
17. TABELE DE DISPERSIE

17.1 Structura de date de tip tabela de dispersie

Cel mai eficient algoritm de căutare este acela în care fiecărei valori
din colecţia de elemente i se asociază o poziţie unică în cadrul mulţimii.
Astfel, pe baza valorii căutate se determină poziţia acesteia în cadrul
colecţiei.

În cadrul vectorilor, această abordare se implementează cu uşurinţă
deoarece asocierea dintre valoarea unei chei numerice întreagă şi poziţia
acesteia în vector se realizează prin:

- definirea unui vector cu număr de elemente egală cu valoarea
maximă posibilă a cheii de căutare;

- se stabileşte o valoare neutilizată în cadrul problemei de rezolvat
pentru a indica dacă elementul cu cheia căutată există – deoarece
vectorul reprezintă o zonă de memorie continuă, se implementează
principiul conform căruia elementele există sau sunt şterse logic;
pentru o cheie de căutare ce ia valori în intervalul [0…255],
valoarea -1 este fi utilizată pentru a indică inexistenţa elementului
căutat în colecţie.

Principalul avantaj al căutării bazate pe acces direct este dat de
rapiditate cu care se găseşte elementul căutat sau este indicată inexistenţa
acestuia.

Pentru structura element funcţia de regăsire este descrisă în secvenţa
de cod:

struct element
{
int cheie
int valoare
}
int ValoareVector(element* vector, int n, int cheie)
{
 if(cheie >= n) return -1;
 else if(vector [cheie].cheie == -1) return -1;
 else return vector [cheie].valoare;
}

Cu toate acestea, în practică este evitată această soluţie directă care,

deşi minimizează timpul de regăsirea prezintă numeroase dezavantaje
generate de:

- dimensiunea memoriei ocupate – spaţiul de memorie, MEMORIE,
necesar implementării acestei structuri este dat de relaţia

MEMORIE = maxim(valoare cheie căutare) * dimensiune(element) (17.1)

iar în cazul în care valoarea maximă este foarte mare atunci
trebuie să fie rezervat un spaţiu considerabil;

- gradului de utilizare a spaţiului – deoarece dimensiunea structurii
este dependentă de valoarea maximă a cheii de căutare, nu se
ţine cont de numărul real de elemente utilizate; cea mai
nefavorabilă situaţie este dată de un raport foarte mic dintre

numărul de elemente şi valoarea maximă a cheii; de exemplu, se
consideră o aplicaţie informatică ce gestionează studenţii din
cadrul unei facultăţi reprezentaţi de structura:

struct Student
{
 char nume[20];
 int varsta;
 char facultate[20];
 int nrMatricol;
}

pentru a minimiza timpul de regăsire, se implementează o
structură cu acces direct în care numărul matricol al studentului
este egal cu poziţia în cadrul colecţiei a respectivului element; în
cazul în care valoarea maximă a câmpului nrMatricol este egală
55630, iar numărul real de studenţi este egal cu 1450 rezultă un
spaţiu ocupat egal cu

MEMORIE=max(nrMatricol)*dimensiune(Student)=55630*48=2,54 MB

(17.2)

iar gradul de utilizare a acestui spaţiu este egal cu:

GUM =
MEM

MEM elemente *100 =
48*55630

48*1450
*100 = 2,6% (17.3)

- tipului cheii de căutare – acesta trebuie să aibă un tip numeric

întreg deoarece trebuie să corespundă indexului cu care se
accesează elementele unui vector.

Pentru a remedia dezavantajele utilizării structurilor cu acces direct
sunt definite tabelele de dispersie, hash tables, ce reprezintă colecţii de date
în care pe baza unei funcţii hash cheia de căutare este pusă în
corespondenţă cu poziţia elementului în cadrul colecţiei. Avantajul acestei
tip de structură de stocare şi căutare este dat de:

- utilizarea mai eficientă a spaţiului fără a se stoca memorie pentru
elemente care nu sunt utilizate – în cazul aplicaţiei de gestiune a
studenţilor se observă că din totalul de 55630 de elemente, doar
1450 sunt utilizate; faptul se datorează concentrării valorilor cheii
de căutare în intervalul [54130, 55630]; reducerea spaţiului
ocupat de tabela de dispersie se realizează în această situaţie prin
implementarea unei funcţii hash: [54130, 55630] → [0, 1500]
care să reducă valoarea maximă a cheii de căutarea prin
conversia valorii din intervalul [54130, 55630] într-o valoare din
intervalul [0, 1500]; o astfel de funcţie hash cu un nivel de
complexitate scăzut este

hash(X) = X modulo 1500, cu X  55630,54130 (17.4)

