
16. GRAFURI

16.1 Structura de date de tip graf

Proiectarea unui sistem informatic care să gestioneze reţeaua

naţională de căi ferate presupune crearea unui mediu de lucru capabil să
utilizeze baza de date a staţiilor şi pe cea a liniilor de cale ferate pentru a
oferi soluţii optime şi reale care să minimizeze costurile şi timpul de folosire
a reţelei. Luând de exemplu situaţia reală din figura 16.1, se pune problema
parcurgerii traseului Arad – Bucureşti cu cost redus, acest lucru implicând
parcurgerea distanţei cea mai scurtă.

 Arad

Cluj

Timişoara

Craiova

Bucureşti

Constanţa

59

324

274

331

209

497

225

Figura 16.1 O parte a reţelei de cale ferată

Sistemul prelucrează informaţiile iniţiale, aflate în două mulţimi N şi

A, unde N = {Arad, Bucureşti, Cluj, Craiova, Constanţa, Timişoara} este
mulţimea oraşelor iar A = {Arad – Timişoara = 59 km, Timişoara – Craiova
= 324 km, Craiova – Bucureşti = 209 km, Bucureşti – Constanţa = 225 km,
Arad – Cluj = 274 km, Cluj – Craiova = 331 km, Cluj – Bucureşti = 497
km} este mulţimea distanţelor dintre două oraşe şi oferă soluţia căutată.

Reprezentarea în memorie a acestor informaţii care au multiple
legături între ele, astfel încât să permită parcurgerea completă a zonelor
sau localizarea unui element din structură, se face în situaţia de faţă
utilizând graful.

Graful, asemenea arborelui, este o structură în care relaţia dintre
nodul părinte şi nodul fiu este una ierarhică, dar care este mai puţin
restrictivă în sensul că un nod are mai mulţi succesori dar şi mai mulţi
predecesori. El este definit ca o colecţie de date reunite în două mulţimi:
mulţimea N = {N1, N2, …, Nn | n – numărul de noduri al grafului} ce conţine
toate nodurile grafului şi mulţimea A = {(Ni, Nj) = Aij | Ni, Nj  N şi i,j =
1, ..., n cu i j} care conţine arcele dintre două noduri vecine.

Graful este larg utilizat în domeniile: ciberneticii, matematicii,
cercetărilor operaţionale în vederea optimizării diferitelor activităţi
economice, chimiei pentru descrierea structurii cristalelor, reţelelor de
transport de toate tipurile pentru optimizarea traseelor, circuitelor electrice
pentru simularea funcţionări corecte, inteligenţei artificiale şi nu în ultimul
rând în domeniul analizei aplicaţiilor software.

Graful este de mai multe tipuri, fiind clasificat în funcţie de :
- direcţia arcelor – în cazul în care arcele dintre nodurile grafului

sunt nedirecţionate atunci graful este unul neorientat; când există

sens între două noduri Ni, Nj şi arcul este direcţionat (Ni  Nj sau
Ni  Nj sau Ni Nj) atunci graful este unul orientat;

A
B

C

D

Graf neorientat

A
B

C

D

Graf orientat

Figura 16.2 Graf orientat şi neorientat

- greutatea arcelor – dacă oricare arc dintre două noduri al grafului

are asociată o valoare numerică (care reprezintă de cele mai
multe ori distanţa, durata de timp sau costul) atunci graful este
cu greutate; în cazul în care arcele nu au asociate valori
numerice, graful este unul fără greutate;

A
B

C

D

2

4

3

3

Figura 16.3 Graf orientat cu greutate

- existenţa arcelor; dacă într-un graf nu există nici un nod izolat,

altfel spus pentru oricare nod Ni cu i = 1..n există cel puţin un
nod Nj cu nj 1 şi i j pentru care există arcul Aij asociat,
atunci graful este conectat; un graf este neconectat dacă există
cel puţin un nod izolat.

A
B

C

D

Nod liber

Figura 16.4 Graf orientat neconectat

La rândul lui graful orientat este puternic conectat dacă între oricare

două noduri Ni şi Nj cu i, j = 1..n există drum (un drum este format din
unul sau mai multe arce) orientat de la i la j, Ni  Nj. Graful orientat este
slab conectat dacă între oricare două noduri Ni şi Nj cu i, j = 1..n există
drum orientat de la i la j, Ni  Nj sau de la j la i, Ni  Nj (doar unul dintre
ele).

A
B

C

D

Graf orientat puternic conectat

A
B

C

D

Graf orientat slab conectat

Figura 16.5 Tipuri de graf orientat

De exemplu în figura 16.5 se observă că al doilea graf orientat este

slab conectat pentru că între nodul A şi D există drum orientat, însă de la D
la A nu există drum.

16.2 Implementarea grafului

Există numeroase metode de reprezentare în memoria calculatorului

a grafului, fiecare cu avantajele şi dezavantajele ei:
- matricea de adiacenţă;
- liste înlănţuite;
- un vector de pointeri la liste simple sau dublu înlănţuite de noduri

adiacente;
- o listă simplu sau dublu înlănţuită de pointeri la liste simple sau

dublu înlănţuite de noduri adiacente;
- un vector de pointeri la liste simple sau dublu înlănţuite de arce.
Dintre toate, cele mai utilizate metode sunt primele două.
Reprezentarea prin matrice de adiacenţă a grafului este eficientă

când se cunoaşte numărul nodurilor şi numărul mediu al arcelor; acesta din
urmă trebuie să fie mare pentru ca gradul de umplere al matricei de
adiacenţă să fie scăzut. Cum crearea de software optimizat înseamnă şi
generalizarea problemei, lucru care dă puţine şanse să se cunoască numărul
nodurilor şi cel al arcelor, singurul argument pro pentru această metodă
este dat doar de uşurinţă implementării şi utilizării matricelor. În cele mai
multe situaţii reale, cea mai mare parte a memoriei necesară stocării
matricei de adiacenţă este nefolosită.

Pentru un graf cu n noduri este necesară o matrice pătratică M de
dimensiuni nxn, care pentru un n foarte mare ocupă mult spaţiu.

Iniţial matricea de adiacenţă are toate elementele egale cu valoarea
0. Pentru a reprezenta arcul Aij dintre nodurile Ni şi Nj (orientat de la Ni la
Nj) la intersecţia liniei i cu coloana j se trece valoarea 1, în cazul grafului cu
fără greutate, sau greutatea arcului, pentru graful cu greutate.

 1, dacă există arc între nodul Ni şi Nj;
Aşadar: M[i][j] =
 0, dacă nu există arc între nodul Ni şi Nj;

în cazul grafului fără greutate şi:

 aij, dacă există arc între nodul Ni şi Nj, iar aij
reprezintă greutatea arcului;

 M[i][j] =
 0, dacă nu există arc între nodul Ni şi Nj;

În cazul unui graf neorientat, matricea de adiacenţă asociată este

simetrică. Pentru graful cu 5 noduri din figura 16.6, Matricele de adiacenţă
corespunzătoare grafurilor sunt prezentate în figura 16.7.

 7 1

8

 5 3

A

B

C

D

A

B

C

D

Figura 16.6 Graf orientat cu greutate şi fără greutate

0 7 5 0

0 0 8 1
0 0 0 3

0 0 0 0

0 1 1 0

0 0 1 1
0 0 0 1

0 0 0 0

Figura 16.7 Matrice de adiacenţă

Lungimea drumului dintre două noduri ale unui graf orientat fără

greutate este dată de numărul de arce. Astfel în cazul grafului din figura
16.6, între nodul A şi D există trei drumuri posibile, unul de lungime 3 (A-B-
C-D) şi două de lungime 2 (A-C-D şi A-B-D).

Uşurinţa lucrului cu matricea de adiacenţă constă şi în faptul că prin
simple ridicări la putere se verifică dacă există drum între două noduri şi
care este lungimea acestuia (doar în cazul grafului orientat fără greutate).

Fie M[4][4] matricea de adiacenţă din figura 16.7 asociată grafului
orientat fără greutate, atunci obţinem:





























































0000

0000

0000

0000

0000

0000

0000

1000

0000

0000

1000

2100

432 MMM (16.1)

După cum se observă, dacă Mk[i][j] = val  0 atunci între nodurile Ni

şi Nj există val drumuri pe direcţia Ni  Nj, drumuri de lungime k.
În cazul lui M2 există 2 drumuri de lungime 2 de la nodul A la nodul D

(A-B-D şi A-C-D), un drum de lungime 2 de la nodul A la nodul C (A-B-C) şi
un drum de lungime 2 de la nodul B la nodul D (B-C-D).

Pentru k = 3 există drumul de lungime 3 de la nodul a la nodul D (A-
B-C-D).

Procesul de ridicare la putere se opreşte când se ajunge la k = n,
unde n este dimensiunea matricei.

