17. TABELE DE DISPERSIE

17.1 Structura de date de tip tabela de dispersie

Cel mai eficient algoritm de cautare este acela in care fiecarei valori
din colectia de elemente i se asociaza o pozitie unica in cadrul multimii.
Astfel, pe baza valorii cautate se determina pozitia acesteia in cadrul
colectiei.

In cadrul vectorilor, aceasta abordare se implementeaza cu usurinta
deoarece asocierea dintre valoarea unei chei numerice intreaga si pozitia
acesteia in vector se realizeaza prin:

- definirea unui vector cu numar de elemente egalda cu valoarea

maxima posibila a cheii de cautare;

- se stabileste o valoare neutilizata in cadrul problemei de rezolvat
pentru a indica daca elementul cu cheia cautata exista - deoarece
vectorul reprezinta o zona de memorie continua, se implementeaza
principiul conform caruia elementele exista sau sunt sterse logic;
pentru o cheie de cdutare ce ia valori in intervalul [0...255],
valoarea -1 este fi utilizata pentru a indica inexistenta elementului
cautat in colectie.

Principalul avantaj al cautarii bazate pe acces direct este dat de
rapiditate cu care se gaseste elementul cautat sau este indicata inexistenta
acestuia.

Pentru structura element functia de regasire este descrisa in secventa
de cod:

struct element

{ _
int cheie
int valoare
b
int ValoareVector(element* vector, int n, int cheie)
{
if(cheie >= n) return -1;
else if(vector [cheie].cheie == -1) return -1;
else return vector [cheie].valoare;
}

Cu toate acestea, in practica este evitata aceasta solutie directa care,
desi minimizeaza timpul de regadsirea prezintda numeroase dezavantaje
generate de:

- dimensiunea memoriei ocupate - spatiul de memorie, MEMORIE,

necesar implementarii acestei structuri este dat de relatia

MEMORIE = maxim(valoare cheie cautare) * dimensiune(element) (17.1)

iar In cazul in care valoarea maxima este foarte mare atunci
trebuie sa fie rezervat un spatiu considerabil;

- gradului de utilizare a spatiului - deoarece dimensiunea structurii
este dependenta de valoarea maxima a cheii de cautare, nu se
tine cont de numarul real de elemente utilizate; cea mai
nefavorabila situatie este datd de un raport foarte mic dintre




numarul de elemente si valoarea maxima a cheii; de exemplu, se
considera o aplicatie informatica ce gestioneaza studentii din
cadrul unei facultati reprezentati de structura:

struct Student

{

char nume[20];

int varsta;

char facultate[20];
int nrMatricol;

pentru a minimiza timpul de regasire, se implementeaza o
structura cu acces direct in care numarul matricol al studentului
este egal cu pozitia in cadrul colectiei a respectivului element; in
cazul in care valoarea maxima a campului nrMatricol este egala
55630, iar numarul real de studenti este egal cu 1450 rezulta un
spatiu ocupat egal cu

MEMORIE=max(nrMatricol)*dimensiune(Student)=55630*48=2,54 MB

(17.2)

iar gradul de utilizare a acestui spatiu este egal cu:

MEM .
Gum = MEMeenene 1y - 1450748

= *100 = 2,6% (17.3)

MEM 55630*48
tipului cheii de cautare - acesta trebuie sa aiba un tip numeric
intreg deoarece trebuie sa corespunda indexului cu care se
acceseaza elementele unui vector.