- implementarea de chei alfanumerice – prin utilizarea unei funcţii

care să prelucreze cheia de căutare este depăşită bariera care
limita pentru structurile cu acces direct tipul cheii de căutare la o

valoarea numerică întreagă; în această situaţie rolul funcţiei hash
este de a translata valoarea alfanumerică într-o valoare întreagă
pozitivă; de exemplu, în limbajul Java este implementată funcţia
hash pentru un string

hash(S) = s[0]*31n-1+s[1]*31n-2+…+s[n-2]*31+s[n-1] (17.5)

unde:
 s[i] – codul ASCII al caracterului i din şir;
 n – dimensiunea şirului de caractere.

Pentru cheia alfanumerică cu valoarea salut aplicarea funcţiei hash
conduce la obţinerea valorii

hash(”salut”)=115*314+97*313+108*312+117*31+116=109202173 (17.6)

valoarea obţinută este introdusă din nou într-o funcţie hash care să
identifice poziţia corespondentă din mulţime pentru această valoare
numerică foarte mare.

Dezavantajul tabelelor de dispersie în cadrul proceselor de căutare
este descris de:

- efortul suplimentar de prelucrare dat de funcţia hash care poate
avea în unele situaţii un nivel de complexitate ridicat;

- apariţia în cadrul tabelei a coliziunilor – acestea sunt generate de
situaţia în care două valori Xh şi YH ce aparţin domeniului de
definiţie a funcţie hash conduc la obţinerea de valori identice,
hash(Xh) = hash(Yh); evitarea coliziunilor implică realizarea de
operaţii suplimentare prin care să se identifice poziţia elementului
în cadrul mulţimii; printre cele mai utilizate tehnici de evitare a
coliziunilor se numără chaining, re-hashing, linear probing,
quadratic probing şi overflow area, [Will96], [Seng94].

Din aceste puncte de vedere, tabela de dispersie utilizată în procesul
de regăsire a informaţiei se descrie ca o structură în care datele sunt
stocate în tabele cu adresare directă, iar poziţia acestora este determinată
prin prelucrarea cheii de căutare cu o funcţie hash, figura 17.1.

Elem1 … Elemn/2-1 Elemn/2 Elemn/2+1 … Elemn

EVITARE COLIZIUNI

Cheie de căutare

Tabelă cu acces direct

Valoarealfanumerică Valoarenumerică

Valoare[Elem1, Elemn]

Funcţie hash

Figura 17.1 Tabela de dispersie

17.2 Chei si funcţii hash

Pentru a identifica în mod unic fiecare înregistrare sunt utilizate valori

dintr-un domeniu bine definit. Asocierea dintre aceste valori unice şi
înregistrările pe care le reprezintă este de unu la unu. În funcţie de tipul
valorii cu rol de cheie se identifică:

- chei numerice reprezentate prin intermediul tipurilor
fundamentale definite de limbajul de programare utilizat;

- chei alfanumerice reprezentate prin şiruri de caractere;
- chei compuse definite pe baza a mai multor atribute;
Rolul funcţiei hash este de a prelucra cheia asociată fiecărei

înregistrări şi de a determina poziţia în cadrul tabelei de dispersie a
elementului respectiv. Deoarece nu există o funcţie hash generală, iar
alegerea acesteia se face în funcţie de caracteristicile mulţimii de valori
chei, sunt utilizate modele matematice bazate pe:

- împărţire în modul; această metodă are un grad ridicat de
utilizare în diferitele modele de implementare a tabelelor de
dispersie prin prisma complexităţii scăzute a modelului şi a
uşurinţei în implementare; indiferent de forma cheii de căutarea,
aceasta este transformată într-o valoare numerică şi apoi
transpusă în mulţimea [0…nht-1], unde nht reprezintă
dimensiunea tabelei de dispersie; acest tip de funcţie are asociat
modelul:

pozitie_tabela = val_cheie % val_baza (17.7)

unde:

 pozitie_tabela – valoarea hash obţinută;
 val_cheie – valoarea numerică ce identifică unic fiecare

 înregistrare;
 val_baza – valoarea numerică stabilită la definirea modelului;