Clasa graf care implementează diferite operaţii cu grafuri
reprezentate prin intermediul matricei de adiacenţă este:

#ifndef GRAF_MATRICE_H
#define GRAF_MATRICE_H

#include <iostream>
using namespace std;

class graf_matrice
{
public:
 static const int MaxN = 50; // numarul maxim de noduri
 static const int Infinit = INT_MAX; // nu exista drum intre noduri

 enum TipMatrice
 {
 MatriceAdiacenta = 1,
 MatriceCosturi = 2
 };

private:

 //matricea de adiacenta (1=exista, 0=nu exista)
 int matm[MaxN][MaxN];

 //matricea de costuri (Infinit=nu e drum)
 long matc[MaxN][MaxN];
 int nr_noduri;
 int nr_arce;

protected:
 int vect_rez[MaxN]; //vectorul în care se ţin minte drumuri
 int nr_rez; //nr. nodurilor din rezultat
 int matr[MaxN][MaxN]; //matricea rezultatelor obţinute din
prelucrări
 int valid(int); //testez daca int se afla deja in vect soluţie
 int suma(int); //calculează lungimea drumului

public:
 graf_matrice();
 void init(TipMatrice tip); //iniţializare graf

 void vect_r(); //afişează vectorul rezultat
 void matr_r(); //afişează matricea rezultat
 void matr_r1();
 void drum_minim();/* se calculează drumul minim intre oricare 2
noduri */
 void este_drum(); //verif. existenta drumului intre 2 noduri
 void drum_minim(int, int); //drumul minim între 2 noduri date
 void toate_drm(int,int); //toate drumurile dintre 2 noduri
 bool este_arbore(); //verifică daca este sau nu arbore
 void componente_conexe(); //determină componentele conexe
 bool graf_matrice::este_eulerian();
 void parcurgere_bf(int); //parcurgerea grafului în lăţime
 void parcurgere_df(int); //parcurgerea grafului în adâncime

 void hamiltonian(); //verif. exist. cicluri hamiltoniene
 void prim(); //det. arbore parţial de cost minim
};

graf_matrice::graf_matrice()
{
 nr_noduri = 0;
 nr_arce = 0;
 nr_rez = 0;
 for(int i = 0; i < MaxN; i++)
 {
 for(int j = 0; j < MaxN; j++)
 {
 matm[i][j] = 0;
 matc[i][j] = Infinit;
 }
 }
}

void graf_matrice::init(TipMatrice tip)
{
 cout << "Introduceti numarul de noduri: ";
 Do
 {
 cin >> nr_noduri;
 if (nr_noduri <= 0)
 {
 cout << "EROARE: Numar invalid de noduri" << endl;
 }
 } while(nr_noduri <= 0);

 if (tip == MatriceAdiacenta)
 {
 cout << "Se va introduce matricea de adiacenta" << endl;
 cout << "Se introduc valorile (1-e drum; 0- nu e drum\n";
 }
 else
 {
 cout << "Se va introduce matricea de costuri" << endl;
 }

 for (int j = 0; j < nr_noduri; j++)
 {
 for (int i = 0; i < j; i++)
 {
 cout << "m[" << i + 1 << "][" << j + 1 << "]=";

 if (tip == MatriceAdiacenta)
 {
 do
 {
 cin >> matm[i][j];
 matm[j][i] = matm[i][j];
 } while (matm[i][j] != 0 && matm[i][j] != 1);

 if (matm[i][j] != 0)
 {
 nr_arce++;
 matc[i][j] = matc[j][i] = 1;
 }
 else

 {
 matc[i][j]=Infinit;
 matc[j][i]=Infinit;
 }
 }
 else
 {
 do
 {
 cin >> matc[i][j];
 matc[j][i] = matc[i][j];
 } while (matc[i][j] < 0);

 if (matc[i][j] != 0)
 {
 nr_arce++;
 matm[j][i] = matm[i][j] = 1;
 }
 else
 {
 matc[i][j] = matc[j][i] = Infinit;
 matm[i][j] = matm[j][i] = 0;
 }
 }
 } // for j
 } // for i
}

void graf_matrice::vect_r()
{
 cout << "Vectorul rezultat este:" << endl;
 for (int i = 0; i < nr_rez; i++)
 {
 cout << vect_rez[i] << " " << endl;
 }
}

void graf_matrice::matr_r()
{
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j = 0; j < i; j++)
 {
 cout << "Intre " << i + 1 << " si " << j + 1 <<
 (matr[i][j] != 0 ? "" : " nu") << "exista drum.\n";
 }
 }
}

void graf_matrice::matr_r1()
{
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j = 0; j < i; j++)
 {
 if (matr[i][j] != Infinit)
 {
 cout << "Intre " << i + 1 << " si " << j + 1 <<
 "exista drum de cost minim " << matr[i][j] <<
endl;
 }

 else
 {
 Cout << "Intre " << i + 1 << " si " << j + 1 <<
 "nu exista drum." << endl;
 }
 }
 }
}

void graf_matrice::drum_minim()
{
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j = 0; j < nr_noduri; j++)
 {
 matr[i][j] = matc[i][j];
 }
 }

 for (int k = 0; k < nr_noduri; k++)
 {
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j=0; j < nr_noduri; j++)
 {
 matr[i][j] = min(matr[i][j],matr[i][k]+matr[k][j]);
 }
 }
 }
}

void graf_matrice::este_drum()
{
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j = 0; j < nr_noduri; j++)
 {
 matr[i][j] = matm[i][j];
 }
 }

 for (int k = 0; k < nr_noduri; k++)
 {
 for (int i = 0; i < nr_noduri; i++)
 {
 for (int j = 0; j < nr_noduri; j++)
 {
 matr[i][j]=matr[i][j]||(matr[i][k]&&matr[k][j]);
 }
 }
 }
}

int graf_matrice::valid(int k)
{
 if (matc[vect_rez[k-1]][vect_rez[k]] == Infinit)
 {
 return 0;
 }

 for (int i = 0; i < k; i++)
 {
 if (vect_rez[i] == vect_rez[k])
 {
 return 0;
 }
 }

 return 1;
}

int graf_matrice::suma(int k)
{
 int suma = 0;
 for (int i=0; i<k; i++)
 {
 suma += matc[vect_rez[i]][vect_rez[i+1]];
 }

 return suma;
}

void graf_matrice::drum_minim(int a, int b)
{
 int h, vect[MaxN], lgdrum, min = Infinit;

 for (int f = 0; f < MaxN; f++)
 {
 vect_rez[f] = -1;
 }

 vect_rez[0] = a;
 h = 1;

 while(h >= 1)
 {
 while(vect_rez[h] < nr_noduri)
 {
 vect_rez[h]++;
 if(valid(h))
 {
 if(vect_rez[h] == b)
 {
 lgdrum = suma(h);
 if(lgdrum < min)
 {
 for (int e = 0; e <= h; e++)
 {
 vect[e] = vect_rez[e];
 }

 min = lgdrum;
 nr_rez = h + 1;
 }
 }
 else
 {
 h++;
 vect_rez[h] = -1;
 }
 } // if (valid(h))

 }

 h--;
 }

 for (int e = 0; e < nr_rez; e++)
 {
 vect_rez[e] = vect[e];
 }
}

bool graf_matrice::este_arbore()
{
 int b[MaxN], i, j, v, s;

 v = 0;

 for (i = 0; i < nr_noduri; i++)
 {
 for(j = i + 1; j < nr_noduri; j++)
 {
 v += (matm[i][j] == 1);
 }
 }

 for (int i = 0; i < nr_noduri; b[i] = 0, i++);
 b[0]=1;

 for(i=0;i<nr_noduri;i++)
 {
 for(j=0;j<nr_noduri;j++)
 {
 if((matm[i][j] == 1) && (b[i] == 1))
 {
 b[j] = 1;
 }
 }
 }

 s=0;
 for (i = 0; i < nr_noduri; i++)
 {
 s += (b[i] == 0);
 }

 return (s == 0) && (v == nr_noduri - 1);
}

bool graf_matrice::este_eulerian()
{
 int b[MaxN],i,j,k,v,s;

 for (int i = 0; i < nr_noduri; b[i] = 0, i++);
 b[0] = 1;

 for(i=0;i<nr_noduri;i++)
 {
 for(j=0;j<nr_noduri;j++)
 {
 if((matm[i][j] == 1) && (b[i] == 1))
 {

 b[j] = 1;
 }
 }
 }

 s=0;
 for (i = 0; i < nr_noduri; i++)
 {
 s += (b[i] == 0);
 }

 for(i = 0; i < nr_noduri; i++)
 {
 k = 0;
 for(j = 0; j < nr_noduri; j++)
 {
 k += (matm[i][j]==1);
 v = k / 2;

 if ((k - 2 * v) > 0)
 s = 1;
 }
 }

 return s <= 0;
}

void graf_matrice::parcurgere_bf(int i)
{
 int j,u,p,v,c[MaxN],vizitat[MaxN];

 for (int i = 0; i < nr_noduri; vizitat[i] = 0, i++);
 c[1] = i; u = 1; vizitat[i] = 1;

