20. STANDARD TEMPLATE LIBRARY - STL

20.1 Structura STL

Structura STL cuprinde trei elemente principale: containerele,
iteratorii si algoritmii.

Containerele sunt diferite tipuri de obiecte care contin alte obiecte, de
tipuri predefinite sau definite de programator.

Iteratorii sunt obiecte care se comporta asemanator pointerilor si
care sunt utilizati pentru a accesa elementele unui container.

Algoritmii furnizeaza functionalitati de acces si prelucrare asupra
elementelor containerelor.

In tabelul 20.1 este prezentata structura STL.

Tabelul nr. 20.1 Structura STL

Containere vector Implementeaza vectori | #include <vector>
% alocati dinamic.
= | list Lista liniara dublu inlantuitd | #include < list >
S deque Asemanator containerului | #include < deque >
3 vector, operatiile putandu-
& se realiza la ambele capete.
set Multime sortata de | #include < set >
elemente unice.
multiset Multime sortata de | #include < set >
) elemente.
2 map Stocheaza perechi sortate | #include < map >
® de tip <cheie, valoare> in
3 care o cheie identificd in
2 mod unic o valoare.
multimap Stocheaza perechi sortate | #include < map >
de tip <cheie, valoare> in
care o cheie identificd una
sau mai multe valori.
stack Structura de tip stiva. #include < stack >
.g queue Structurad de tip coada #include < queue >
B | priority_queue | Structurd de tip coadd in | #include < queue >
g care elementelor le sunt
< asociate prioritati.
Iteratori Acces aleatoriu Stocheaza si regaseste valori. Elemente pot fi accesate
aleatoriu.
Bidirectionali Stocheaza si regaseste valori. Iteratorul poate Tnainta si
reveni.
Inainte Stocheaza si regaseste valori. Iteratorul poate doar
fnainta.
De intrare Regaseste dar nu stocheaza valori. Iteratorul poate
doar inainta.
De iesire Stocheaza dar nu regaseste valori. Iteratorul poate
doar inainta.
Algoritmi Functii globale care ofera servicii generale cum ar fi | #include <algorithm>

sortari, reordonari, modificari, copieri, cautari etc.

In paragrafele urmatoare sunt exemplificate modalitdti de lucru
utilizadnd diferitele tipuri de containere, iteratori si algoritmi.

20.2 Containere STL

Containerele sunt fincadrate in trei mari categorii: secventiale,
asociative si adaptive.

Containerele secventiale sunt colectii liniare si ordonate de date in
care accesul se face pe baza pozitiei elementului in cadrul containerului.
Cele trei clase predefinite de tip container secvential sunt: vector, list si
deque. Ordinea in care se gasesc elementele in cadrul acestor containere
este ordinea in care ele sunt adaugate. De retinut ca, in cazul sabloanelor
list si deque elementele pot fi adaugate pe la ambele capete.

Containerele asociative se diferentiaza de celelalte prin faptul ca
stocarea elementelor se face pe baza unor chei. Accesul in acest caz se
poate realiza dupa cheie, deci in mod direct. Elementele sunt retinute in
ordinea data de modul de aranjare a cheilor. Din aceastda categorie de
containere fac parte set, multiset, map si multimap.

Containerele adaptive adauga functionalitati containerelor
secventiale. Acestea nu pot fi parcurse cu ajutorul iteratorilor intrucat nu
sunt folosite in mod independent. Pentru a folosi un astfel de container,
programatorul trebuie sa aleaga mai intai containerul de baza caruia sa ii fie
aplicat un container adaptiv. Astfel containerul stack poate adapta
containerele vector, list si deque, containerul queue poate fi implementat
pentru /ist si deque, iar priority _queue poate fi implementat pentru vector
si deque.

Pentru a exemplifica modul de lucru cu containerele secventiale atat
pe tipuri de date predefinite, cat si pentru tipuri de date definite
programator, este propus urmatorul exemplu.

