)+greutate_arc(N,,N;)) (16.4)

unde:

e val_eticheta(N;) - reprezinta valoarea etichetei asociata nodului N;;

e greutate_arc(Ny,N;)) - reprezinta valoarea arcului dintre nodurile Ny si
Ni;

o N - este un nod din lista L de la care se ajunge prin

arc direct la nodul N; care nu se afla in lista.
Se adauga la lista L acel nod N; care are distanta(N;) obtinuta minima.
Pentru el ca si pentru celelalte noduri pentru care s-au calculat distantele se
reactualizeaza etichetele:

val_eticheta(N;) = min(val_eticheta(N;), distanta(N,)) (16.5)

Daca nu exista nici un nod de acest tip atunci nu exista nici un drum
pana la destinatie.

Pasul 4. Daca nodul destinatie se afla in lista L, atunci valoarea
etichetei sale reprezinta drumul de lungime minima. Pentru gasirea acestui
drum, se porneste inapoi de la nodul final si folosind nodurile din L.

Pentru a nu pierde timp la Pasul 4 reconstituind drumul, asa cum s-a
atasat fiecarui nod o etichetd, i se asociaza o lista in care sunt memorate
nodurile precedente care au dat valoarea etichetei in acel moment. Nodul
nou introdus in lista L, initializeaza lista drumului deja parcurs cu valorile
din lista predecesorului sau direct si apoi il adauga si pe acesta.

Figura 16.23 Graf orientat cu greutate

Pentru a exemplifica metoda, se aplica algoritmul lui Dijkstra pentru a
calcula drumul minim de la nodul A la nodul F, noduri ce apartin grafului din
figura 16.23.

Se fac notatiile ajutatoare:

e E(N;) - valoarea etichetei nodului N;;
e L(N;) - lista nodurilor prin care s-a ajuns la nodul N;;
o L - lista nodurilor care au fost luate in considerare.

Etapele parcurse sunt :

- se initializeaza eticheta nodului A cu valoarea 0, E(A) = 0, iar

pentru celelalte noduri cu o valoare foarte mare, E(B) = E(C) =
E(D) = E(E) = E(F) = 0. Se pune nodul A in lista L;

- se calculeaza valoarea etichetei vecinilor nodului A, E(B) = 7 si
E(C) = 2. Cum nodul C are valoarea etichetei minima si nu se afla
in lista L, el este adaugat la aceasta. In lista nodurilor precedente
lui C, L(C), se pune nodul A, iarL={A, C};

se calculeaza valoarea etichetelor vecinilor nodului C, E(B) = 5 si
E(E) = 4. Vechea valoare al lui E(B), care este 7, este inlocuita de
noua valoare calculata, aceasta din urma fiind mai mica. Cum
nodul E are eticheta minima si nu se afla in lista L, este adaugat la
aceastasi L(E) ={ A, C},iarL={A,C E};

se calculeaza etichetele pentru nodul F care este vecinul direct al
nodului E, E(F)=13. Dintre toate etichetele, cea a nodului are
valoarea minimd, 5, si cum el nu este in L, este pus in aceasta
lista, deci L = {A, C, E, B}. In lista predecesorilor sai sunt pusi
predecesorii nodului de la care s-a ajuns la B, adica ai nodului C,
si acesta din urma, L(B) = {A, C};

EB)=5
LBF{A,C}

E(D)=infinit

E(F)=13

L={A,CEB})
E(C)=2 2 E(E)=4
LIC={A} L(E={ A, C}

Figura 16.24 Pas intermediar

se calculeaza valoarea etichetelor vecinilor nodului B, E(D) = 9,
E(E) = 13 si E(F) = = 25. In cazul nodurilor E si F etichetele fsi
pastreaza vechile valori, care sunt mai mici. Cu toate ca in acest
moment nodul E are eticheta cu valoare minima, el nu este ales ca
fiind urmatorul nod al drumului pentru ca se afla deja in lista L.
Deci nodul care se traverseaza este D, iar L(D) = {A, C, B} siL =
{A, C, E, B, D};

se calculeaza valoarea etichetei pentru nodurile E si F (sunt noduri
adiacente directe pentru nodul D), E(E) = 11 si E(F) = 10. Pentru
nodul E valoarea etichetei nu este inlocuitda cu cea noua. Nodul
care nu se afla in lista L si care are valoarea etichetei minima este
F. Este adaugat la lista si in acest moment cautarea ia sfarsit.
Drumul minimeste A-C-B-D -F.