Valoarea utilizată ca bază în modelul funcţiei hash este dată de
dimensiunea tabelei de dispersie; obiectivul definirii funcţiei hash
este de a obţine un model care să minimizeze mulţimea de chei
diferite ce conduc la aceeaşi valoare pozitie_tabela; în acest sens
se utilizează numere prime apropiate de numărul total de
înregistrări; astfel, dacă cheile înregistrărilor definesc o mulţime
continuă de valori unice, valorile hash determinate vor acoperi
toată mulţimea [0..val_baza-1]; pentru a stabili dimensiunea
iniţială a tabelei de dispersii sunt alese numere prime particulare;
de exemplu limbajul Java defineşte o clasă HashTable ce descrie o
tabelă de dispersie cu dimensiunea iniţială egală cu 101; valoarea
nu este aleasă la întâmplare deoarece permite redimensionarea
tabelei la o nouă valoare primă; pentru cazuri generale, este
indicat să se folosească un număr prim determinat prin relaţia:

dimensiune_hash = (4*i+3) cu i=0, 1, 2, 3,… (17.8)

- înmulţirea cu un număr real aleatoriu şi prelucrarea ulterioară a

părţii zecimale – valoarea cheii de căutare este înmulţită cu un
număr din intervalul [0;1) ce este ales aleatoriu; în urma

înmulţirii se obţine o valoarea temporara, temp, a cărei parte
zecimală are valori cuprinse în intervalul [0 ;1); înmulţind temp
cu dimensiunea tabelei de dispersie, dimensiune_hash, se obţine
o valoare în intervalul [0, dimensiune_hash-1] ce reprezintă
poziţia elementului căutat în tabelă; relaţia 17.9 descrie procesul
de determinare a valorii hash:

val_hash=((val_cheie*random[0;1))–[(val_cheie*random[0;1))])*nth (17.9)

unde:
 val_hash – valoarea hash calculată;
 val_cheie – valoarea cheii de căutare;
 random[0;1) – număr aleatoriu din mulţimea [0;1);
 nth – dimensiunea tabelei de dispersie.

- utilizarea unui bloc de biţi obţinut prin prelucrarea cheii de

căutare – de exemplu se defineşte funcţia care multiplică valoarea
codului şi care determină valoarea hash pe baza celor 10 biţi din
interiorul acesteia; dacă se consideră cheile reprezentate pe 32
de biţi atunci relaţia este:

val_hash = ((val_chei * val_cheie)>>11) % nhash (17.10)

- prelucrarea codurilor ASCII ale caracterelor alfanumerice – în
cazul în care cheia de căutare este dată de o secvenţă de
caractere atunci este necesar ca aceasta să fie prelucrată pentru
a se genera un număr întreg care să indice poziţia elementului în
tabelă; prelucrarea se face pe baza codului ASCII asociat
caracterului; pe baza primului caracter din cheie se defineşte
relaţia:

val_hashs1 = string_cheie[0] % 255 (17.11)

unde:
 val_hashs1 – valoarea hash calculată;
 string_cheie – valoarea cheii de căutare;

Relaţia anterioară defineşte un model cu un nivel de complexitate
scăzut ce este destinat gestiunii unei colectivităţi mici de
elemente; în cazul în care valoarea cheii reprezintă numele unei
persoane, modelul este ineficient deoarece generează multe
coliziuni pentru nume diferite dar care încep cu acelaşi caracter;
rafinarea acestui model se poate face prin preluarea mai multor
caractere din şirul respectiv; de exemplu se defineşte o nouă
relaţie

val_hashs2=(string_cheie[0]+string_cheie[lungimestring_cheie])%dim_has (17.12)

unde:
 val_hashs2 – valoarea hash calculată;
 string_cheie – valoarea cheii de căutare;
 lungimestring_cheie – dimensiunea şirului de caractere;

 dim_hash – dimensiunea tabelei de dispersie;
ce ia în calcul primul şi ultimul caracter; de asemenea, pentru a
nu reduce dimensiunea tabelei la maxim 255 elemente, se
utilizează un număr prim, dim_hash suficient de mare; alte funcţii
hash de prelucrare a cheilor alfanumerice analizează toate
caracterele din şir; de exemplu relaţia

val_hashs3 = % dim_hash (17.13) 


cheielungime

i

icheiestringASCII
_

1

])[_(

unde:
 val_hashs3 – valoarea hash calculată;
 string_cheie – valoarea cheii de căutare;
 lungime_cheie – dimensiunea şirului de caractere;
 dim_hash – dimensiunea tabelei de dispersie;

determină valoarea hash pe baza sumei codurilor ASCII asociate
tuturor caracterelor din cheie;