#include <iostream>
#include <vector>
#include <list>
#include <deque>

using namespace std;

class Student
1
private:
int nrMat;
char nume[20];
public:
Student(int nr = 0, char* n = "Student'):nrMat(nr)
{
strcpy(nume, n);
cout<<"Constructor clasa Student'<<endl;

}

int getNrMat()

return nrMat;

}

char* getNume()
{

return nume;

}

void setNume(char* n)

{
strcpy(this->nume,n);
}
Student(const Student& s)
{
this->nrMat = s_nrMat;
strcpy(this->nume, s.nume);
cout<<"Constructor de copiere clasa Student'<<endl;
by
bool operator<(Student& s)
{
return (this->nrMat < s.nrMat);
}
friend ostream& operator<<(ostream& o, Student s)
{
o<<s.getNrMat()<<" "'<<s.getNume()<<endl;
return o;
}
}:
void main()
{

Student s1(1, "Gigel™);
Student s2(2, "lonel™);
Student s3(3, "Balanel™);

L11777777777777777777777777777777777/7/////////////////////////77/7

//vector de tip de data predefinit
vector<int> vectlint;

vectint.push_back(10);
vectInt._push_back(1);

vectInt._push_back(25);
vectiInt.push_back(12);

for(int i=0; i<vectint.size(); i++)
cout<<vectInt[i]<<" "
cout<<endl;

//vector de tip de data definit de programator
vector<Student> vectStud;

vectStud.push_back(s3);
vectStud.push_back(s2);
vectStud.push_back(sl);

for(int i=0; i<vectStud.size(); i++)
cout<<vectStud[i]<<" "
cout<<endl;

L11777777777777777777777777777777777/7/////////////////////7/7777

// lista de tip de data predefinit
list<int> listiInt;

listint.push_back(10);//inserare la sfarsit cu ajutorul metodei
push_back(Q

listint.push_front(1);//inserare la inceput prin push_front()

listint.insert(listint.end(),25);//inserare prin insert()

listint.insert(listint_begin(),12);//inserare prin insert()

//declararea unui iterator cu care va fi traversata lista
//operatorul [] nu este implementat pentru list
list<int>::iterator itint;

for(itint=listint_begin(); itintl=listint.end(); itint++)
cout<<*itlnt<<" ";
cout<<endl;

listint.sort();

cout<<'Lista sortata''<<endl;

for(itint=listint_begin(); itint!=listint.end(); itint++)
cout<<*itlnt<<"™ ";

cout<<endl;

// lista de tip de data definit de programator
list<Student> listStud;

//inserare la sfarsit cu ajutorul metodei push_back()
listStud.push_back(s3);

listStud.push_front(sl);//inserare la inceput prin push_front()
listStud.insert(listStud.end(),s2);//inserare prin insert()

//declararea unui iterator cu care va fi traversata lista
//operatorul [] nu este implementat pentru list
list<Student>::i1terator i1tStud;

for(itStud=listStud.begin(); itStud!=listStud.end(); itStud++)
cout<<*itStud<<" ";
cout<<endl;

listStud.sort();

cout<<'Lista de studenti sortata'<<endl;

for(itStud=listStud.begin(); itStud!=listStud.end(); itStud++)
cout<<*itStud<<"™ "

cout<<endl;

L1177777777777777777777777777777777/7///////////////////////////7777

//deque pentru tipuri de date predefinite
deque<int> deqint;

deqglnt._push_front(10);
deglnt.push_back(l);
degInt._push_front(25);
deqlnt.push_back(12);

deque<int>::iterator iiInt;

for(ilnt = deqlnt.begin(); ilnt!= deqlnt.end(); ilnt++)
cout<<*ilnt<<" ";
cout<<endl;

//deque pentru tipuri de date definite de programator
deque<Student> deqStud;

deqStud.push_front(sl);
deqStud.push_back(s3);
deqStud.push_front(s2);

deque<Student>::iterator iStud;
for(iStud = degStud.begin(); iStud!= deqStud.end(); iStud++)

cout<<*iStud<<"™
cout<<endl;

Pentru tipul de date int si tipul definit Student sunt construite cate
un container de tip vector, unul de tip list si unul de tip deque. In fiecare
dintre acestea sunt adaugate elemente de tip int sau Student, dupa caz,
utilizdnd metode specifice acestor sabloane.