Pentru a remedia dezavantajele utilizarii structurilor cu acces direct
sunt definite tabelele de dispersie, hash tables, ce reprezinta colectii de date
in care pe baza unei functii hash cheia de cautare este pusa in
corespondenta cu pozitia elementului in cadrul colectiei. Avantajul acestei
tip de structura de stocare si cautare este dat de:

utilizarea mai eficienta a spatiului fara a se stoca memorie pentru
elemente care nu sunt utilizate — in cazul aplicatiei de gestiune a
studentilor se observa ca din totalul de 55630 de elemente, doar
1450 sunt utilizate; faptul se datoreaza concentrarii valorilor cheii
de cautare in intervalul [54130, 55630]; reducerea spatiului
ocupat de tabela de dispersie se realizeaza in aceasta situatie prin
implementarea unei functii hash: [54130, 55630] — [0, 1500]
care sa reduca valoarea maxima a cheii de cdutarea prin
conversia valorii din intervalul [54130, 55630] intr-o valoare din
intervalul [0, 1500]; o astfel de functie hash cu un nivel de
complexitate scazut este

hash(X) = X modulo 1500, cu X €[54130,55630] (17.4)

implementarea de chei alfanumerice - prin utilizarea unei functii
care sa prelucreze cheia de cautare este depdsita bariera care
limita pentru structurile cu acces direct tipul cheii de cautare la o




valoarea numerica intreaga; in aceasta situatie rolul functiei hash
este de a translata valoarea alfanumerica intr-o valoare intreaga
pozitiva; de exemplu, in limbajul Java este implementata functia
hash pentru un string

hash(S) = s[0]*31"+s[1]*31"°+...+s[n-2]*31+s[n-1] (17.5)

unde:

e s[i] - codul ASCII al caracterului i din sir;

e N

- dimensiunea sirului de caractere.

Pentru cheia alfanumerica cu valoarea salut aplicarea functiei hash
conduce la obtinerea valorii

hash(”salut”)=115*%31*+97*31°+108*31°+117*31+116=109202173 (17.6)

valoarea obtinuta este introdusa din nou intr-o functie hash care sa
identifice pozitia corespondentd din multime pentru aceasta valoare
numerica foarte mare.

Dezavantajul tabelelor de dispersie in cadrul proceselor de cautare
este descris de:

efortul suplimentar de prelucrare dat de functia hash care poate
avea in unele situatii un nivel de complexitate ridicat;

aparitia in cadrul tabelei a coliziunilor - acestea sunt generate de
situatia in care doua valori Xh si YH ce apartin domeniului de
definitie a functie hash conduc la obtinerea de valori identice,
hash(Xh) = hash(Yh); evitarea coliziunilor implica realizarea de
operatii suplimentare prin care sa se identifice pozitia elementului
in cadrul multimii; printre cele mai utilizate tehnici de evitare a
coliziunilor se numara chaining, re-hashing, linear probing,
quadratic probing si overflow area, [Will96], [Seng94].

Din aceste puncte de vedere, tabela de dispersie utilizata in procesul
de regasire a informatiei se descrie ca o structura in care datele sunt
stocate in tabele cu adresare directd, iar pozitia acestora este determinata
prin prelucrarea cheii de cautare cu o functie hash, figura 17.1.

| Cheie de cidutare |

R :;,_»:_k\__t Functie hash |
"

Valoa F€aifanumerica —» Valoa F€humerica

v

Valoare(giemi, Elemn]

| EVITARE COLIZIUNI |

Elem1| e |E|emn/2_1|Elemn/2|E|emn/2+1| s |E|emn

Tabela cu acces direct

Figura 17.1 Tabela de dispersie



17.2 Chei si functii hash

Pentru a identifica in mod unic fiecare inregistrare sunt utilizate valori
dintr-un domeniu bine definit. Asocierea dintre aceste valori unice si
inregistrarile pe care le reprezinta este de unu la unu. In functie de tipul
valorii cu rol de cheie se identifica:

- chei numerice  reprezentate  prin intermediul  tipurilor

fundamentale definite de limbajul de programare utilizat;

- chei alfanumerice reprezentate prin siruri de caractere;

- chei compuse definite pe baza a mai multor atribute;

Rolul functiei hash este de a prelucra cheia asociata fiecarei
inregistrari si de a determina pozitia in cadrul tabelei de dispersie a
elementului respectiv. Deoarece nu exista o functie hash generala, iar
alegerea acesteia se face in functie de caracteristicile multimii de valori
chei, sunt utilizate modele matematice bazate pe:

- Impartire in modul; aceastda metoda are un grad ridicat de
utilizare in diferitele modele de implementare a tabelelor de
dispersie prin prisma complexitatii scazute a modelului si a
usurintei in implementare; indiferent de forma cheii de cautarea,
aceasta este transformatd intr-o valoare numerica si apoi
transpusa in multimea [0..nht-1], unde nht reprezinta
dimensiunea tabelei de dispersie; acest tip de functie are asociat

modelul:
pozitie_tabela = val_cheie % val_baza (17.7)
unde:
e pozitie_tabela - valoarea hash obtinuta;
e val_cheie - valoarea numerica ce identifica unic fiecare
inregistrare;
e val baza - valoarea numerica stabilita la definirea modelului;

Valoarea utilizata ca baza in modelul functiei hash este data de
dimensiunea tabelei de dispersie; obiectivul definirii functiei hash
este de a obtine un model care sa minimizeze multimea de chei
diferite ce conduc la aceeasi valoare pozitie_tabela; in acest sens
se utilizeaza numere prime apropiate de numarul total de
inregistrari; astfel, daca cheile inregistrarilor definesc o multime
continuda de valori unice, valorile hash determinate vor acoperi
toata multimea [0..val_baza-1]; pentru a stabili dimensiunea
initiala a tabelei de dispersii sunt alese numere prime particulare;
de exemplu limbajul Java defineste o clasa HashTable ce descrie o
tabela de dispersie cu dimensiunea initiald egala cu 101; valoarea
nu este aleasa la intamplare deoarece permite redimensionarea
tabelei la o noua valoare prima; pentru cazuri generale, este
indicat sa se foloseasca un numar prim determinat prin relatia:

dimensiune_hash = (4*i+3) cu i=0, 1, 2, 3,... (17.8)
- inmultirea cu un numar real aleatoriu si prelucrarea ulterioara a

partii zecimale - valoarea cheii de cautare este inmultitd cu un
numar din intervalul [0;1) ce este ales aleatoriu; in urma



inmultirii se obtine o valoarea temporara, temp, a carei parte
zecimald are valori cuprinse in intervalul [0 ;1); Tnmultind temp
cu dimensiunea tabelei de dispersie, dimensiune_hash, se obtine
o valoare 1in intervalul [0, dimensiune_hash-1] ce reprezinta
pozitia elementului cautat in tabeld; relatia 17.9 descrie procesul
de determinare a valorii hash:

val_hash=((val_cheie*randomyo;1))-[(val_cheie*randomyy;1))])*nth  (17.9)

unde:

e val _hash

valoarea hash calculata;

e val_cheie - valoarea cheii de cautare;
e randomyy;;) - numar aleatoriu din multimea [0;1);
e nth - dimensiunea tabelei de dispersie.

utilizarea unui bloc de biti obtinut prin prelucrarea cheii de
cautare — de exemplu se defineste functia care multiplica valoarea
codului si care determina valoarea hash pe baza celor 10 biti din
interiorul acesteia; daca se considera cheile reprezentate pe 32
de biti atunci relatia este:

val_hash = ((val_chei * val_cheie)>>11) % nhash (17.10)

prelucrarea codurilor ASCII ale caracterelor alfanumerice - in
cazul in care cheia de cautare este data de o secventa de
caractere atunci este necesar ca aceasta sa fie prelucrata pentru
a se genera un numar intreg care sa indice pozitia elementului in
tabela; prelucrarea se face pe baza codului ASCII asociat
caracterului; pe baza primului caracter din cheie se defineste
relatia:

val_hashs; = string_cheie[0] % 255 (17.11)
unde:
e val _hashs; - valoarea hash calculata;
e string_cheie - valoarea cheii de cautare;