 for(p = 1; p <= u; p++)
 {
 v = c[p];
 for(j = 0; j < nr_noduri; j++)
 {
 if ((matm[v][j] == 1) && (vizitat[j] == 0))
 {
 u++;
 c[u] = j;
 vizitat[j] = 1;
 }
 }
 }

 cout << "lista vf. parcurse cu metoda BF pornind de la varful "
 << i + 1 << ": " << endl;

 for(j = 2; j <= u; j++)
 cout << c[j] + 1 << endl;
}

void graf_matrice::parcurgere_df(int i)
{
 int vizitat[MaxN], urmator[MaxN], s[MaxN], k, v, j, ps;

 for (int i=0; i < nr_noduri; urmator[i] = 0, vizitat[i] = 0, i++);

 s[1] = i; ps = 1; vizitat[i] = 1;

 cout << "ordinea in DF este " << i+1 << " ";

 while(ps >= 1)
 {
 j = s[ps];
 k = urmator[j] + 1;
 while ((k <= nr_noduri) &&
 ((matm[j][k]==0) || (matm[j][k]==1)&&(vizitat[k]==1)))
 {
 k++;
 }

 urmator[j] = k;

 if(k == nr_noduri + 1)
 {
 ps--;
 }
 else
 {
 cout << k + 1 << " ";
 vizitat[k] = 1;
 ps++;
 s[ps] = k;
 }
 }
}

void graf_matrice::prim()
{
 int s[MaxN],t[MaxN],p[MaxN];
 int min,k,l,c,i,j,v;

 cout << "Nodul de pornire: ";
 cin >> v;

 for (int i = 0; i < nr_noduri; s[i] = t[i] = p[i] = 0, i++);
 s[v - 1] = 1;

 for(k = 1; k <= nr_noduri - 1; k++)
 {
 min = Infinit;

 for(i = 0; i < nr_noduri; i++)
 {
 for(j = 0; j < nr_noduri; j++)
 {
 if ((s[i]==1)&&(s[j]==0) && (min > matc[i][j]))
 {
 min = matc[i][j];
 l = i; c = j;
 }
 }
 }

 s[c] = 1;
 t[c] = l + 1;
 p[c] = matc[l][c];
 }

 for(i = 0; i < nr_noduri; i++)
 {
 cout << t[i] << " ";
 }
 cout << endl;

 for(i = 0; i < nr_noduri; i++)
 {
 cout << p[i] << " ";
 }
}

void graf_matrice::hamiltonian()
{
 int x[MaxN], v, k, j, sol, i;
 sol = 0;
 x[1] = 1; x[2] = 1; k = 2;

 while(k > 1)
 {
 v = 0;
 while((x[k] + 1 <= nr_noduri) && (v == 0))
 {
 x[k]++;
 v = 1;
 for(i = 1;i <= k - 1; i++)
 {
 if(x[k] == x[i])
 {
 v = 0;
 break;
 }
 }

 if(matm[x[k - 1] - 1][x[k] - 1] == 0)
 {
 v = 0;
 }
 }

 if(v == 0)
 {
 k--;
 }
 else
 {
 if ((k==nr_noduri)&&(matm[x[nr_noduri]-1][x[1]-1]==1))
 {
 sol++;

 if(sol==1)
 {
 cout << "Cicluri hamiltoniene:" << endl;
 }

 for (int j = 1; j <= nr_noduri; j++)
 cout << x[j] << " ";
 cout << endl;
 }
 else

 {
 if(k < nr_noduri)
 {
 k++;
 x[k] = 1;
 }
 }
 }
 }

 if (sol == 0)
 cout << "Graful nu este hamiltonian.";
}

void graf_matrice::componente_conexe()
{
 int b[MaxN],k,j,i;

 for(i = 0; i < nr_noduri; i++)
 {
 for(j = 0; j < nr_noduri; j++)
 {
 matr[i][j] = matm[i][j];
 }
 }

 cout << "Componentele conexe sunt: ";
 for(k = 0; k < nr_noduri; k++)
 {
 for(j = 0; j < nr_noduri; j++)
 {
 b[j] = -2;
 }

 b[k] = k;

 if(matr[k][k] > -1)
 cout << endl << " ";

 for(i = 0; i < nr_noduri; i++)
 {
 for(j = 0;j < nr_noduri; j++)
 {
 if((matr[i][j] == 1) && (b[i] == k))
 {
 b[j] = k;
 matr[i][j] = 0;
 matr[j][i] = 0;
 }
 }

 for(j = 0; j < nr_noduri; j++)
 {
 if((b[j] == k) && (matr[j][j] > -1))
 {
 matr[j][j] = -1;
 cout << " " << j + 1;
 }
 }
 }
 }

}

void graf_matrice::toate_drm(int a, int b)
{
 int h;

 for (int f = 0; f < MaxN; f++)
 vect_rez[f] = -1;

 vect_rez[0] = a;
 h = 1;
 while(h >= 1)
 {
 while(vect_rez[h] < nr_noduri)
 {
 vect_rez[h]++;
 if(valid(h))
 {
 if(vect_rez[h] == b)
 {
 cout << endl;
 for (int e = 0; e <= h; e++)
 cout << vect_rez[e] + 1 << " ";
 }
 else
 {
 h++;
 vect_rez[h] = -1;
 }
 }
 }
 h--;
 }
}

#endif //GRAF_MATRICE_H

De cele mai multe ori nu se cunoaşte numărul de noduri ale grafului,

apelându-se la construirea dinamică a grafului pe parcursul rezolvării
problemei, deci nu se cunoaşte dimensiunea matricei de adiacenţă. În
aceste situaţii graful este reprezentat printr-o reţea de liste înlănţuite, liste
de adiacenţă. Asemenea matricei de adiacenţă descrierea grafului cuprinde
mulţimea de noduri şi pe cea de arce, precizând orientarea arcului şi după
caz greutatea lui.

Se defineşte structura arc care este asociată elementelor din
mulţimea arcelor:

struct arc
{
 struct nodgraf * destinaţie; /*adresa nodului către care
 există arc;*/
 struct arc* next_arc; /*referinţă către elementul următor
 din lista de arce;*/

 int greutate; }; //greutatea arcului;

Este vorba de o listă a arcelor ce este construită dinamic. Structura

este cea a unei liste oarecare, cuprinzând informaţia propriu-zisă, greutatea
arcului, precum şi cea necesară înlănţuirii în listă, adresa elementului

următor. Cu toate că nodgraf * destinaţie este un pointer, el face parte din
informaţia de bază şi nu din cea destinată regăsirii în listă. În listă există
mai multe liste, organizate pe principiul descendenţei dintr-un nod. Cum
fiecare nod din graf este unic, se elimină astfel posibilitatea ca un arc să fie
în mai multe liste.

Tipul de structura nodgraf este tot o structură de tip listă. Pe lângă
informaţia nodului şi adresa următorului nod, ea conţine şi adresa de start a
listei ce cuprinde arcele descendente din nodul respectiv.

struct nodgraf {
 int info; //informaţia nodului;
 struct nodgraf* next; //referinţă către următorul nod;
 struct arc *capat; //capătul listei de arce;
}

La crearea grafului se introduc iniţial informaţiile nodurilor, creându-

se astfel lista lor. După aceasta se vor crea listele de arce introducându-se
informaţia nodului sursă, a nodului destinaţie şi greutatea arcului.

Pentru graful cu greutate din figura 16.6 reprezentarea sa în
memorie prin intermediul listelor de liste este dată în figura 16.8.

&C

&C &B

A

&D

&D

7

5

8

1

3

 NULL

 NULL

 NULL

 NULL

DCB

 NULL

&nod – reprezintă adresa lui „nod”

Figura 16.8 Reprezentarea în memorie a unui graf cu ajutorul listelor

Clasa graf_liste care implementează graful definit cu ajutorul listelor

înlănţuite este:

#ifndef GRAF_LISTE_H
#define GRAF_LISTE_H

#include <iostream>

using namespace std;

typedef struct arc
{
 struct nodgraf *destinatie; // adresa nodului catre care e arc;
 int greutate; // greutatea arcului;