Clasa vector permite addaugarea elementelor pe la un singur capat,
pe cand clasele list si deque permit operatii pe la ambele capete. Metoda
push_back() pentru toate cele trei clase si metoda push_front() pentru list
si deque copiaza obiectul intr-unul dintre elementele clasei. Daca pentru
tipurile predefinite de date copierea valorii obiectului nu pune nici o
problema, copierea unui tip definit de programator necesita supraincarcarea
constructorului de copiere, in special in cazul in care obiectul contine
atribute cu extensie in memoria dinamica. Clasa Student supraincarca
constructorul de copiere si operatorul >>, pentru tiparirea pe ecran a unui
obiect de tip Student. Vectorul de elemente int si cel de elemente Student
pot fi parcursi cu ajutorul unui contor ce ia valori de la 0 la dimensiunea
masivului, dimensiune data de metoda size() a vectorului. Aceasta
parcurgere se datoreaza faptului ca vectorul ocupa un spatiu contiguu de
memorie dinamica, ceea ce permite calculul deplasarii unui element fata de
inceputul vectorului. Operatorul [] nu este definit si pentru clasele list si
deque, de aceea este necesara definirea unui iterator pentru a realiza
accesul la date. Acest iterator poate parcurge masivul de la inceput - dat de
metoda begin() pana la sfarsit, dat de metoda end().

Clasa list permite sortarea elementelor containerului (sortare
crescatoare implementata de metoda sort() sau sortare descrescatoare,
implementata de metoda reverse()), motiv pentru care, in moment ce
containerul este utilizat pentru stocarea unor obiecte de tip definit de
programator, trebuie supraincarcat operatorul<. Pe baza acestuia este
stabilita relatia de ordine in clasa respectiva.

Sablonul deque combina facilitatile oferite de vector cu cele oferite de
list. Acesta este proiectat ca un vector ce poate creste in ambele directii,
deci metodele push_back()/pop_back() si push_front()/pop_front() sunt
valide. Adaugarea de elemente in interiorul unui deque este mai lenta decét

pe o pozitie interioara intr-o lista intrucat in cazul deque toate elementele
trebuie mutate.

Pentru exemplificarea modului de lucru cu containerele asociative se
considera clasa Student si prelucrarile corespunzatoare din exemplul
urmator.

#include <iostream>
#include <set>

using namespace std;

class Student

{
private:
int nrMat;
int varsta;
char nume[20];
public:
Student(int nr = 0, int v=0, char* n = "Student'):nrMat(nr),
varsta(v)
{
strcpy(nume, n);
cout<<"Constructor clasa Student'<<endl;
3
int getNrMat(Q{return nrMat;}
char* getNume(){return nume;}
int getVarsta(){return varsta;}
void setNume(char* n){strcpy(this->nume,n);}
Student(const Student& s){
this->nrMat = s.nrMat;
this->varsta = s.varsta;
strcpy(this->nume, s.nume);
cout<<"Constructor de copiere clasa Student'<<endl;
3
bool operator<(const Studenté& s)const{
return (this->nrMat < s.nrMat);
3
friend ostream& operator<<(ostream& o, Student s){
o<<s.getNrMat()<<" "'<<s.getNume()<<endl;
return o;
3
};

void main()

Student s1(1, 19, "Gigel™);
Student s2(2, 20, "lonel™);
Student s3(3, 19, "Balanel™);
Student s4(4, 19, "llie");

/1177777777777 /7/7/77/77777
//sablon set //
//////7/7/7/7/7/7/7/7/7/7/77777
set<Student> setStud;

setStud. insert(s4);
setStud. insert(s2);

setStud. insert(s3);
setStud. insert(sl);

cout<<'"Comparatie dupa cheie:";

cout<<s4._getNume()<<" este''<<(setStud.key comp()(s4,s2)?" inaintea ":"
dupa ")<<s2.getNume()<<endl;

cout<<"Comparatie dupa valoarea elementului:";

cout<<s4_getNume()<<" este'<<(setStud.value_comp()(s4,s2)?" inaintea
""" dupa ")<<s2.getNume()<<endl;

cout<<"Comparatie dupa cheie:";

cout<<s3.getNume()<<" este'<<(setStud.key comp()(s3,s1)?" inaintea ":"
dupa ")<<sl.getNume()<<endl;