- înmulţirea cu un număr real definit; această valoare este

determinată prin evaluarea expresiei
 

2

15 
m sau a expresiei

 
2

15
1


m ; funcţia hash definită pe baza acestui model este

f(val_cheie) = [val_cheie * m] (17.14)

acest model este implementat în cadrul funcţiile de rehashing ce
sunt utilizate în cadrul procedurilor de rezolvare a coliziunilor.

Dificultatea în definirea funcţiilor hash constă în identificare acelui
model care să minimizeze numărul coliziunilor şi care să genereze o
distribuţie uniformă a valorilor pe întreg intervalul.

17.3 Evitarea coliziunilor

Funcţiile de evitare a coliziunilor definesc metode de regăsire a
elementelor ce sunt descrise de chei cu valori diferite dar care conduc la
valori hash identice ceea ce implică poziţii identice în cadrul structurii:

- chaining implementrează lucrul cu liste – fiecare poziţiei din
cadrul tabelei de dispersie conţine capătul unei liste de elemente
cu valori hash egale; regăsirea unui element presupune
determinarea poziţiei în cadrul tabelei prin calcularea valorii hash
şi parcurgerea secvenţială a listei ataşate poziţiei respective după
valoarea cheii de căutare, figura 17.2;

…

x

Tabelă de dispersie

hash(x) = k

hash(y) = k

 k

k+1

y
hash(z) = k

z NULL

valoare cheie

legătura nod listă

Figura 17.2 Metoda chaining de evitare a coliziunilor în tabele de dispersie.

- re-hashing presupune aplicarea în cascadă a aceleiaşi funcţii hash
sau a altui model dintr-o mulţime de funcţii până când valoarea
obţinută reprezintă o poziţie liberă din cadrul tabelei de dispersie;
la fiecare pas al procesului de regăsire, valoarea cheii de căutare
este introdusă într-o listă de funcţii hash până când se identifică
elementul cu valoarea căutată sau nu mai există alte posibilităţi
de a recalcula valoarea hash; tipul şi numărul de funcţii hash
aplicate valorilor intermediare descriu o procedură bine definită
de căutare, respectiv iniţializare element nou, pentru a conduce
de fiecare dată la aceleaşi rezultate, figura 17.3;

x

…

z

y

Tabelă de dispersie

hash1(x) = k

hash1(y) = k

k

k+n

hash2(y) = k+n

…

hash1(z) = k+n

…

k+m
hash3(y) = k+m

Figura 17.3 Metoda rehashing de evitare a coliziunilor în
tabele de dispersie

- linear probing se bazează pe căutarea secvenţială a primei poziţii

libere în care să fie inserat elementul nou, poziţie aflată la stânga
sau la dreapta coliziunii; în cazul căutării, procesul presupune
verificarea elementelor adiacente poziţiei indicate de valoarea
hash; cu toate că are un grad scăzut de complexitate, această
metodă de evitare a coliziunilor are ca efecte secundare gruparea
coliziunilor de acelaşi tip în aceeaşi zonă, cluster, fapt care
conduce la creşterea probabilităţii de apariţie a coliziunilor pentru
valorile hash adiacente, figura 17.4;

x

z

y

Tabelă de dispersie

hash(x) = k hash(y) = k k

k+1

…

hash(z) = k+1

k+2

…

verificare poziţii
adiacente

Figura 17.4 Metoda linear probing de evitare a coliziunilor în
tabele de dispersie

- quadratic probing este o metodă de tipul linear probing care evită

crearea grupurilor de coliziuni prin utilizarea unui pas de regăsire
a următoarei poziţii libere diferit de 1; astfel, în caz de coliziuni au
loc salturi în tabela de dispersie din două în două poziţii sau din
patru în patru; în general, pentru a determina următoare poziţie
în care să se insereze un element nou sau în care să se caute un
element existent este dat de funcţia:

poziţie = hash(X)+c*i2 (17.15)

unde:
 poziţie – noua poziţie din tabela de dispersie în care se inserează sau

se caută un element;
 X – valoarea cheii asociate elementului;
 hash(X) – poziţia indicată de valoarea hash a elementului care se

adaugă sau se căută;
 c – valoare constantă definită în mulţimea {1, 2, 4};
 i – numărul operaţiei de rehash sau numărul de poziţii verificate.