Relatia anterioara defineste un model cu un nivel de complexitate
scazut ce este destinat gestiunii unei colectivitati mici de
elemente; in cazul in care valoarea cheii reprezinta numele unei
persoane, modelul este ineficient deoarece genereaza multe
coliziuni pentru nume diferite dar care incep cu acelasi caracter;
rafinarea acestui model se poate face prin preluarea mai multor
caractere din sirul respectiv; de exemplu se defineste o nouad
relatie

val_hashs,=(string_cheie[0]+string_cheie[lungimesting cheie] )%odim_has (17.12)

unde:
e val _hashs; - valoarea hash calculata;
e string_cheie - valoarea cheii de cautare;

e lungimesying cheie  — dimensiunea sirului de caractere;



e dim_hash - dimensiunea tabelei de dispersie;

ce ia in calcul primul si ultimul caracter; de asemenea, pentru a
nu reduce dimensiunea tabelei la maxim 255 elemente, se
utilizeaza un numar prim, dim_hash suficient de mare; alte functii
hash de prelucrare a cheilor alfanumerice analizeaza toate
caracterele din sir; de exemplu relatia

lungime _ cheie

val_hashs; = ZASCII(string_cheie[i]) % dim_hash  (17.13)
i=l
unde:
e val_hashs; - valoarea hash calculata;
e string_cheie - valoarea cheii de cautare;
e lungime_cheie - dimensiunea sirului de caractere;
e dim_hash - dimensiunea tabelei de dispersie;

determina valoarea hash pe baza sumei codurilor ASCII asociate
tuturor caracterelor din cheie;

inmultirea cu un numar real definit; aceasta valoare este

determinata prin evaluarea expresiei m= 5 sau a expresiei
-1 . N .
m =1—£\/§T); functia hash definita pe baza acestui model este

f(val_cheie) = [val_cheie * m] (17.14)

acest model este implementat in cadrul functiile de rehashing ce
sunt utilizate in cadrul procedurilor de rezolvare a coliziunilor.

Dificultatea in definirea functiilor hash consta in identificare acelui
model care sa minimizeze numarul coliziunilor si care sa genereze o
distributie uniforma a valorilor pe intreg intervalul.

17.3 Evitarea coliziunilor

Functiile de evitare a coliziunilor definesc metode de regadsire a
elementelor ce sunt descrise de chei cu valori diferite dar care conduc la
valori hash identice ceea ce implica pozitii identice in cadrul structurii:

chaining implementreaza lucrul cu liste - fiecare pozitiei din
cadrul tabelei de dispersie contine capatul unei liste de elemente
cu valori hash egale; regasirea unui element presupune
determinarea pozitiei in cadrul tabelei prin calcularea valorii hash
si parcurgerea secventiala a listei atasate pozitiei respective dupa
valoarea cheii de cautare, figura 17.2;



Tabela de dispersie

f_)%

valoare cheie

hash(x) = k

hash(y) =k /
hash@ =k 7 X - v | B =z | pnu

k+1

legatura nod lista

Figura 17.2 Metoda chaining de evitare a coliziunilor in tabele de dispersie.

- re-hashing presupune aplicarea in cascada a aceleiasi functii hash
sau a altui model dintr-o multime de functii pdna cand valoarea
obtinuta reprezinta o pozitie libera din cadrul tabelei de dispersie;
la fiecare pas al procesului de regasire, valoarea cheii de cautare
este introdusa intr-o lista de functii hash pana cand se identifica
elementul cu valoarea cautatd sau nu mai exista alte posibilitati
de a recalcula valoarea hash; tipul si numarul de functii hash
aplicate valorilor intermediare descriu o procedura bine definita
de cautare, respectiv initializare element nou, pentru a conduce
de fiecare data la aceleasi rezultate, figura 17.3;

Tabela de dispersie

f_)%

hash4(x) = k —N k X

7’

hash4(y) =k e

v k+n z \«—— hashy(z) = k+n

-,

hashy,(y) =k+n .~ .