cout<<"Comparatie dupa valoarea elementului:";

cout<<s3.getNume()<<" este'<<(setStud.value _comp()(s3,s1)?" 1inaintea
"' dupa ")<<sl.getNume()<<endl;

cout<<"Comparatie dupa cheie:";

cout<<sl.getNume()<<" este''<<(setStud.key comp()(sl,s4)?" inaintea ":"
dupa "")<<s4.getNume()<<endl;

cout<<"Comparatie dupa valoarea elementului:";

cout<<sl._getNume()<<" este'<<(setStud.value_comp()(sl,s4)?" inaintea
"' dupa ')<<s4.getNume()<<endl;

set<Student>::iterator itStud;

itStud = setStud.find(2);
while(itStud!=setStud.end())

{
cout<<itStud->getNume()<<" ";
itStud++;

}

by

Intrucat toate containerele asociative retin elementele sortate pe
baza cheilor, clasa Student supraincarca operatorul< pentru a defini relatia
de ordine. Clasa Student utilizata in lucrul cu sablonul set defineste relatia
de ordine pe baza numarului matricol al studentului, numar ce identifica in
mod unic un student. Metodele key_comp() si value_comp() au acelasi efect
in lucrul cu sabloane set intrucat fiecare valoare a unui element corespunde
unei singure chei. Asadar, valoarea si cheia sunt identice. Rezultatele rularii
programului confirma ordinea impusa prin supraincarcarea operatorului<.
Containerele asociative dispun si de metode de regasire directda a
elementelor, adica dupa valoare cheii. Aceasta metoda se numeste find() si
primeste ca parametru valoarea cheii, intorcand un pointer catre elementul
respectiv. In exemplul prezentat, este definit un iterator care adreseaza
intr-o prima faza elementul ce are valoarea cheii egalda cu 2. Acest element
este obtinut cu ajutorul metodei find(). De la respectiva pozitie si pana la
sfarsitul multimii aceasta este parcursa, iar toate numele ce apartin acestui
interval sunt tiparite pe ecran.

Pentru a exemplifica lucrul cu multiset va fi stabilita o noua relatie de
ordine a clasei Student, pe baza varstei. Astfel, o cheie nu va identifica in
mod unic neaparat doar un element.

class Student

{

//supraincarcare operator< a clasei Student modificata
bool operator<(const Student& s)const{

return (this->varsta < s.varsta);
}

ji-//sfarsit clasa Student
/1777777777777

void main()

{
Student s1(1, 19, "Gigel™);
Student s2(2, 20, "lonel™);
Student s3(3, 19, "Balanel™);
Student s4(4, 19, "llie");
Student s5(5, 20, "Maricica™);
Student s6(6, 20, "Lenuta');

Student vectStud[] = {s6, sl, s5, s4, s2, s3};
1117717777777/ /7/7/7/7/7/7/7/7/7777
//1lucrul cu sablon multiset //
/1177777777777 /7/7/77/7/7/77/7777
multiset<Student> mSetStud;

for(int 1=0; i<6; i++)
mSetStud. insert(vectStud[i]);

multiset<Student>::iterator itStud;

std: :pair<multiset<Student>::iterator,multiset<Student>::iterator>

itvarsta;

cout<<"Persoane de aceeasi varsta cu "<<sl.getNume()<<": ";

itVarsta = mSetStud.equal_range(sl);

for(itStud=itVarsta.first; itStud!= itVarsta.second; i1tStud++)
cout<<itStud->getNume()<<" ";

cout<<endl;

cout<<"Persoane de aceeasi varsta cu ''<<s2.getNume()<<": ";

itVarsta = mSetStud.equal_range(s2);

for(itStud=itVarsta.first; itStud!= itVarsta.second; itStud++)
cout<<itStud->getNume()<<" ";

cout<<endl;

3

Pentru a putea identifica in cadrul multimii de studenti pe ci cu
aceeasi varsta este definitd o pereche de iteratori ai multisetului. Aceasta
pereche este incarcata cu valori prin apelul metodei equal_range(obiect),
primul dintre ei adresand primul obiect ce satisface conditia, iar al doilea
adresand primul obiect ce numai satisface conditia. Cu ajutorul unui nou
iterator, itStud, sunt parcurse toate adresele ce se incadreaza in intervalul
precizat, iar numele studentilor sunt tiparite pe ecran.