E(B)=5

LB A, C} E(D)-9

4 L(D)={A,C, B}

E(F)=10

@L(F):{ A, C, B, D}

0 L={A, C,EB,D,F}

E(C)=2 2 E(E)~4
LO={A} L(B)={A, C}

Figura 16.25 Drumul minim

Afisarea drumului minim si a lungimii sale folosind functia din clasa
graf_liste are codul sursa:

int lungime = x.drum minim(g,start,stop,precede);
if (test != MAXINT)
{

cout<<endl<<"Drum minim "<<stop<<"<-"<<start<<" are lungimea
"<<lungime<<" si este : ";

for (int i=stop;i>0&&(i !'=MAXINT) ;i = precede[i])

cout<kKik"k-";
}
else
cout<<"Nu exista drum de la nodul "<<start<<" la nodul

"<<stop;

16.6 Operatii de concatenare si deconcatenare cu grafuri

Se defineste concatenarea a doua grafuri ca fiind operatia de
adaugare a altui graf la unul din nodurile grafului initial respectand
urmatoarele reguli:

- nodul capat al grafului al doilea se va lega printr-un arc de un nod
al primului graf; arcul este orientat pe directia nod graf 1 ->capat
graf 2;

- se introduce de la tastatura informatia nodului unde se va adauga
graful al doilea;

- daca nodul capat al grafului 2 este nod in graful 1 si concatenarea
se face in acel nod nu se va mai face nici un arc, completandu-se
lista de arce a nodului din graful 1 cu arcele nodului din graful 2;

- daca nodul final al grafurilor difera, atunci intre nodul final al
grafului 2 si cel al primului graf se va forma un arc a carui
informatie se va citi de la tastatura;

- daca al doilea graf se leaga la nodul final al grafului 1 atunci nodul
final al grafului 2 devine nod final al noului graf obtinut prin
concatenarea celor doua grafuri;

- daca in graful al doilea se afla minim doua noduri care se afla si
in primul graf, o conditie esentiala de a face concatenarea celor
doua grafuri este cd, daca exista in ambele grafuri arc in acelasi
sens intre cele doua noduri, acesta sa aiba aceeasi greutate.

Functia care verifica aceasta ultima conditie este urmatoarea:

int graf liste::verificare(nodgraf *cap,nodgraf *cap2)
{
nodgraf *p,*q,*auxl, *aux2;
int k=1;
for (p=cap;p!=NULL; p=p->next)

for (g=cap2;q!=NULL;g=g->next)

{

if (g->info==p->info)
for (auxl=cap;auxl!=NULL;auxl=auxl->next)
/*nodurile comune le compar 2 cite 2 si vadd care este greutatea
arcului dacd existda vreunul*/
for (aux2=g->next;aux2!=NULL; aux2=aux2->next)

{

if (aux2->info==auxl->info)
if (verif arc(p,auxl)!=verif arc(q,aux2))

{ //dacd au greutate diferitd atunci
printf ("\n Nu se poate face concatenarea !'");
k=0;
return k;

}

return k;

}

Functia care realizeaza concatenarea celor doua grafuri primeste ca
date de intrare doi pointeri la capetele celor doua grafuri si returneaza 0
daca nu se poate face concatenarea si / daca a reusit. Functia respectand
conditiile de mai sus, adauga la lista nodurilor grafului 1 si nodurile care nu
sunt comune ale grafului 2, iar listele de arce ale acestor noduri sunt si ele
copiate. In cazul nodurilor comune, listele arcelor sunt doar completate cu
arce noi. Exista si cazuri cand este nevoie sa se creeze arce noi (cand se
leaga de exemplu nodurile finale ale grafurilor) iar atunci greutatea lor este
citita de la tastatura.

Functia este:

int graf liste::concatenaregraf (nodgraf *cap,nodgraf *cap2)
{

int k;

nodgraf *p,*q,*aux,*ultiml,*ultim2;

arc *r;

//verifica dacd se poate face concatenarea

if (verificare (cap,cap2)==0) return O;

printf("\n La ce nod are loc concatenarea ?");

/*se introduce nodul unde se face concatenarea si se verificd dacid el
existd in primul graf*/

k=citire() ;

ultiml=cauta nodgraf final (cap);
// memorez ultimul nod al grafului 1
ultim2=cauta nodgraf final (cap2);
//memorez ultimul nod al grafului 2