k+m
hashs(y) = k+m — y

Figura 17.3 Metoda rehashing de evitare a coliziunilor in
tabele de dispersie

- linear probing se bazeaza pe cautarea secventiala a primei pozitii
libere in care sa fie inserat elementul nou, pozitie aflata la stanga
sau la dreapta coliziunii; in cazul cdutarii, procesul presupune
verificarea elementelor adiacente pozitiei indicate de valoarea
hash; cu toate ca are un grad scazut de complexitate, aceasta
metoda de evitare a coliziunilor are ca efecte secundare gruparea
coliziunilor de acelasi tip in aceeasi zona, cluster, fapt care
conduce la cresterea probabilitatii de aparitie a coliziunilor pentru
valorile hash adiacente, figura 17.4;



Tabela de dispersie

—
hash(y) =k -- k X l«———hash(x) = k
. . k+1 z \«——nhash(z) = k+1
verificare pozitii
adiacente k+2 y

Figura 17.4 Metoda linear probing de evitare a coliziunilor in
tabele de dispersie

- quadratic probing este o metoda de tipul linear probing care evita
crearea grupurilor de coliziuni prin utilizarea unui pas de regasire
a urmatoarei pozitii libere diferit de 1; astfel, in caz de coliziuni au
loc salturi in tabela de dispersie din doua in doua pozitii sau din
patru in patru; in general, pentru a determina urmatoare pozitie
in care sa se insereze un element nou sau in care sa se caute un
element existent este dat de functia:

pozitie = hash(X)+c*i? (17.15)

unde:

e pozitie - noua pozitie din tabela de dispersie in care se insereaza sau
se cauta un element;

e X - valoarea cheii asociate elementului;

e hash(X) - pozitia indicata de valoarea hash a elementului care se
adauga sau se cauta;

e C - valoare constanta definita in multimea {1, 2, 4};

o i - numarul operatiei de rehash sau numarul de pozitii verificate.

Prin utilizarea de repozitionari pe pozitii neadiacente se evita
gruparea coliziunilor in aceeasi zona din tabela de dispersie,

figura 17.5;
Tabela de dispersie
—
hash(y)=k -__ k X l«——hash(x) =k

hash(y)+2*1?

k+2 z «——hash(z) = k+2
hash(y)+2*2*

k+8 y

Figura 17.5 Metoda quadratic probing de evitare a coliziunilor in
tabele de dispersie



- overflow area presupune o abordare ce imparte tabela de
dispersie in doua zone, primara pentru retinerea elementelor
initiale si secundara alocata elementelor ce genereaza coliziuni; la
aparitia unei coliziuni, fie la operatia de regasire sau la adaugarea
unui element nou, se utilizeaza un element al zonei secundare
pentru a retine noua valoare sau pentru a continua cautarea;
accesul la zona secundara se realizeaza doar prin intermediul unui
pointer din zona primara, functia hash negenerand pozitii in acest
interval de valori; aceastd metoda, descrisa in figura 17.6,
permite o regadsire mai rapida a informatiilor decadt metoda
chaining care presupune parcurgerea de liste;

Tabela de dispersie

zona principala

hash(x) = k_. k

4
4
4

hash(y) =k’

’

b zona overflow

Figura 17.6 Metoda overflow de evitare a coliziunilor in tabele de dispersie

Se observa in cazul tabelelor de dispersie ca probabilitatea de aparitie
a coliziunilor la inserare sau la cautare creste proportional cu gradul de
utilizare a tabelei. In cele mai multe cazuri, functiile hash cu un grad redus
de complexitate nu conduc la rezultate unice pentru valori de intrare
distincte. Din acest motiv, cu cat tabela pune la dispozitie un numar din ce
in ce mai mic de pozitii disponibile, creste riscul de a avea numeroase
elemente cu chei de cautare diferite care ar trebui sa se regaseasca pe
pozitii identice. Metodele de evitare a coliziunilor rezolva partial problema
deoarece ele plaseaza elementele noi pe alte pozitii definind o noua cauza
pentru coliziuni viitoare.