Containerele set si multiset sunt implementate in C++ cu ajutorul
arborilor de cautare, astfel regasirea fiind foarte rapida.

Utilizarea containerul asociativ map este prezentat intr-un exemplu
de agenda telefonica. Se considera o adresa telefonicd, in care vor fi
inserate perechi de siruri de caracter sub forma <nume, numar de telefon>.
Pentru a putea insera intr-un container map valori, acestea trebuie sa fie

furnizate mai intdi ca parametru constructorului clasei pair<string, string>.
Numele persoanei este cheie unica, iar fiecarei persoane ii este asociat un
numar de telefon. Agenda permite cautarea unui numar de telefon dupa
numele persoanei. Pentru cautarea in agenda este folosit un iterator.

#include <iostream>
#include <map>
#include <string>

using namespace std;

int main()
{ _ _
map<string, string> agenda;
typedef pair<string, string> String_pair;

agenda. insert(String_pair('Gigel™, "021111111"));
agenda. insert(String_pair('Georgiana', "023666777'"));
agenda. insert(String_pair(lonel™, "021333456"));
agenda. insert(String_pair(''Balanel', '021999888'"));
agenda. insert(String_pair("Maricica', "021333444'));
agenda. insert(String_pair(‘'Lenuta’, "023444555'));

map<string, string>::iterator itAgenda;

cout<<"Numele valabile: ";

for(itAgenda = agenda.begin(); itAgenda !'= agenda.end();
itAgenda++)
cout<<(*itAgenda).first<<" "; /* scrie prima valoare
stocata, adica numele */
cout<<endl;
COUt<< M e “'<<endl;

cout<<"Introduceti numele: "';

string nume;

cin>>nume;

while(nume = "IESIRE"™)

{
cout<<endl;
map<string, string>::iterator itNume = agenda.find(nume);
if(itNume I= agenda.end()){

cout<<(*itNume).first<<" "<<(*itNume).second
<<endl<<endl;
else{
cout<<"Acest contact nu exista in agenda"
<<endl<<endl;
by
cout<<"Introduceti numele: ";
cin>>nume;
}
b5

Numele persoanei, care este cheie, este prima valoare stocata din
cadrul perechii si poate fi referit ca (*numelterator).first. Numarul de
telefon este a doua valoare memorata si poate fi referit cu ajutorul
iteratorului astfel: (*numelterator).second. Cautarea unui numar de telefon
dupa numele persoanei este realizatd cu ajutorul metodei
find(valoare_cheie) a sablonului map. Aceasta functie returneaza un

iterator, a carui valoare indica fie elementul pentru care valoarea cheii este
egald cu valoarea cautata, fie o adresa egala cu cea furnizata de metoda
end() a clasei map, in cazul in care nu exista nici un element in container
pentru care valoarea cheii sa fie egala cu valoarea dorita.

Containerul asociativ multimap permite identificarea unei sau mai
multor valori pe baza unei valori a cheii. Mai exact, cheia nu este unica, pot
exista oricate perechi pentru care cheia sa fie egala.

Modul de lucru cu containere adaptive este pus in evidenta de
exemplul urmator.

#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <deque>
#include <list>

using namespace std;

template <class T> popStiva(T& st)

while(!st.empty()){
cout<<st.top()<<" ";
st.popQ);
}

template <class T> popCoada(T& cd)

while(Ycd.empty()){
cout<<cd.front()<<" ";

cd.popQ);
}
¥
void main()
{

//stiva adaptata pentru container deque -> implicit

stack<char, deque<char> > stivaDeq; /* echivalent cu stack<int>
stivaDeq; */

//stiva adaptata pentru container vector

stack<char, vector<char> > stivaVect;

//stiva adaptate pentru container list

stack<char, list<char> > stivalist;