 // referinta catre elementul urmator din lista de arce
 struct arc *next_arc;
} arc;

typedef struct nodgraf
 {
 int info; //informatia nodului;
 struct nodgraf *next; //referinta catre urmatorul nod;
 struct arc *capat; //capatul listei de arce;
 } nodgraf;

typedef struct stiva
 {
 nodgraf *n; //elementul stivei
 struct stiva *next; //referinta catre urmatorul element;
 } stiva;

struct lista
{
 nodgraf *n; //elementul listei
 struct lista *next; //referinta catre urmatorul element;
};

typedef struct coada
{
 struct lista *pred;
 struct lista *succ;
} coada;

class graf_liste
{
 int nr;

public:

 static const int MaxN = 50; // numarul maxim de noduri
 static const int Infinit = INT_MAX; /* nu exista drum intre
noduri */

 graf_liste(){}
 graf_liste(int nrnoduri){ nr=nrnoduri;}
 nodgraf *inserare_nod(nodgraf *,int); //insereaza un nod in graf
 nodgraf *gaseste_nod(nodgraf *, int); //gaseste un nod in graf
 void inserare_arc(nodgraf *,int,int,int); //insereaza arc
 int adiacent(nodgraf *,nodgraf *); /* vf dc 2 noduri sunt
adiacente */
 int sterge_arc(nodgraf *,nodgraf *); //sterge arcul

 void vizitare(nodgraf *nd,int vizitat[]) /* march. nodul ca
vizitat */
 {
 vizitat[nd->info]=1;
 cout<<nd->info<<" - ";
 }

 stiva *push(stiva *stk,nodgraf *nd) //pune un element in stiva
 {
 stiva *t = new stiva();
 t->n = nd;
 t->next = stk;
 return t;
 }

 stiva *pop(stiva *stk, nodgraf **nd) /* scoate un element din
stiva */

 {
 if(!stk)
 {
 return NULL;
 }
 else
 {
 stiva *t = stk->next;
 (*nd) = stk->n;
 delete stk;

 return t;
 }
 }

 void depth(nodgraf *); //parcurgere in adancime

 void put(struct coada *q, nodgraf *nd)
 {
 lista *t = new lista();
 t->n=nd;
 t->next=NULL;

 lista *keep = q->succ;
 if (keep != NULL)
 {
 keep->next=t;
 }
 else
 {
 q->pred=t;
 }

 q->succ = t;
 }

 nodgraf *get(struct coada *q) //scoate un element din coada
 {
 if(q->pred == NULL)
 {
 return NULL;
 }
 else
 {
 lista* t = q->pred;
 nodgraf* n=t->n;

 if(q->pred == q->succ)
 {
 q->succ = NULL;
 }

 q->pred = q->pred->next;

 delete t;
 return n;
 }
 }

 void breadth(nodgraf *); //parcurgere in latime
 int drum_minim(nodgraf *,int,int,int[]); //gaseste drumul minim

 void stergere_nod(nodgraf *&,int);// sterge un nod din graf
};

nodgraf* graf_liste::inserare_nod(nodgraf *cap,int info)
{

 nodgraf *nou= new nodgraf();
 nou->info=info;
 nou->next=NULL;
 nou->capat=NULL;

 if(cap==NULL)
 {
 return nou;
 }
 else
 {
 nodgraf *temp = cap;
 while(temp->next != NULL)
 {
 temp=temp->next;
 }

 temp->next = nou;
 return nou;
 }
}

nodgraf* graf_liste::gaseste_nod(nodgraf *cap, int info)
{
 while(cap != NULL && cap->info != info)
 {
 cap = cap->next;
 }

 return cap;
}

void graf_liste::inserare_arc(nodgraf *cap,int sursa,int dest,int
greutate)
{
 nodgraf* s = gaseste_nod(cap,sursa);
 if(s == NULL)
 {
 s = inserare_nod(cap,sursa);
 }

 nodgraf* d=gaseste_nod(cap,dest);
 if(d == NULL)
 {
 d = inserare_nod(cap,dest);
 }

 arc *temp = s->capat,*keep=NULL;
 int gasit = 0;

 while(temp != NULL && !gasit)
 {
 if(temp->destinatie == d)
 {
 temp->greutate = greutate;

 gasit = 1;
 }
 else
 {
 keep = temp;
 temp = temp->next_arc;
 }
 }

 if(!gasit)
 {
 temp= new arc();
 temp->destinatie=d;
 temp->greutate=greutate;
 temp->next_arc=NULL;

 if(keep == NULL)
 {
 s->capat=temp;
 }
 else
 {
 keep->next_arc=temp;
 }
 }
}

int graf_liste::adiacent(nodgraf *s,nodgraf *d)
{
 arc *temp = s->capat;

 while(temp != NULL && temp->destinatie != d)
 {
 temp=temp->next_arc;
 }

 return temp != NULL ? temp->greutate : 0;
}

int graf_liste::sterge_arc(nodgraf *s,nodgraf *d)
{
 arc *keep = NULL;
 arc* temp=s->capat;

 while(temp != NULL)
 {
 if(temp->destinatie == d)
 {
 if(keep == NULL)
 {
 s->capat=temp->next_arc;
 }
 else
 {
 keep->next_arc=temp->next_arc;
 }

 delete temp;
 return 1; // nodul a fost şters
 }
 else

 {
 keep = temp;
 temp = temp->next_arc;
 }
 }

 return 0; // nodul nu a fost şters
}

void graf_liste::depth(nodgraf *g)
{
 int vizitat[MaxN];
 for(int i=0; i < MaxN; i++)
 {
 vizitat[i] = 0;
 }

 nodgraf *curent,**nd;
 arc *temp;
 stiva *stk=NULL;

 while(g != NULL)
 {
 if(!vizitat[g->info])
 {
 cout << endl << "Componenta : " <<endl;
 stk = push(stk,g);

 do
 {
 stk = pop(stk,nd);
 curent = *nd;
 vizitare(curent,vizitat);
 temp=curent->capat;

 while(temp)
 {
 if(!vizitat[temp->destinatie->info])
 stk=push(stk,temp->destinatie);

 temp=temp->next_arc;
 }
 } while(stk != NULL);
 }
 g=g->next;
 }
}

void graf_liste::breadth(nodgraf *g)
{
 nodgraf *curent;
 arc *temp;
 coada *q,coada={NULL,NULL};
 q = &coada;

 int vizitat[MaxN];
 for(int i = 0; i < MaxN; i++)
 {
 vizitat[i] = 0;
 }

 while(g != NULL)
 {
 if(!vizitat[g->info])
 {
 cout << endl << "Componenta : " << endl;
 put(q,g);

 do
 {
 curent = get(q);

 if(!vizitat[curent->info])
 {
 vizitare(curent,vizitat);
 temp = curent->capat;

 while(temp)
 {
 if(!vizitat[temp->destinatie-
>info])
 put(q,temp->destinatie);

 temp=temp->next_arc;
 }
 }
 } while(q->pred != NULL);
 }

 g = g->next;
 }
}

int graf_liste::drum_minim(nodgraf *g,int sursa,int dest,int
precede[MaxN])
{
 nodgraf *tmp;
 arc *temp;

 int distanta[MaxN],i,k,min,curent, perm[MaxN], dc, distanta_noua;

 for(i = 0; i < MaxN; i++)
 {
 distanta[i]=precede[i]=graf_liste::Infinit;
 perm[i]=-1;
 }

 distanta[sursa] = 0;
 curent = sursa;
 perm[sursa] = 1;

 while(curent != dest)
 {
 dc = distanta[curent];
 tmp = gaseste_nod(g,curent);
 temp = tmp->capat;

 while(temp)
 {
 distanta_noua = dc + temp->greutate;
 tmp = temp->destinatie;

 if(distanta_noua < distanta[tmp->info])
 {
 distanta[tmp->info] = distanta_noua;
 precede[tmp->info] = curent;
 }

 temp = temp->next_arc;
 }

 for(i = 0; i < MaxN && perm[i] > 0; i++);

 k = i;
 min = distanta[k];
 for(i = k; i < MaxN; i++)
 {
 if(perm[i] < 0 && distanta[i] < min)
 {
 min = distanta[i];
 k = i;
 }
 }
 curent = k;
 perm[k] = 1;
 }

 return distanta[dest];
}

void graf_liste::stergere_nod(nodgraf *&temp,int sursa)
{
 if(temp->info == sursa)
 {
 nodgraf *a = temp;
 temp = a->next;
 delete a;
 }
 else
 {
 stergere_nod(temp->next, sursa);
 }
}

#endif //GRAF_LISTE_H

16.3 Traversarea unui graf

Un graf este în esenţă o reţea, care de cele mai multe ori are

corespondenţă în lume reală. Cum principala caracteristică a unei reţele
este mobilitatea continuă din interiorul său, se pune problema parcurgerii
grafului. În cazul altor structuri de date, vectori, liste şi chiar arbori lucrurile
sunt clare: se pornea de la un capăt şi trecându-se de la un element la
următorul se parcurgea integral structura fără ca un element să fie vizitat
de mai multe ori.

Graful fiind o structură de date mai generală în care nodurile au mai
mult de un predecesor se pune deci problema trecerii o singură dată prin
fiecare nod. Pentru a complica mai mult problema se ia în considerare şi
faptul că oricare nod al grafului este un posibil punct de start al traversării,

lucru care demonstrează că aceasta nu este unică, rezultatele variind de la
caza la caz.

Evitarea revenirii într-un nod vizitat se face asociind acestuia o
etichetă care să indice acest lucru. Metodele de traversare a grafului sunt
bazate pe acest principiu, deosebindu-le doar modul în care stochează şi
revin asupra unor direcţii necercetate.