Pentru a rezolva aceasta situatie si pentru a mentine eficienta
operatiei de cautare la un nivel acceptabil, astfel incat sa nu se parcurga
toata multimea de elemente la fiecare operatie de regasire de informatie, se
analizeaza gradul de utilizare a tabelei hash, GUpash.

NPO
U =——%100 17.16
hash NTP ( )

unde:
e NPO - numarul de pozitii ocupate;
e NTP - numarul total de pozitii.



care este mentinut la o valoarea mai micd de 50%. In ciuda faptului c are
loc o gestiune ineficienta a spatiului, eficienta abordarii se bazeaza pe o
viteza de regdsire mare. Pentru a mentine valoarea indicatorului GUpas, sub
limita impusa, tabela se redimensioneaza prin dublarea numarului de pozitii.
In cazul in care modelul functiei hash este bazat pe impartirea in modul la
dimensiunea acesteia, redimensionarea trebuie sa conduca la o noua
dimensiune care sa reprezinte tot un numar prim. Avand in vedere
importanta acestor tipuri de numere, lucru evidentiat la descrierea tipurilor
de functii hash, redimensionarea se face prin intermediul relatiei

dimensiune_noua = dimensiune_curenta*2 + 1 (17.17)

In cazul limbajului Java, unde dimensiunea initiald a tabelei de
dispersie este 101, redimensionarea ulterioara a acesteia utilizand relatia
descrisa conduce la o serie de valori care reprezinta tot valori prime. De
exemplu 203 si 407. In cazul in care relatia utilizata pentru a determina
numarul prim este

dimensiune_hash = (4*i+3) cui=0, 1, 2, 3, ... (17.18)

redimensionarea se realizeaza prin inlocuirea lui i cu 2%*i. Astfel, noua
dimensiune va fi reprezentata tot de un numar prim.

17.4 Implementare

In continuare se exemplifica printr-un program scris in limbajul de
programare C++ implementarea unei tabele de dispersie pentru inregistrari
de tip Student, cautarile realizdndu-se dupa numarul matricolei. Ca functie
de dispersie a fost ales un exemplu simplu cu ajutorul operatorului modulo
(%). Dimensiunea implicita a tabelei a fost aleasa 101, o valoare
cuprinzatoare pentru exemplul ales.

Tabela de dispersie este implementata sub forma unui masiv
unidimensional alocat dinamic, ale carui elemente sunt liste care contin
datele propriu zise. Acest mod de implementare permite tratarea
coliziunilor, in cazul in care pentru indexul generat exista o inregistrarea in
tabeld, noua inregistrare va fi adaugata ca element la lista simplu inlantuita
de la nodul respectiv.

#include "stdafx.h"
#include <iostream>

using namespace std;

//structura de date stocata in tabela de dispersie
//pentru simplificarea codului s-a utilizat o structura
struct Student
{
int matricola;
char nume[20];
char adresa[30];
char localitate[20];
char e_mail[20];
char telefon[15];




void Afisare()

{
cout<<"Matricola: "<< matricola <<endl;
cout<<"Matricola: "<< nume <<endl;
cout<<"Matricola: "<< adresa<<endl;
cout<<"Matricola: "<< localitate<<endl;
cout<<"Matricola: "<< e_mail <<endl;
cout<<"Matricola: "<< telefon <<endl;

3

};

//elementele tabelei de dispersie
//pentru simplificarea codului s-a utilizat o structura
struct NodDate

NodDate *urm;
Student data;

}:
//Cheila este matricola studentului
//
class HashStudent
{ o
int size;
NodDate ** elem;
//functie simpla de dispersie care utilizeaza operatorul modulo
//pentru a genera pozitia in tabela
int HashFunction(int cheie)
{
return cheie%size;
}:
//aloca memorie pentru structura si initializeaza cu null
valorile
void AlocaMemorie()
{

elem = new NodDate*[size];
for (int i=0;i<size;i++)
elem[i] = NULL;

void ElibereazaMemorielLista(NodDate *&);
public:
HashStudent():size(101)