//coada adaptata pentru container deque
queue<char, deque<char> > coadaDeq;
//coada adaptata pentru conatainer list
queue<char, list<char> >coadalList;

for(char i=57; i>47; i--)
{
stivaDeq.push(i);
coadaDeq.push(i);
stivaVect.push(i+17);
stivalList.push(i+49);
coadalList.push(i+49);

cout<<'Stiva deque: '';
popStiva(stivaDeq);
cout<<endl;
cout<<"Coada deque: ';
popCoada(coadaDeq) ;
cout<<endl;
cout<<'Stiva vector: ";
popStiva(stivaVect);
cout<<endl;
cout<<"Stiva list: ";
popStiva(stivalList);
cout<<endl;

cout<<"Coada list: ";
popCoada(coadalList);
cout<<endl;

In exemplul de mai sus este creat un container adaptiv de tip stiva
pentru fiecare container secvential. Asadar, stivaDeq corespunde
implementarii unei stive pentru un container de tip deque, stivaVect este o
adaptare a clasei vector la o structura de stiva iar stivalList este
implementarea stivei pentru o lista. Totodata au fost create si doua
containere de tip coada pentru cele doua containere secventiale ce permit
aceasta adaptare: coadaDeq - adaptarea unui deque pentru a implementa o
structura de tip coada si coadalist — adaptarea unei liste. In stiva si coada
corespunzatoare sablonului deque sunt introduse cifrele de la 0 la 9.
Afisarea elementelor din cadrul stivei si cozii se face cu ajutorul metodelor
top(), respectiv front(). Elementele din cadrul cozii vor fi afisate in ordine
inversa fata de cele din cadrul stivei. In stiva corespunzatoare sablonului
vector sunt inserate caracterele de la] la A. Afisarea se face in ordine
inversa, deci aceste vor aparea pe ecran de la A la J. Similar, in coada si
stiva corespunzatoare sablonului /ist sunt inserate caracterele de la j la a.
Afisarea pe baza cozii se face in ordinea in care au fost introduse, deci de la
j la a, iar afisarea pe baza stivei se face in ordine inversa, deci de la a la j.

Urmatorul program exemplifica utilizarea containerului asociativ
multimap.

#include "stdafx.h"
#include <map>
#include <string>
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{

multimap<string, string> agenda;

agenda. insert(pair<string,string>("Alina","0711111111"));
agenda. insert(pair<string,string>("Alina","0211111111"));

agenda. insert(pair<string,string>("Alina","0311111111"));
agenda. insert(pair<string,string>("'Dragos',"0711111112'"));
agenda. insert(pair<string,string>("'Dragos',"0311111112'"));
agenda. insert(pair<string,string>("Vlad","0711111112'"));

agenda. insert(pair<string,string>("lonut”,"0711111114"));
agenda. insert(pair<string,string>("Marian',"0711111115"));

multimap<string, string>::iterator it;

//Parcurgere intreaga agenda
for (it = agenda.begin(); it != agenda.end(); it++)
cout << "Persoana de contact " << (*it).first << ", are
numarul: " << (*it).second<< endl;

cout<<'Dragos are
agenda''<<endl ;

<<agenda.count("'Dragos')<<" intrari in

cout<<"Numerele de telefon ale lui Dragos sint:
for (it = agenda.lower_bound(‘'‘Dragos™);it I=
agenda.upper_bound(''Dragos'); it++)
cout << "\t" << it->second << endl;

<< endl;

agenda.erase(''Dragos');
cout<<'Dragos are " <<agenda.count(''Dragos'’)<<" intrari in
agenda''<<endl ;

cin.get();
return O;

In programul de mai sus s-a utilizat clasa multimap pentru a crea o
agenda de contacte. Cheia de cautare este numele persoanei, o persoana
putand avea asociate mai multe numere de telefon. Sunt exemplificate
pentru clasa multimap operatiile de inserare, numarare a elementelor,
stergere si parcurgere.

Un adaptor priority-queue furnizeaza un subset restrdns de
functionalitati containerului secvential corespunzator. Aceste functionalitati
se refera la insertia de noi elemente, consultarea si extragerea/stergerea de
elemente. O coada cu prioritati nu poate fi parcursa prin intermediul unui
iterator. Containerul asociat in mod implicit este vector. Elementul din varful
unei cozi cu prioritati este elementul cu cea mai mare prioritate.