Cele două metode sunt :
- traversarea în adâncime (depth-first traversal);
- traversarea în lăţime (breadth-first traversal).
Pe scurt, cele două traversări sunt asemenea drumului parcurs de

exploratori într-o peşteră, numai că în cazul traversării în adâncime avem
un singur explorator care se întoarce de fiecare dată când ajunge la un
capăt de drum la ultima intersecţie, iar în cazul traversării în lăţime sunt o
echipă, fiecare luând-o pe un drum.

Odată traversat graful cu una dintre aceste metode, se creează o
pădure acoperitoare pentru el, lucru util pentru punerea în evidenţă a
componentelor sale conexe, dar şi un arbore acoperitor. Arborele acoperitor
este un subgraf ce conţine nodurile grafului iniţial şi doar atâtea arce încât
să fie construit un arbore.

 Pentru un graf implementat prin intermediul unei matrice de
adiacenţă, ordinul de complexitate al operaţiei de traversare este O (n2).
Graful cu n noduri, are matricea asociată de dimensiune nxn. Rezultă că
timpul alocat prelucrării unui nod în vederea găsirii tuturor nodurilor
adiacente este O (n); se parcurge linia de n elemente a nodului. Deci pentru
n noduri timpul necesar traversării este de n*O (n) = O (n2). După cum se
observă, indicatorul depinde doar de numărul nodurilor, numărul arcelor
dintre noduri neavând nici o influenţă.

În cealaltă situaţie, pentru un graf reprezentat cu ajutorul listelor
înlănţuite, ordinul de complexitate al operaţiei de traversare este cuprins
între O (n) şi O (n2). Indicatorul depinde aici de numărul de arce al fiecărui
nod. Cel mai fericit caz este acela când nu există nici un arc între noduri şi
atunci traversarea are ordinul de complexitate minim O(n). Dacă fiecare nod
al grafului are arce către toate celelalte n-1 noduri ale grafului, se obţine
complexitatea maximă O (n2).

Procesul de traversare în adâncime a unui graf, este unul de tip
backtracking, analogic cu traversarea în preordine a unui arbore.

Algoritmul foloseşte în acest scop un vector sau o listă în care pune
nodurile vizitate şi o stivă în care sunt puse nodurile adiacente nodului
curent. Odată vizitat un nod, traversarea se îndepărtează în adâncime până
când ajunge la un capăt de drum.

Fie nodul de start al parcurgerii, nodul notat cu X. Acesta este
etichetat ca vizitat şi este trecut în listă. Toate n nodurile adiacente lui X, Xi
cu i = 1..n, sunt puse în stiva de aşteptare. Primul nod din stivă, X1, este
verificat dacă nu este în listă, caz în care este vizitat, fiind scos şi pus în
listă. În cealaltă situaţie, nodul se afla deja în listă, el este scos din stivă şi
este verificat nodul de sub el. Aceşti paşi sunt repetaţi pentru fiecare nod
adiacent al lui X1.

Altfel spus, se pleacă pe drumul dat de primul nod adiacent al nodului
de start, primul nod adiacent al nodului deja vizitat şi tot aşa până când se
ajunge la un nod al cărui prim nod adiacent a fost vizitat sau nu există fiind
un capăt de drum. Atunci se trece la următorul nod adiacent pe care se
continuă, dacă este posibil, sau în acest moment, algoritmul se întoarce la

penultimul nod vizitat şi pleacă pe al doilea nod adiacent al acestuia, în
condiţiile în care el nu a fost vizitat şi există. Algoritmul se întoarce atâta
timp cât există noduri în stivă.

A
B

C

D

E

F

Figura 16.9 Graf orientat

Parcurgerea în adâncime a grafului orientat din figura 16.9 presupune

parcurgerea etapelor :
1. se alege nodul A ca punct de start al traversării. Nodul A este

vizitat şi este trecut în lista nodurilor pe la care s-a trecut. În stivă
sunt trecute nodurile către care are arce direcţionate: B şi C;

A

B

C

Lista nodurilor vizitate
Stiva nodurilor de vizitat

D Noduri
adiacente

Figura 16.10 Paşii primei etape

2. se scoate primul nod din stivă, C, şi cum acesta nu a fost vizitat

(nu se afla în lista nodurilor vizitate) este trecut acum în listă.
Nodurile sale adiacente, doar D, sunt trecute în stivă;

A

B

D

Lista nodurilor vizitate

Stiva nodurilor de vizitat

C
E

F Noduri
adiacente

Figura 16.11 Paşii etapei 2

3. se scoate nodul D din stivă şi este pus în listă, deoarece nu a fost

vizitat. Nodurile sale adiacente, F şi E, se pun în stivă;

A

E

F

Lista nodurilor vizitate

Stiva nodurilor de vizitat

C D

Nu are noduri
adiacente

B

Figura 16.12 Paşii etapei 3

4. se scoate nodul din stivă nodul F şi este etichetat ca vizitat. În

acest punct se ajunge la un sfârşit de drum şi astfel trece la
următorul element din stivă;

A E F

Lista nodurilor vizitate

Stiva nodurilor de vizitat

C D

Noduri adiacente

B C

F

Figura 16.13 Paşii etapei 4

5. se vizitează nodul E. Iniţial se trece în stivă nodul adiacent lui E,

anume nodul F, dar el este scos apoi din stivă existând, deja în
lista nodurilor vizitate. În stivă rămâne doar nodul B;

 A E F C D B

Figura 16.14 Lista nodurilor vizitate

6. traversarea este completată prin vizitarea nodului B. Cele două
noduri adiacente ale sale, F şi C, sunt trecute în stivă, însă sunt
scoase apoi unul câte unul, ele fiind deja însemnate ca vizitate.

 A

C
D

F
E

B

Nivel 1
Nivel 2

Nivel 3
Nivel 4

Nivel 5
Nivel 6

Figura 16.15 Arbore acoperitor în adâncime

pentru graful din figura 16.9

La scrierea codului sursă, algoritmul se îmbunătăţeşte făcându-se o

căutare în listă a nodurilor care se introduc în stivă pentru a se vedea dacă
sunt sau nu deja vizitate. Traversarea grafului neorientat nu implică

modificarea în vreun fel a algoritmului, acesta fiind aplicat fără nici o
restricţie.

Arborele acoperitor este construit odată cu lista nodurilor vizitate,
adăugând un nod la listă se completează şi arborele.

Traversarea grafului, folosind acest procedeu, dă un rezultat diferit
pentru un nod de start altul decât A, acest lucru fiind valabil şi pentru
arborele acoperitor din figura 16.9.

Procesul de traversare în lăţime a unui graf orientat sau neorientat,
este analog procesului de traversare în inordine a unui arbore, şi constă în
parcurgerea o singură dată a tuturor nodurilor din graf.

Deosebirile de cealaltă metodă constau în folosirea unei cozi de data
aceasta pentru a păstra nodurile de verificat, şi în faptul că algoritmul se
îndepărtează de nodul vizitat doar după ce a examinat şi vizitat, dacă este
posibil, toţi succesorii săi. În schimb şi această metodă este aplicabilă atât
grafului orientat cât şi neorienatat dând rezultate ce variază în funcţie de
alegerea nodului de pornire.

Parcurgerea în lăţime a grafului din figura 16.9, presupune paşii:
1. se alege nodul A ca punct de start al traversării. Nodul A este

vizitat şi este trecut în lista nodurilor pe la care s-a trecut. În
coadă sunt trecute nodurile către care are arce (direcţionate sau
nedirecţionate, în funcţie de tipul grafului): B şi C;

A B C

Lista nodurilor vizitate Coada nodurilor de vizitat

C

Noduri
adiacenteF

D

Figura 16.16 Paşii primei etape

2. sunt verificate nodurile adiacente şi sunt vizitate dacă nu se află
deja în listă. În momentul trecerii în lista nodurilor deja parcurse,
nodurile lor adiacente sunt adăugate la coadă, nodul F şi C
adiacente lui B şi nodul D adiacent lui C;

A C D

Lista nodurilor vizitate Coada nodurilor de vizitat

F

Noduri
adiacenteE

B C F

Figura 16.17 Paşii etapei 2

3. din coadă trec în lista nodurilor traversate, nodurile F şi D. Nodul

C există deja în listă şi doar este scos din coadă. Nodul F nu are
adiacenţi şi reprezintă un capăt de drum, nici un nod nefiind
adăugat în coadă. În schimb, coada este completată cu nodurile E
şi F, care sunt adiacente lui D;

A F

Lista nodurilor vizitate Coada nodurilor de vizitat

Noduri
adiacente C

B C E F D

Figura 16.18 Paşii etapei 3

4. traversarea este încheiată prin adăugarea nodului E la listă.
Nodurile F şi C au fost vizitate şi nu se mai pun iar în listă.