Prin utilizarea de repoziţionări pe poziţii neadiacente se evită
gruparea coliziunilor în aceeaşi zonă din tabela de dispersie,
figura 17.5;

x

z

y

Tabelă de dispersie

hash(x) = k hash(y) = k k

k+2

…

hash(z) = k+2

k+8

…

hash(y)+2*12

…

hash(y)+2*22

Figura 17.5 Metoda quadratic probing de evitare a coliziunilor în

 tabele de dispersie

- overflow area presupune o abordare ce împarte tabela de

dispersie în două zone, primară pentru reţinerea elementelor
iniţiale şi secundară alocată elementelor ce generează coliziuni; la
apariţia unei coliziuni, fie la operaţia de regăsire sau la adăugarea
unui element nou, se utilizează un element al zonei secundare
pentru a reţine noua valoare sau pentru a continua căutarea;
accesul la zona secundară se realizează doar prin intermediul unui
pointer din zona primară, funcţia hash negenerând poziţii în acest
interval de valori; această metodă, descrisă în figura 17.6,
permite o regăsire mai rapidă a informaţiilor decât metoda
chaining care presupune parcurgerea de liste;

x

y

Tabelă de dispersie

hash(x) = k

hash(y) = k

k

…
zonă principală

…

…

zonă overflow

Figura 17.6 Metoda overflow de evitare a coliziunilor în tabele de dispersie

Se observă în cazul tabelelor de dispersie că probabilitatea de apariţie
a coliziunilor la inserare sau la căutare creşte proporţional cu gradul de
utilizare a tabelei. În cele mai multe cazuri, funcţiile hash cu un grad redus
de complexitate nu conduc la rezultate unice pentru valori de intrare
distincte. Din acest motiv, cu cât tabela pune la dispoziţie un număr din ce
în ce mai mic de poziţii disponibile, creşte riscul de a avea numeroase
elemente cu chei de căutare diferite care ar trebui să se regăsească pe
poziţii identice. Metodele de evitare a coliziunilor rezolvă parţial problema
deoarece ele plasează elementele noi pe alte poziţii definind o nouă cauză
pentru coliziuni viitoare.

Pentru a rezolva această situaţie şi pentru a menţine eficienţa
operaţiei de căutare la un nivel acceptabil, astfel încât să nu se parcurgă
toată mulţimea de elemente la fiecare operaţie de regăsire de informaţie, se
analizează gradul de utilizare a tabelei hash, GUhash.

100*
NTP

NPO
GU hash  (17.16)

unde:
 NPO – numărul de poziţii ocupate;
 NTP – numărul total de poziţii.

care este menţinut la o valoarea mai mică de 50%. În ciuda faptului că are
loc o gestiune ineficientă a spaţiului, eficienţa abordării se bazează pe o
viteză de regăsire mare. Pentru a menţine valoarea indicatorului GUhash sub
limită impusă, tabela se redimensionează prin dublarea numărului de poziţii.
În cazul în care modelul funcţiei hash este bazat pe împărţirea în modul la
dimensiunea acesteia, redimensionarea trebuie să conducă la o nouă
dimensiune care să reprezinte tot un număr prim. Având în vedere
importanţa acestor tipuri de numere, lucru evidenţiat la descrierea tipurilor
de funcţii hash, redimensionarea se face prin intermediul relaţiei

dimensiune_noua = dimensiune_curenta*2 + 1 (17.17)

În cazul limbajului Java, unde dimensiunea iniţială a tabelei de
dispersie este 101, redimensionarea ulterioară a acesteia utilizând relaţia
descrisă conduce la o serie de valori care reprezintă tot valori prime. De
exemplu 203 şi 407. În cazul în care relaţia utilizată pentru a determina
numărul prim este

dimensiune_hash = (4*i+3) cu i=0, 1, 2, 3, … (17.18)

redimensionarea se realizează prin înlocuirea lui i cu 2*i. Astfel, noua
dimensiune va fi reprezentată tot de un număr prim.