#include <iostream>
#include <queue>

using namespace std;

void main()

{

priority_gqueue<char> Q;

Q.push("A™);
Q.push("C™);
Q-push("B");
Q-push("E™);
Q-push("D™);
Q.push("F*);

while(1Q.empty())
{
cout<<Q.top()<<" "';

Q.popQ);

//iesire: FEDCB A
X

Metoda top() returneaza o referinta catre elementul cu valoarea cea
mai mare din coada. Acest lucru este realizat astfel datorita definirii
implicite a unui Comparator. In exemplu, desi literele nu au fost introduse in
coada astfel incat sa fie tiparite de la mare la mic - de la F la A, stocarea lor
coada cu prioritati a rezultat in afisarea lor de la F la A.

20.3 Iteratori STL

Iteratorii se aseamana cu pointerii, dar sunt de fapt obiecte ce
adreseaza alte obiecte. Cu ajutorul lor pot fi adresate elemente ale
containerelor care apartin anumitor intervale. Iteratorii reprezinta interfata
de comunicatie intre algoritmi si containere, fiind preluati ca parametrii de
catre algoritmi. Containerele le furnizeaza algoritmilor o cale de acces catre
elementele lor prin intermediul iteratorilor.

In exemplele prezentate anterior au fost utilizati pentru parcurgerea
containerelor iteratori definiti de programator dupa modelul
container<tip_data>::iterator numelterator;. STL furnizeaza si iteratori
predefiniti, a caror utilizare presupune includerea fisierului iterator.

Un Jjterator de tip istream, notat istream_iterator<T,distanta>
formateaza intrarea provenita de la un obiect de tip T dintr-un flux de
intrare. In momentul in care fluxul ajunge la sféarsit iteratorul ia o valoare de
sfarsit speciala pentru a specifica sfarsitul datelor. Acest iterator permite
modificarea elementului pe care il refera.

Un iterator de tip ostream, notat ostream_iterator<T> este un
iterator de iesire ce realizeaza legatura unui iterator cu un flux de iesire. De
mentionat ca elementul referit de acest tip de iterator nu poate fi modificat,
ci doar consultat.

#include <iostream>
#include <iterator>
#include <vector>

using namespace std;

void main()

{
vector<char> vect;
istream_iterator<char>inlterator(cin);
ostream_iterator<char>outlterator(cout, '"\n'");

//varianta a - stream intrare
copy(istream_iterator<char>(cin),
istream_iterator<char>(), back_inserter(vect));

//varianta b - stream intrare

/* while(*inlterator)

{
vect.push_back(*inlterator);
inlterator++;

>/

//varianta a - stream iesire
copy(vect.begin(),
vect.end(), ostream_iterator<char>(cout, '"\n));

//varianta b - stream iesire

/* while(lvect._empty())

{
*outlterator = vect.back(Q);
vect.pop_back();

a4

3

In exemplul de mai sus este prezentat modul de lucru cu iteratori de
tip istream_iterator si ostream_iterator. La declararea unui iterator de
intrare, respectiv de iesire, trebuie specificate tipul dedate al elementelor
din colectie (exemplul utilizeaza elemente de tip char) si fluxul de date -
cin, respectiv cout. "\n” este o constanta care va fi afisata automat dupa
afisarea unui element. Practic elementele vor fi afisate cate unul pe linie.
Varianta a din exemplul, atat pentru fluxul de intrare cat si pentru cel de
iesire este echivalenta cu varianta b. In varianta a insa, nu s-au folosit
iteratori declarati anterior. Functia copy(Inputlterator prim, Inputlterator
ultim, Outputlterator rezultat) copiaza elementele care apartin intervalului
[prim, ultim) in intervalul [rezultat, rezultat + (ultim - prim)).

Un Jterator invers, de tip reverse_iterator este folosit pentru
parcurgerea in ordine inversa a elementelor unei colectii.