 A B C E F D

Figura 16.19 Lista nodurilor vizitate

Ca şi în cazul metodei precedente, algoritmul se optimizează

verificându-se înainte de a fi pus în coada de aşteptare dacă nodul respectiv
se află în listă sau nu.

 A

C

DF

E

B
Nivel 1

Nivel 2

Nivel 3

Nivel 4

Figura 16.20 Arbore acoperitor în lăţime
pentru graful din figura 16.9

Arborele acoperitor este construit odată cu lista nodurilor vizitate.

Adăugând un nod la listă se completează şi arborele, iar toate nodurile
adiacente cu acesta şi care nu au fost vizitate sunt adăugate la arbore ca
noduri copii (ulterior devin noduri părinte pentru nodurile adiacente din
graf).

În concordanţă cu rezultatul dat de traversarea în lăţime a arborelui,
şi forma arborelui acoperitor variază în funcţie de nodul de start.

16.4 Închiderea tranzitivă a grafului

Graful este de cele mai multe ori reprezentarea matematică a

problemelor economice şi nu numai, legate de transport, de costul
deplasării dintr-un punct în altul, de durata realizării acestuia. Cea mai
sugestivă aplicaţie legată de implicarea grafului în rezolvarea acestor
probleme este cea a drumului minim, însă de multe ori este necesar să se
ştie doar dacă este drum între două noduri. Soluţia acestei probleme este
dată de realizarea unei matrice, numită închiderea tranzitivă a matricei de

adiacenţă, care să arate pentru fiecare nod în parte unde se poate ajunge
plecând din el.

O modalitate de creare a acesteia este dată de traversarea în
adâncime a grafului. Traversând graful din fiecare nod al său, se obţin
atâtea liste câte noduri sunt, liste care arată în ce noduri se ajunge din
nodul de start. Acestea din urmă se transpun într-o matrice M[n][n], care
are elementul mij =1 dacă există drum de la nodul Ni la nodul Nj şi 0 în rest.

A
B

C

D

E

F

Figura 16.21 Exemplu de structură de graf

Pentru graful din figura 16.21 traversarea prin metoda DFS pornind
din fiecare nod are ca rezultat următoarele liste :

- pornind din A avem: A, C, D, F, E, B;
- pornind din B avem: B, C, D, F, E;
- pornind din C avem: C, D, F, E;
- pornind din D avem: D, F, E, C;
- pornind din E avem: E, F, C, D;
- pornind din F avem: F.
Matricea închiderii tranzitive obţinute prin intermediul listelor este:





























100000

111100

111100

111100

111110

111111

MIT . (16.2)

Folosind matricea, creăm graful extins numit închidere tranzitivă.

Luăm fiecare nod în parte, iar pe reprezentarea grafului iniţial se desenează
săgeţi punctate către nodurile la care se ajunge şi care nu sunt adiacente
lui.

 Închiderea tranzitivă este prezentată în figura 16.22.

A

B

C

D

E

F

Figura 16.22 Închiderea tranzitivă a grafului din figura 16.9

Ordinul de complexitate al acestei operaţii este foarte mare, şi anume

O (n3), pentru că pentru fiecare dintre cele n noduri se aplică traversarea în
adâncime, care are complexitatea maximă O (n2). Deşi este uşor de
implementat, pentru un graf foarte mare metoda consumă multe resurse.

O altă soluţie, mai elegantă dar cu acelaşi grad de complexitate, a
fost dată de Stephan Warshall. În construirea algoritmului său, el a plecat
de la ideea următoare: luând nodurile Ni, Nj, Nk, (cu i, j, k = 1..n
şi kji ) şi dacă există arcele Aik şi Akj atunci există drum de la nodul Ni
la nodul Nj, acest lucru însemnându-se în închiderea tranzitivă a matricei de
adiacenţă.

Algoritmul iniţializează matricea închiderii tranzitive cu valoarea
matricei de adiacenţă a grafului şi pune valoarea 1 pe diagonala principală
(evident există arc de la un nod la el). În urma a trei cicluri după variabilele
i, j, k (cu i, j, k = 0 ... n-1), elementele matricei închiderii tranzitive
A’[n][n] iau valoarea 1 dacă a’[i][k] = a’[k][j], adică:

a’[i][j] = a’[i][k] & a’[k][j] (16.3)

În clasa graf_matrice, metoda asociată algoritmului este:

void graf_matrice::inchidere_tranzitiva()
{
 int i,j,k;
 int a_tranz[MaxLungGraf][MaxLungGraf];

//se creeza matricea închiderii tranzitive iniţială plecând de la
//matricea de adiacenţă a grafului
 for(i = 0; i<nr_noduri; i++)
 for(j = 0; j<nr_noduri; j++)
 if(i==j)
 a_tranz[i][j] = 1;
 else
 a_tranz[i][j] = matm[i][j];
//se cerceteaza perechi de câte 3 noduri si se formeaza matricea
 for(i = 0; i<nr_noduri; i++)
 for(j = 0; j<nr_noduri; j++)
 for(k = 0; k<nr_noduri; k++)
 a_tranz[i][j] = a_tranz[i][k] && a_tranz[k][j];
//se afiseaza matricea de adiacenţă a grafului
 for(i = 0; i<nr_noduri; i++)
 {

 for(j = 0; j<nr_noduri; j++)
 cout << a_tranz[i][j] << " ";
 cout << endl;
 }
}

16.5 Problema drumului de lungime minimă în graf

Revenim la problema iniţială, cea a parcurgerii traseului Arad –

Bucureşti având cel mai mic cost. Soluţia constă în găsirea acelor oraşe prin
care trece traseul astfel încât suma distanţelor parcurse să fie cea mai mică,
în raport cu lungimea altor posibile drumuri de parcurs. La nivelul grafului în
loc de oraşe, distanţe avem noduri şi arce cu greutate.

Parţial, problema este rezolvată deoarece folosind cele două metode
de traversare a unui graf avem capacitatea de a afla ce noduri se află pe
trase şi astfel putem forma o serie de drumuri de urmat. Nu mai rămâne
decât să vedem în cazul grafului cu greutate care drum are suma valorilor
arcelor minimă sau în cazul grafului fără greutate care drum are mai puţine
arce. Deşi această soluţia este simplu de implementat, ea este mare
consumatoare de resurse în cazul unui graf mare, aşa că ne trebuie un
program care să combine cele două etape, reducând traversările repetate
ale grafului la una.

Acest lucru este făcut de algoritmul Dijkstra, care examinează toate
drumurile ce pornesc din nodul curent, actualizând distanţele dintre el şi
celelalte noduri. Pentru a păstra nodurile prin care trece drumul cel mai
scurt, programul le reţine într-o listă pe care o notăm cu L. În final lista
conţine mulţimea minimă de noduri care să le conţină pe toate cele care vor
forma efectiv drumul optim.

Nodurile care se adaugă în această listă sunt acele noduri ale grafului
la care se ajunge prin arce directe doar de la nodurile din lista L (ele
reprezintă nodurile adiacente celor din L) şi care au lungimea cumulată
până în acel moment minimă.

Pentru a nu calcula de fiecare dată distanţa minimă până în acel nod,
ea este atribuită ca informaţie nodului, asemenea unei etichete. Ele sunt
implementate utilizând un vector de lungime n, unde n este numărul de
noduri al grafului (vector[i] reţine eticheta nodului i), sau creând o listă cu n
elemente de tip etichetă.

Drumul minim este găsit în momentul în care în lista L se află nodul
destinaţie.

Algoritmul constă în paşii:
Pasul 1. Se construieşte lista L şi elementele vectorului/listei

distanţelor sunt iniţializate cu o valoare foarte mare;
Pasul 2. Se alege nodul sursă, el devenind şi primul nod pus în lista

L. Valoarea etichetei corespunzătoare lui ia valoarea 0;
Pasul 3. Se repetă până când nodul destinaţie se află în L. Sunt

analizate nodurile grafului care nu sunt în lista L.
Dacă există noduri Ni în care se poate ajunge prin arce directe de la

noduri din L, se calculează distanţa de la nodul de start până la ele:

distanţa(Ni)=min(val_etichetă(Ni),val_etichetă(Nk)+greutate_arc(Nk ,Ni)) (16.4)

unde:

 val_etichetă(Ni) – reprezintă valoarea etichetei asociată nodului Ni;
 greutate_arc(Nk,Ni)) – reprezintă valoarea arcului dintre nodurile Nk şi

Ni;
 Nk – este un nod din lista L de la care se ajunge prin

arc direct la nodul Ni care nu se află în listă.
Se adaugă la lista L acel nod Ni care are distanţa(Ni) obţinută minimă.

Pentru el ca şi pentru celelalte noduri pentru care s-au calculat distanţele se
reactualizează etichetele:

val_etichetă(Ni) = min(val_etichetă(Ni), distanţa(Ni)) (16.5)

Dacă nu există nici un nod de acest tip atunci nu există nici un drum

până la destinaţie.
Pasul 4. Dacă nodul destinaţie se află în lista L, atunci valoarea

etichetei sale reprezintă drumul de lungime minimă. Pentru găsirea acestui
drum, se porneşte înapoi de la nodul final şi folosind nodurile din L.