17.4 Implementare

În continuare se exemplifică printr-un program scris în limbajul de
programare C++ implementarea unei tabele de dispersie pentru înregistrări
de tip Student, căutările realizându-se după numărul matricolei. Ca funcţie
de dispersie a fost ales un exemplu simplu cu ajutorul operatorului modulo
(%). Dimensiunea implicită a tabelei a fost aleasă 101, o valoare
cuprinzătoare pentru exemplul ales.

Tabela de dispersie este implementată sub forma unui masiv
unidimensional alocat dinamic, ale cărui elemente sunt liste care conţin
datele propriu zise. Acest mod de implementare permite tratarea
coliziunilor, în cazul în care pentru indexul generat există o înregistrarea în
tabelă, noua înregistrare va fi adăugată ca element la lista simplu înlănţuită
de la nodul respectiv.

#include "stdafx.h"
#include <iostream>

using namespace std;

//structura de date stocata in tabela de dispersie
//pentru simplificarea codului s-a utilizat o structura
struct Student
{
 int matricola;
 char nume[20];
 char adresa[30];
 char localitate[20];
 char e_mail[20];
 char telefon[15];

 void Afisare()
 {
 cout<<"Matricola: "<< matricola <<endl;
 cout<<"Matricola: "<< nume <<endl;
 cout<<"Matricola: "<< adresa<<endl;
 cout<<"Matricola: "<< localitate<<endl;
 cout<<"Matricola: "<< e_mail <<endl;
 cout<<"Matricola: "<< telefon <<endl;
 }
};

//elementele tabelei de dispersie
//pentru simplificarea codului s-a utilizat o structura
struct NodDate
{
 NodDate *urm;
 Student data;
};

//Cheia este matricola studentului
//
class HashStudent
{
 int size;
 NodDate ** elem;

 //functie simpla de dispersie care utilizeaza operatorul modulo
 //pentru a genera pozitia in tabela
 int HashFunction(int cheie)
 {
 return cheie%size;
 };

 //aloca memorie pentru structura si initializeaza cu null
valorile
 void AlocaMemorie()
 {
 elem = new NodDate*[size];
 for (int i=0;i<size;i++)
 elem[i] = NULL;
 }
 void ElibereazaMemorieLista(NodDate *&);
public:
 HashStudent():size(101)
 {
 AlocaMemorie();
 }
 ~HashStudent();
 HashStudent(int iSize): size (iSize)
 {
 AlocaMemorie();
 }
 int Insereaza(Student data);
 Student Cauta(int matricola);
 int Sterge(int matricola);
 void HashStudent::Afiseaza();
};

//insereaza un element pe o pozitie generata de functia de dispersi

//pe baza valorii matricolei din structura
int HashStudent::Insereaza(Student s)
{
 int index = -1;

 if (s.matricola<0)
 return index;

 if (elem!=NULL)
 {
 index = HashFunction(s.matricola);
 //prima inregistrare
 NodDate *nod_nou = new NodDate;;
 nod_nou->urm = NULL;
 nod_nou->data = s;

 if (elem[index]== NULL)
 {
 elem[index] = nod_nou;
 }
 else //coliziune
 {
 NodDate *t = elem[index];
 while(t->urm!=NULL)
 t = t->urm;
 t->urm = nod_nou;

 }
 }
 return index;
}

//cauta un element dupa chiea matricola
//in cazul in care nu este gasita nici o inregistrare este
//returnata o structura Student cu matricola -1
Student HashStudent::Cauta(int matricola)
{
 //valoare de retur pentru cazurile in care nu este gasit
elementul
 Student s_negasit;
 s_negasit.matricola = -1;

 if (matricola<0)
 return s_negasit;

 if (elem!=NULL)
 {
 int index = HashFunction(matricola);
 if (elem[index]==NULL)
 {
 return s_negasit;
 }
 else
 {
 if (elem[index]->data.matricola ==matricola)
 return elem[index]->data;
 else//coliziune
 {
 NodDate *t = elem[index];
 while (t!= NULL && t->data.matricola!=matricola)
 t = t->urm;

 if (t==NULL)
 return s_negasit;
 else
 return t->data;
 }
 }
 }
 //neinitializat sau nu exista inregistrarea
 return s_negasit;
}

//functie recursiva care eliberaza memoria ocupata de nodurile listei
void HashStudent::ElibereazaMemorieLista(NodDate *&inceput)
{
 if (inceput == NULL)
 return;
 else
 {
 ElibereazaMemorieLista(inceput->urm);
 cout<<"Eliminat nodul cu codul: " <<inceput-
>data.matricola<<endl;
 delete inceput;
 }