/*se insereaza in lista nodurilor primului graf nodurile necomune din
al doilea graf*/
for (g=cap2;q!=NULL;g=g->next)
{

p=cauta nodgraf (cap,q->info) ;

if (p==NULL) cap=ins_nodgraf (cap,q->info) ;
}
/* se copiazd pentru noduri si lista arcelor, iar pentru acele noduri
care existau se completeazd aceastd listd*/
for (g=cap2;q!=NULL; g=g->next)
{

p=cauta_nodgraf (cap,q->info) ;

if (p!=NULL) for (r=g->capat;r!=NULL;r=r->next_arc)
/*functia ins_arc(nod cap,int sursa,int destinatie,int greutate)
insereaza un nou arc catre nodul cu informatia destinatie de greutate
greutate in lista arcelor nodului cu informatia sursd din graful cu
capdt cap */

ins_arc(cap,p->info,r->destinatie->info,r->weight) ;

}

/* dacd nodul unde se face concatenarea nu este capdt al grafului 2
atunci se face arc intre cele doua cu citirea informatiei de la
tastatura*/
if (cap2->info!=aux->info)
{
printf ("\n Distanta dintre nodul ales si capatul grafului 2 este ?");
k=citire() ;
ins_arc(cap,aux->info,cap2->info, k) ;
}
/* dacd al doilea graf nu se leagd la nodul final al primului graf si
daca nodurile finale nu sunt aceleasi, atunci ele se leaga printr-un
arc */
if (aux->info!=ultiml->info)
if(ultiml->info!=ultim2->info)

if (cauta_nodgraf (cap,ultim2->info)==NULL)
/* functia cauta nodgraf(nod * cap,int k) cauta un nod cu informatia k
in graful cu capdt cap, returnidnd adresa nodului sau NULL */

{

printf ("\n Distanta dintre nodul final al grafului 2 si

cel al lui 1 este ?");

k=citire() ;
//se creazd arc intre nod final al grafului 1 si cel al grafului 2

ins_arc(cap,ultim2->info,ultiml->info, k) ;

}

return 1;

}

Pentru a exemplifica procesul de concatenare a doua grafuri luam
grafurile din figura 16.26.

1
9
8 (>—>@ 4 6
3
Graf 1 Graf2

Figura 16.26 Exemple de grafuri

Daca se doreste concatenarea grafului 2 la graful 1 in nodul cu
valoare 2 atunci graful care va rezulta va fi:

Figura 16.27 Concatenarea a doua grafuri

Informatia arcului dintre nodul cu informatia 6 si cel cu informatia 4 a
fost introdusa de la tastatura fiind ceruta de functia de concatenare.

Deconcatenarea unui graf este operatia de rupere a acestui graf in
doua grafuri diferite din punct de vedere al nodurilor care le formeaza si al
arcelor ce le leaga.

Functia care realizeaza deconcatenarea grafului primeste ca date de
intrare pointer la capatul grafului de deconcatenat si ea va returna in
pointer la capatul celui de-al doilea graf.

Pentru a exemplifica deconcatenarea se considera graful din figura

16.28.

3 5
4
Figura 16.28. Deconcatenarea unui graf

OnONOIMOBONONO

Graful ramas Noul graf

Figura 16.29. Deconcatenarea unui graf

In momentul lansdrii in executie se cere s se introducd informatia
nodurilor care formeaza al doilea graf. Astfel se va crea lista nodurilor
noului graf care se va obtine. Primul lucru care se face dupa aceasta este
crearea listelor de arce pentru aceste noduri. Pentru fiecare nod al noului
graf se verifica daca el are arce cu nodurile acestui nou graf cu ajutorul
functiilor:

/*functia verifica dacd nodul referit prin *s are arc cdtre nodul
referit prin *d, si intoarce ca rezultat greutatea arcului sau 0 daca
nu este arc*/

int graf liste::verif arc(nodgraf *s,nodgraf *d)
{
arc * p,*aux;
int gasit=0;
for (p=s->capat;p!=NULL;p=p->next_arc)
if (p->destinatie==d) {

gasit=1;

aux=p;

return aux->weight;

}

if (gasit==0) ({
return O;
}
else return aux->weight;

}

/* functia primeste ca date de intrare pointer la capatul grafului si
informatia nodului pe care il cautd s$i va returna adresa nodului
cdutat sau NULL*/

nodgraf *cauta_ nodgraf (nodgraf * cap,int info)

{

nodgraf *p,*q;

int gasit=0;

for (p=cap;p!=NULL; p=p->next)

if (p—->info==info) {
gasit=1;
=P/

}

if (gasit==0) {
return NULL;

}

else return q;