Pentru a nu pierde timp la Pasul 4 reconstituind drumul, aşa cum s-a
ataşat fiecărui nod o etichetă, i se asociază o listă în care sunt memorate
nodurile precedente care au dat valoarea etichetei în acel moment. Nodul
nou introdus în lista L, iniţializează lista drumului deja parcurs cu valorile
din lista predecesorului său direct şi apoi îl adaugă şi pe acesta.

A

B

C

D

E

F

7

2

3

4

2

2

9

8

1

20

Figura 16.23 Graf orientat cu greutate

Pentru a exemplifica metoda, se aplică algoritmul lui Dijkstra pentru a

calcula drumul minim de la nodul A la nodul F, noduri ce aparţin grafului din
figura 16.23.

Se fac notaţiile ajutătoare:
 E(Ni) – valoarea etichetei nodului Ni;
 L(Ni) – lista nodurilor prin care s-a ajuns la nodul Ni;
 L – lista nodurilor care au fost luate în considerare.

Etapele parcurse sunt :
- se iniţializează eticheta nodului A cu valoarea 0, E(A) = 0, iar

pentru celelalte noduri cu o valoare foarte mare, E(B) = E(C) =
E(D) = E(E) = E(F) =  . Se pune nodul A în lista L;

- se calculează valoarea etichetei vecinilor nodului A, E(B) = 7 şi
E(C) = 2. Cum nodul C are valoarea etichetei minimă şi nu se află
în lista L, el este adăugat la aceasta. În lista nodurilor precedente
lui C, L(C), se pune nodul A, iar L = { A, C };

- se calculează valoarea etichetelor vecinilor nodului C, E(B) = 5 şi
E(E) = 4. Vechea valoare al lui E(B), care este 7, este înlocuită de
noua valoare calculată, aceasta din urmă fiind mai mică. Cum
nodul E are eticheta minimă şi nu se află în lista L, este adăugat la
aceasta şi L(E) = { A, C }, iar L = { A, C, E };

- se calculează etichetele pentru nodul F care este vecinul direct al
nodului E, E(F)=13. Dintre toate etichetele, cea a nodului are
valoarea minimă, 5, şi cum el nu este în L, este pus în această
listă, deci L = {A, C, E, B}. În lista predecesorilor săi sunt puşi
predecesorii nodului de la care s-a ajuns la B, adică ai nodului C,
şi acesta din urmă, L(B) = {A, C};

A

B

C

D

E

F

7

2

3

4

2

2

9

8

1

20E(A)=0

E(C)=2
L(C)={ A }

E(E)=4
L(E)={ A, C }

E(B)=5
L(B)={ A, C }

E(F)=13

E(D)=infinit

L = { A, C, E, B }

Figura 16.24 Pas intermediar

- se calculează valoarea etichetelor vecinilor nodului B, E(D) = 9,

E(E) = 13 şi E(F) = = 25. În cazul nodurilor E şi F etichetele îşi
păstrează vechile valori, care sunt mai mici. Cu toate că în acest
moment nodul E are eticheta cu valoare minimă, el nu este ales ca
fiind următorul nod al drumului pentru că se află deja în lista L.
Deci nodul care se traversează este D, iar L(D) = {A, C, B} şi L =
{A, C, E, B, D};

- se calculează valoarea etichetei pentru nodurile E şi F (sunt noduri
adiacente directe pentru nodul D), E(E) = 11 şi E(F) = 10. Pentru
nodul E valoarea etichetei nu este înlocuită cu cea nouă. Nodul
care nu se află în lista L şi care are valoarea etichetei minimă este
F. Este adăugat la listă şi în acest moment căutarea ia sfârşit.
Drumul minim este A – C – B – D – F.

A

B

C

D

E

F

7

2

3

4

2

2

9

8

1

20E(A)=0

E(C)=2
L(C)={ A }

E(E)=4
L(E)={ A, C }

E(B)=5
L(B)={ A, C }

E(F)=10
L(F)={ A, C, B, D}

E(D)=9
L(D)={ A, C, B }

L = { A, C, E, B, D, F}

Figura 16.25 Drumul minim

Afişarea drumului minim şi a lungimii sale folosind funcţia din clasa

graf_liste are codul sursă:

int lungime = x.drum_minim(g,start,stop,precede);
if(test != MAXINT)
{
 cout<<endl<<"Drum minim "<<stop<<"<-"<<start<<" are lungimea :
"<<lungime<<" si este : ";
 for(int i=stop;i>0&&(i !=MAXINT);i = precede[i])
 cout<<i<<"<-";
}
else
 cout<<"Nu exista drum de la nodul "<<start<<" la nodul
"<<stop;

16.6 Operaţii de concatenare şi deconcatenare cu grafuri

 Se defineşte concatenarea a doua grafuri ca fiind operaţia de

adăugare a altui graf la unul din nodurile grafului iniţial respectând
următoarele reguli:

- nodul capăt al grafului al doilea se va lega printr-un arc de un nod
al primului graf; arcul este orientat pe direcţia nod graf 1 ->capăt
graf 2;

- se introduce de la tastatură informaţia nodului unde se va adăuga
graful al doilea;

- dacă nodul capăt al grafului 2 este nod în graful 1 şi concatenarea
se face în acel nod nu se va mai face nici un arc, completându-se
lista de arce a nodului din graful 1 cu arcele nodului din graful 2;

- dacă nodul final al grafurilor diferă, atunci între nodul final al
grafului 2 şi cel al primului graf se va forma un arc a cărui
informaţie se va citi de la tastatură;

- dacă al doilea graf se leagă la nodul final al grafului 1 atunci nodul
final al grafului 2 devine nod final al noului graf obţinut prin
concatenarea celor două grafuri;

- dacă în graful al doilea se află minim două noduri care se află şi
în primul graf, o condiţie esenţială de a face concatenarea celor
două grafuri este că, dacă există în ambele grafuri arc în acelaşi
sens între cele două noduri, acesta să aibă aceeaşi greutate.

Funcţia care verifică această ultima condiţie este următoarea:

int graf_liste::verificare(nodgraf *cap,nodgraf *cap2)
{
nodgraf *p,*q,*aux1,*aux2;
int k=1;
for(p=cap;p!=NULL;p=p->next)
 for(q=cap2;q!=NULL;q=q->next)
 {
 if (q->info==p->info)
 for(aux1=cap;aux1!=NULL;aux1=aux1->next)
/*nodurile comune le compar 2 câte 2 să văd care este greutatea
arcului dacă există vreunul*/
 for(aux2=q->next;aux2!=NULL;aux2=aux2->next)
 {

 if(aux2->info==aux1->info)
 if (verif_arc(p,aux1)!=verif_arc(q,aux2))
 { //dacă au greutate diferită atunci
 printf("\n Nu se poate face concatenarea !");
 k=0;
 return k;
 }
 }
 }
return k;
}

 Funcţia care realizează concatenarea celor două grafuri primeşte ca

date de intrare doi pointeri la capetele celor două grafuri şi returnează 0
dacă nu se poate face concatenarea şi l dacă a reuşit. Funcţia respectând
condiţiile de mai sus, adaugă la lista nodurilor grafului 1 şi nodurile care nu
sunt comune ale grafului 2, iar listele de arce ale acestor noduri sunt şi ele
copiate. În cazul nodurilor comune, listele arcelor sunt doar completate cu
arce noi. Există şi cazuri când este nevoie să se creeze arce noi (când se
leagă de exemplu nodurile finale ale grafurilor) iar atunci greutatea lor este
citită de la tastatură.