}
//elibereaza memoria ocupa de tabela de dispesie
HashStudent::~HashStudent()
{
 if (elem != NULL)
 {
 for (int i=0;i<size;i++)
 ElibereazaMemorieLista(elem[i]);
 delete [] elem;
 }
}

//Sterge elementul a carui matricola coincide cu matricola trimisa ca
parametru
//returneaza pozitia din tabela de a fost eliminat elementul
//sau -1 in cazul in care nu exista elementul cu cheia data
int HashStudent::Sterge(int matricola)
{
 if (matricola<0)
 return matricola;

 if (elem!=NULL)
 {
 int index = HashFunction(matricola);
 if (elem[index]==NULL)
 {
 return -1;
 }
 else
 {
 //este primul
 if (elem[index]->data.matricola ==matricola)
 {
 if(elem[index]->urm == NULL)
 {
 delete elem[index];
 elem[index]=NULL;

 }
 else//mai sint si alte elemente in lista
 {
 NodDate *t = elem[index];
 elem[index] = t->urm;
 delete t;
 }
 }
 else//coliziune, nu este primul, il cautam
 {
 NodDate *t = elem[index];
 while (t->urm!= NULL && t->urm->data.matricola
!=matricola)
 t = t->urm;
 if (t->urm==NULL)
 return -1;
 else//t->urm.data.matricola == matricola
 {
 NodDate *p = t->urm;
 if (p->urm ==NULL)
 {
 t->urm = NULL;
 delete p;
 }
 else
 {
 t->urm = p->urm;
 delete p;
 }
 }

 }
 return index;
 }

 return -1;
 }
}

//Afiseaza continutul tabelei de dispersie
void HashStudent::Afiseaza()
{
 if (elem!=NULL)
 {
 for (int i=0;i<size;i++)
 {
 if (elem[i]!= NULL)
 {

 NodDate *t = elem[i];
 while (t!=NULL)
 {
 cout<<"S-a inserat in pozitia: " << i <<
" cheia: "<<t->data.matricola<<endl;
 t = t->urm;
 }

 }
 }
 }

}

int _tmain(int argc, _TCHAR* argv[])
{
 Student grupa[] ={
 {1000,"Ion Vlad", "Str. Norilor
20","Cluj","ion@server.ro", "0101010101"},
 {204,"Mihai Vlad", "Str. Norilor
20","Cluj","mihai@server.ro", "0101010101"},
 {406,"Dan Vlad", "Str. Norilor 20","Cluj","dan@server.ro",
"0101010101"},
 {305,"Lili Vlad", "Str. Norilor
20","Cluj","lili@server.ro", "0101010101"},
 {1022,"Silviu Vlad", "Str. Norilor
20","Cluj","silviu@server.ro", "0101010101"},
 {1021,"Alina Vlad", "Str. Norilor
20","Cluj","alina@server.ro", "0101010101"},
 {1030,"Sorin Vlad", "Str. Norilor
20","Cluj","sorin@server.ro", "0101010101"},
 {1032,"Titi Vlad", "Str. Norilor
20","Cluj","titi@server.ro", "0101010101"},
 {1200,"Gigel Vlad", "Str. Norilor
20","Cluj","gigel@server.ro", "0101010101"},
 {2021,"Anca Vlad", "Str. Norilor
20","Cluj","ioanca@server.ro", "0101010101"},
 {1230,"Maria Vlad", "Str. Norilor
20","Cluj","maria@server.ro", "0101010101"},
 {1008,"Elena Vlad", "Str. Norilor
20","Cluj","elena@server.ro", "0101010101"}
 };
 HashStudent hs;

 for (int i=0;i<sizeof(grupa)/sizeof(Student);i++)
 {
 hs.Insereaza(grupa[i]);
 }
 hs.Afiseaza();
 int m;
 cout<<"Matricola: ";
 cin>>m;

 while (m!=-1)
 {

 Student rez = hs.Cauta(m);
 if (rez.matricola != -1)
 rez.Afisare();
 cout<<"Matricola: ";
 cin>>m;

 }
 hs.Sterge(1008);
 hs.Sterge(406);
 hs.Sterge(305);
 hs.Afiseaza();
 cin.get();
 return 0;

După rulare, programul produce următoarele rezultate la dispozitivul
standard de ieşire:

Figura 17.7 Rezultatele programului HashStudent