}

Odata creata lista nodurilor noului graf si a listelor de arce asociate
acestora, se va reactualiza lista nodurilor si a arcelor grafului initial. Pentru
a realiza acest lucru trebuie respectate urmatoarele:

- nodurile celui de-al doilea graf care se formeaza si care sunt sursa
sau destinatie in arce numai cu noduri care formeaza si ele al
doilea graf, sunt sterse dintre nodurile grafului initial;

- nodurile grafului care se formeaza si care sunt si sursd si
destinatie in arce cu noduri care nu intra in al doilea graf ramén in
primul graf, dar se sterg arcele cu nodurile care nu raman; functia
care verifica daca un nod respecta aceasta conditie sau nu este:

/* functia primeste ca date de intrare referinte la capdtul grafului
initial, la al celui nou si la nodul care se verificad ; ea va returna
0 dacd nu are legdatura cu noduri care ramdn in graful initial si o
valoare diferitd de 0 in caz contrar*/

int graf liste::verif stergere(nodgraf *cap,nodgraf *cap2,nodgraf *q)

{

nodgraf *p,*z;
int k=0;
int vb=0;
for (p=cap;p!=NULL;p=p->next)
{
if (cauta_nodgraf (cap2,p->info)==NULL)
{
z=cauta nodgraf (cap,q->info) ;
if (z!'=NULL) k=verif arc(p,z);
if(k!'=0) vb=k;
}
}
return vb;

}

Functiile care realizeaza deconcatenarea unui graf sunt:

/* functia se apeleazad dupa functia deconcatengraf si are ca scop
reactualizarea listei de noduri a grafului initial primeste ca date de
intrare referinta la capetele celor doua grafuri*/

void graf liste::stergerenodgrafuri (nodgraf *&cap,nodgraf *cap2)
{
int t;
nodgraf *p,*q,*z,w;
for (p=cap;p!=NULL; p=p->next)
for (g=cap2;q!=NULL; g=g->next)
{
z=cauta_nodgraf (cap,qg->info) ;
if (z!=NULL)
if (z->capat==NULL) sterg arc(p,z);
else
{
t=verif stergere (cap,cap2,q);
if (t==0) {
z->capat=NULL;

}
}
for (g=cap2;q!=NULL; g=g->next)
{
p=cauta nodgraf (cap,g->info) ;
if (p!=NULL)
if (p->capat==NULL) cap=sterg nodgraf (cap,p->info) ;

/* functia realizeazad deconcatenarea grafului initial creédnd un nou
graf

primeste ca date de intrare referinta la capdtul primului graf si
intoarce adresa capdtului noului graf*/

nodgraf * graf liste::deconcatengraf (nodgraf * &cap)
{

nodgraf *cap2,*p,*q,*w,*z;

arc *r;

int k,nd,arc;

cap2=NULL;

/*citeste de la tastaturad informatia nodului capédt al noului graf*/

printf ("\n Nodul capat al grafului al 2-lea este :");
k=citire2 (&nd, cap,MAX) ;

/*o datd cititd informatia este creat si inserat un nod cu aceasta
informatie in lista de noduri */
cap2=ins_nodgraf (cap2,nd) ;
if (k==0)
{
printf ("\n Urmatoarele nodgrafuri sunt:");
k=citire2 (&nd, cap,MAX) ;
cap2=ins_nodgraf (cap2,nd) ;
//se creeazd si celelalte noduri
while (k==0)
{
k=citire2 (&nd, cap,MAX) ;
cap2=ins_nodgraf (cap2,nd) ;
}
}

/* in secventa urmdtoare se creeazd listele de arce ale nodurilor
noului graf ; se parcurge lista nodurilor initiale verificdndu-se care
se afla in noul graf ; daca se gaseste un astfel de nod se verifica
daca are arce cu alte noduri ale noului graf ; cadnd se gdsesc aceste
arce, ele se scriu in noul graf si se sterg din graful initial din
listele acelor noduri*/
for (p=cap2;p!=NULL;p=p->next)
{

g=cauta_nodgraf (cap,p->info) ;

//cautd echivalentul lui in graful initial*/
for (z=cap2;z!=NULL; z=z->next)
{

w=cauta nodgraf (cap,z->info) ;

arc=verI£_arc(q,w); /* functia verificd dacd existd arc
intre nodurile cu adresele g si w*/
if (arc!=0) { /*dacd se gdseste arc se scrie in graful

nou si se sterge de aici*/
ins_arc(cap2,g->info,w->info,arc);
sterg_arc(q,w);
}
}
}

return cap2;//returneazd adresa nodului capdt a noului graf }