 Funcţia este:

int graf_liste::concatenaregraf(nodgraf *cap,nodgraf *cap2)
{
int k;
nodgraf *p,*q,*aux,*ultim1,*ultim2;
arc *r;
//verifica dacă se poate face concatenarea
if(verificare(cap,cap2)==0) return 0;
printf("\n La ce nod are loc concatenarea ?");
/*se introduce nodul unde se face concatenarea şi se verifică dacă el
există în primul graf*/
k=citire();

ultim1=cauta_nodgraf_final(cap);
// memorez ultimul nod al grafului 1
ultim2=cauta_nodgraf_final(cap2);
//memorez ultimul nod al grafului 2

/*se inserează în lista nodurilor primului graf nodurile necomune din
al doilea graf*/
for(q=cap2;q!=NULL;q=q->next)
{
 p=cauta_nodgraf(cap,q->info);
 if(p==NULL) cap=ins_nodgraf(cap,q->info);
}
/* se copiază pentru noduri şi lista arcelor, iar pentru acele noduri
care existau se completează această listă*/
for(q=cap2;q!=NULL;q=q->next)
{
 p=cauta_nodgraf(cap,q->info);
 if(p!=NULL) for(r=q->capat;r!=NULL;r=r->next_arc)
/*functia ins_arc(nod cap,int sursă,int destinaţie,int greutate)
inserează un nou arc catre nodul cu informaţia destinaţie de greutate
greutate în lista arcelor nodului cu informaţia sursă din graful cu
capăt cap */
 ins_arc(cap,p->info,r->destinatie->info,r->weight);
}

/* dacă nodul unde se face concatenarea nu este capăt al grafului 2
atunci se face arc între cele două cu citirea informaţiei de la
tastatură*/
if(cap2->info!=aux->info)
{
printf("\n Distanta dintre nodul ales si capatul grafului 2 este ?");
k=citire();
ins_arc(cap,aux->info,cap2->info,k);
}
/* dacă al doilea graf nu se leagă la nodul final al primului graf şi
dacă nodurile finale nu sunt aceleaşi, atunci ele se leagă printr-un
arc */
if(aux->info!=ultim1->info)
 if(ultim1->info!=ultim2->info)
 if(cauta_nodgraf(cap,ultim2->info)==NULL)
/* funcţia cauta_nodgraf(nod * cap,int k) cauta un nod cu informaţia k
în graful cu capăt cap, returnănd adresa nodului sau NULL */
 {
 printf("\n Distanta dintre nodul final al grafului 2 si
cel al lui 1 este ?");
 k=citire();
//se crează arc intre nod final al grafului 1 si cel al grafului 2
 ins_arc(cap,ultim2->info,ultim1->info,k);
 }
return 1;
}

Pentru a exemplifica procesul de concatenare a două grafuri luăm

grafurile din figura 16.26.

 7 1
 9
 8

 5 3

0

1

2

3 4

 Graf 1

 4 6
 2 5 6

Graf 2

Figura 16.26 Exemple de grafuri

Dacă se doreşte concatenarea grafului 2 la graful 1 în nodul cu
valoare 2 atunci graful care va rezulta va fi:

 7 1
 9
 8
 10

5 3

 4
 6

0

1

2

3 4

6

5

Figura 16.27 Concatenarea a două grafuri

Informaţia arcului dintre nodul cu informaţia 6 şi cel cu informaţia 4 a

fost introdusă de la tastatură fiind ceruta de funcţia de concatenare.
Deconcatenarea unui graf este operaţia de rupere a acestui graf în

două grafuri diferite din punct de vedere al nodurilor care le formează şi al
arcelor ce le leagă.

Funcţia care realizează deconcatenarea grafului primeşte ca date de
intrare pointer la capătul grafului de deconcatenat şi ea va returna în
pointer la capătul celui de-al doilea graf.

Pentru a exemplifica deconcatenarea se consideră graful din figura
16.28.

 1 2 6

3 5

 11

 4

0 1

3

2

4

5

Figura 16.28. Deconcatenarea unui graf

 1 2 6
0 1 2 5

 Graful rămas

 3 4
2 3 4

 Noul graf

Figura 16.29. Deconcatenarea unui graf

În momentul lansării în execuţie se cere să se introducă informaţia

nodurilor care formează al doilea graf. Astfel se va crea lista nodurilor
noului graf care se va obţine. Primul lucru care se face după aceasta este
crearea listelor de arce pentru aceste noduri. Pentru fiecare nod al noului
graf se verifică dacă el are arce cu nodurile acestui nou graf cu ajutorul
funcţiilor:

/*funcţia verifică dacă nodul referit prin *s are arc către nodul
referit prin *d, şi întoarce ca rezultat greutatea arcului sau 0 dacă
nu este arc*/

int graf_liste::verif_arc(nodgraf *s,nodgraf *d)
{
arc * p,*aux;
int gasit=0;
for(p=s->capat;p!=NULL;p=p->next_arc)
 if(p->destinatie==d) {
 gasit=1;
 aux=p;
 return aux->weight;
 }

if (gasit==0) {
 return 0;
}
else return aux->weight;
}

/* funcţia primeşte ca date de intrare pointer la capătul grafului şi
informaţia nodului pe care îl caută şi va returna adresa nodului
căutat sau NULL*/

nodgraf *cauta_nodgraf(nodgraf * cap,int info)
{
nodgraf *p,*q;
int gasit=0;
for(p=cap;p!=NULL;p=p->next)
 if(p->info==info) {
 gasit=1;
 q=p;
 }
if(gasit==0){
 return NULL;
}
 else return q;
}

Odată creată lista nodurilor noului graf şi a listelor de arce asociate

acestora, se va reactualiza lista nodurilor şi a arcelor grafului iniţial. Pentru
a realiza acest lucru trebuie respectate următoarele:

- nodurile celui de-al doilea graf care se formează şi care sunt sursă
sau destinaţie în arce numai cu noduri care formează şi ele al
doilea graf, sunt şterse dintre nodurile grafului iniţial;

- nodurile grafului care se formează şi care sunt şi sursă şi
destinaţie în arce cu noduri care nu intră în al doilea graf rămân în
primul graf, dar se şterg arcele cu nodurile care nu rămân; funcţia
care verifică dacă un nod respectă această condiţie sau nu este:

/* funcţia primeşte ca date de intrare referinţe la capătul grafului
iniţial, la al celui nou şi la nodul care se verifică ; ea va returna
0 dacă nu are legătură cu noduri care rămân în graful iniţial şi o
valoare diferită de 0 în caz contrar*/

int graf_liste::verif_stergere(nodgraf *cap,nodgraf *cap2,nodgraf *q)
{

nodgraf *p,*z;
int k=0;
int vb=0;
for(p=cap;p!=NULL;p=p->next)
{
 if(cauta_nodgraf(cap2,p->info)==NULL)
 {
 z=cauta_nodgraf(cap,q->info);
 if(z!=NULL) k=verif_arc(p,z);
 if(k!=0) vb=k;
 }
}
return vb;
}

Funcţiile care realizează deconcatenarea unui graf sunt:

/* functia se apelează dupa funcţia deconcatengraf şi are ca scop
reactualizarea listei de noduri a grafului iniţial primeste ca date de
intrare referinta la capetele celor doua grafuri*/

void graf_liste::stergerenodgrafuri(nodgraf *&cap,nodgraf *cap2)
{
int t;
nodgraf *p,*q,*z,w;
for(p=cap;p!=NULL;p=p->next)
 for(q=cap2;q!=NULL;q=q->next)
 {
 z=cauta_nodgraf(cap,q->info);
 if(z!=NULL)
 if(z->capat==NULL) sterg_arc(p,z);
 else
 {
 t=verif_stergere(cap,cap2,q);
 if(t==0){
 z->capat=NULL;
 }
 }
 }
for(q=cap2;q!=NULL;q=q->next)
 {
 p=cauta_nodgraf(cap,q->info);
 if(p!=NULL)
 if(p->capat==NULL) cap=sterg_nodgraf(cap,p->info);
}
}

/* funcţia realizează deconcatenarea grafului iniţial creând un nou
graf
primeşte ca date de intrare referinta la capătul primului graf şi
întoarce adresa capătului noului graf*/

nodgraf * graf_liste::deconcatengraf(nodgraf * &cap)
{
nodgraf *cap2,*p,*q,*w,*z;
arc *r;
int k,nd,arc;
cap2=NULL;

/*citeşte de la tastatură informaţia nodului capăt al noului graf*/

printf("\n Nodul capat al grafului al 2-lea este :");
k=citire2(&nd,cap,MAX);

/*o dată citită informaţia este creat şi inserat un nod cu această
informaţie în lista de noduri */
cap2=ins_nodgraf(cap2,nd);
if(k==0)
{
 printf("\n Urmatoarele nodgrafuri sunt:");
 k=citire2(&nd,cap,MAX);
 cap2=ins_nodgraf(cap2,nd);
 //se creează şi celelalte noduri
 while(k==0)
 {
 k=citire2(&nd,cap,MAX);
 cap2=ins_nodgraf(cap2,nd);
 }
}
/* în secvenţa următoare se creează listele de arce ale nodurilor
noului graf ; se parcurge lista nodurilor iniţiale verificându-se care
se află în noul graf ; dacă se găseşte un astfel de nod se verifică
dacă are arce cu alte noduri ale noului graf ; când se găsesc aceste
arce, ele se scriu în noul graf şi se şterg din graful iniţial din
listele acelor noduri*/
for(p=cap2;p!=NULL;p=p->next)
{
 q=cauta_nodgraf(cap,p->info);
 //caută echivalentul lui în graful iniţial*/
 for(z=cap2;z!=NULL;z=z->next)
 {
 w=cauta_nodgraf(cap,z->info);
 arc=verif_arc(q,w); /* funcţia verifică dacă există arc
intre nodurile cu adresele q şi w*/
 if(arc!=0) { /*dacă se găseşte arc se scrie în graful
nou şi se şterge de aici*/
 ins_arc(cap2,q->info,w->info,arc);
 sterg_arc(q,w);
 }
 }
}
return cap2;//returnează adresa nodului capăt a noului graf }