AlocaMemorie();

}

~HashStudent();

HashStudent(int iSize): size (iSize)
{

}

int Insereaza(Student data);
Student Cauta(int matricola);
int Sterge(int matricola);

void HashStudent::Afiseaza();

AlocaMemorie();

};

//insereaza un element pe o pozitie generata de functia de dispersi




//pe baza valorii matricolei din structura
int HashStudent: : Insereaza(Student s)

{
int index = -1;
if (s.matricola<0)
return index;
if (elem!=NULL)
{
index = HashFunction(s.matricola);
//prima inregistrare
NodDate *nod _nou = new NodDate;;
nod_nou->urm = NULL;
nod_nou->data = s;
it (elem[index]== NULL)
{
elem[index] = nod_nou;
else //coliziune
NodDate *t = elem[index];
while(t->urm!=NULL)
t = t->urm;
t->urm = nod_nou;
}
}
return index;
}

//cauta un element dupa chiea matricola

//in cazul in care nu este gasita nici o inregistrare este
//returnata o structura Student cu matricola -1

Student HashStudent::Cauta(int matricola)

//valoare de retur pentru cazurile in care nu este gasit

elementul
Student s_negasit;
s_negasit.matricola = -1;

if (matricola<0)
return s_negasit;

it (elem!I=NULL)
{

int index = HashFunction(matricola);
if (elem[index]==NULL)
{

}

else

{

return s _negasit;

if (elem[index]->data.matricola ==matricola)
return elem[index]->data;
else//coliziune

{
NodDate *t = elem[index];
while (t!= NULL && t->data.matricolal=matricola)

t = t->urm;




if (t==NULL)

return s _negasit;
else

return t->data;

}
by
//neinitializat sau nu exista inregistrarea
return s_negasit;

}

//functie recursiva care eliberaza memoria ocupata de nodurile listei
void HashStudent::ElibereazaMemorielLista(NodDate *&inceput)
{
if (inceput == NULL)
return;
else

ElibereazaMemorieLista(inceput->urm);
cout<<"Eliminat nodul cu codul: ™ <<inceput-
>data.matricola<<endl;
delete inceput;
}

3

//elibereaza memoria ocupa de tabela de dispesie
HashStudent: : ~HashStudent()
{
if (elem = NULL)
{
for (int i=0;i<size;i++)
ElibereazaMemorieLista(elem[i]);
delete [] elem;

}

//Sterge elementul a carui matricola coincide cu matricola trimisa ca
parametru
//returneaza pozitia din tabela de a fost eliminat elementul
//sau -1 in cazul iIn care nu exista elementul cu cheia data
int HashStudent::Sterge(int matricola)
{

if (matricola<0)

return matricola;

it (elem!I=NULL)
{

int index = HashFunction(matricola);
if (elem[index]==NULL)
{

}

else

{

return -1;

//este primul
if (elem[index]->data.matricola ==matricola)

if(elem[index]->urm == NULL)
{
delete elem[index];
elem[index]=NULL;




else//mai sint si alte elemente in lista

NodDate *t = elem[index];
elem[index] = t->urm;
delete t;

}

else//coliziune, nu este primul, il cautam

NodDate *t = elem[index];
while (t->urm!= NULL && t->urm->data.matricola

I=matricola)
t = t->urm;
if (t->urm==NULL)
return -1;
else//t->urm.data.matricola == matricola
{
NodDate *p = t->urm;
if (p->urm ==NULL)
t->urm = NULL;
delete p;
}
else
{
t->urm = p->urm;
delete p;
}
}
}
return index;
}
return -1;
}

}

//Afiseaza continutul tabelei de dispersie
void HashStudent: :Afiseaza()

if (elem!=NULL)
{

for (int i=0;i<size;i++)
if (elem[i]!= NULL)
NodDate *t = elem[i];
while (tI=NULL)
{
cout<<'S-a inserat in pozitia: " << i <<

" cheila: "'<<t->data.matricola<<endl;
t = t->urm;
}




}

int _tmain(int argc, _TCHAR* argv[])
{
Student grupa[] ={
{1000, 1on Vlad'"™, "Str. Norilor
20","Cluj","ion@server.ro", "0101010101"%,
{204,"Mihai Vlad", "Str. Norilor
20","Cluj","mihai@server.ro", "'0101010101"},
{406,"Dan Vlad™, "Str. Norilor 20","Cluj","dan@server.ro",
'0101010101"%},
{305,"Lili Vlad", "Str. Norilor
20","Cluj","lili@server.ro', '"0101010101"%},
{1022,"Silviu Vlad", "Str. Norilor
20","Cluj","silviu@server.ro", "0101010101"%},
{1021,"Alina Vlad", "Str. Norilor
20","Cluj","alina@server.ro', "0101010101"%},
{1030,"Sorin Vlad", "Str. Norilor
20","Cluj","sorin@server.ro', "0101010101"},
{1032,"Titi Vlad™, "Str. Norilor
20","Cluj","titi@server.ro', "0101010101"%},
{1200,"Gigel Vlad", "Str. Norilor
20","Cluj","gigel@server.ro', "0101010101"%},
{2021,"Anca Vlad", "Str. Norilor
20","Cluj","1oanca@server.ro", "0101010101"%},
{1230, "Maria Vlad", "Str. Norilor
20","Cluj","maria@server.ro', "0101010101"%},
{1008, "Elena Vlad", "Str. Norilor
20","Cluj","elena@server.ro', 0101010101}
}:
HashStudent hs;

for (int i=0;i<sizeof(grupa)/sizeof(Student);i++)

{
hs.Insereaza(grupali]);
}
hs.Afiseaza();
int m;
cout<<"Matricola: ";
cin>>m;

while (mI=-1)

Student rez = hs.Cauta(m);
if (rez.matricola 1= -1)
rez.Afisare();

cout<<"Matricola: ";
cin>>m;

}
hs.Sterge(1008);

hs.Sterge(406);
hs.Sterge(305);
hs_Afiseaza();
cin.get();
return O;

Dupa rulare, programul produce urmatoarele rezultate la dispozitivul
standard de iesire:




2021
204
406
385

cheia:
cheia:
cheia:

inzerat
inserat
inzerat
inserat
inzerat
inserat
inserat
inserat
inserat
inzerat
inserat
inzerat
Matricola:
Matricola:
Matricola:
Matricola:
Matricola:

pozitia: 1
pozitia: 2
pozitia: 2
pozitia: 2
pozitia: 11
pozitia: 12
pozitia: 18
pozitia: 28
pozitia: 22
pozitia: 89
pozitia: 71
pozitia: 79

cheia:
chei
chei
chei
chei
chei
chei
cheia

Gigel Ulad

Str. MNorilor 28
Cluj
gigel@server.ro
A1pA18181681

1868

1888

Matricola:
Matricola:
Matricola:
Matricola:
Matricola:

Elena Ulad
Str.
Cluj

Norilor 28

elenalserver.ro

01010160161

Matricola: -1
B—a inserat i
inserat
inserat
inzerat
inserat
inzerat
inserat
inzerat
inserat in
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul
Eliminat nodul

pozitia: 1 cheia:
pozitia: 2 cheia:
pozitia: 11 cheia
pozitia: 12 chei
pozitia: 18 chei
pozitia: 28 chei
pozitia:z 22 chei
pozitia: 89
pozitia: 91 cheia:
cu codul: 2821

cu codul: 204

cu codul: 1821

cu codul: 1822

cu codul: 1230

cu codul: 1830

cu codul: 1832

cu codul: 1280

cu codul: 18688

Figura 17.7 Rezultatele programului HashStudent