#include <iostream>
#include <vector>

#include <iterator>
using namespace std;

void main()

{
vector<char> vect;
vector<char>::reverse_iterator reverselt;
for(int 1=57; 1>47; i--)
vect.push_back(i);
for(reverselt=vect.rbegin(); reverselt != vect.rend();
reverselt++)
cout<<*reverselt<<" ";
bs

Metoda rbegin() este echivalenta cu metoda end() a vectorului, iar
metoda rend() este echivalenta cu begin(). Metodele rbegin() si redn() sunt
utilizate pentru a lucra cu iteratori inversi, iar operatorul ++ semnifica de
fapt decrementarea acestuia. In vector sunt introduse cifrele de la 9 la 0, iar
parcurgerea elementelor cu ajutorul iteratorului invers afiseaza pe ecran

cifrele de la 0 la 9. Practic, afisarea se face ca si cum vectorului i-ar fi
aplicat un adaptor de tip stiva, aceasta fiind golita prin metoda pop().

Un iterator de inserare, insert_iterator<container<T> > este un
iterator specializat pe inserari in cadrul containerelor. Parametrul primit de
catre acest tip de iterator este tipul containerului in care se face inserarea,
iar tipul containerului va primi ca parametru tipul de data al elementelor.
Exista si doua forme specializate ale acestui iterator, back insert_iterator
pentru inserari la sfarsitul containerelor si front_insert_iterator pentru
inserari la inceputul containerelor.

#include <iostream>
#include <list>
#include <iterator>

using namespace std;
void main()

list<char> lista;
lista.push_front("D");

//definesc un iterator cu care inserez la inceputul
containerului

insert_iterator<list<char> > insertltBegin(lista,
lista.begin());

//inserez in lista

*insertltBegin = "A"; *insertltBegin = "B";*insertltBegin = "C~;

//afisez pe ecran

copy(lista.begin(), lista.end(),ostream iterator<char>(cout,"
")):
b5

Constructorul iteratorului de inserare primeste ca parametru
containerul in care vor fi inserate elemente si pozitia din cadrul
containerului unde se vor efectua inserarile.

20.4 Algoritmi STL

Pe ldanga metodele care apartin de clasele container, STL pune la
dispozitie functii globale ce ofera posibilitatea efectuarii unor prelucrari
asupra mai multor containere prin includerea fisierului algorithm. Aceste
functii primesc ca parametri iteratori ai diferitelor containere, acesta fiind
modul de realizare a accesului la elementele containerelor.

Algoritmii STL se impart in patru mari categorii:

A. Algoritmi care modifica ordinea elementelor in container -
modifying sequence operations. Dintre cei mai folositi algoritmi care fac
parte din aceasta categorie sun amintiti: copy(), replace(), transform() si
remove().

#include <iostream>
#include <list>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

void main()

{
vector<char> vect;
list<char> lista(6);

vect.push_back("A");
vect.push_back("B");
vect.push_back("C");
vect.push_back("D");
vect.push_back(*A™);
vect.push_back("A");

//functia COPY - pentru copierea elementelor
//dintr-un container in altul
copy(vect.begin(), vect.end(), lista.begin());

//functia COPY pentru tiparirea pe ecran
//a elementelor copiate
copy(lista_begin(), lista.end(), ostream_iterator<char>(cout,

"));

cout<<endl;

//Tunctia REPLACE - pentru inlocuirea

//caracterelor A cu a

replace(lista.begin(), lista.end(), "A", "a");

cout<<"Lista dupa efectuarea inlocuirilor:'<<endl;
copy(lista.begin(), lista.end(), ostream_iterator<char>(cout,

"));

Functiilor le sunt furnizate ca parametrii intervale de actiune asupra
elementelor prin intermediul a doi iteratori: unul care indica de unde incepe
actiunea functiei, unul unde se termina. Functia copy() este utilizata in
cadrul exemplului pentru a copia elemente dintr-un container in altul si
pentru a afisa pe ecran elementele containerului in care s-au efectuat
modificari. Pe 1anga cei doi iteratori ce definesc intervalul caruia 1i apartin
elementele, functia mai primeste ca parametru si un iterator ce defineste
destinatia copierilor. Pentru copierea elementelor dintr-un container in altul,
al treilea parametru este pozitia din containerul destinatie unde se doresc sa
fie inserate elementele, adica lista.begin() (la inceputul listei). Pentru
tiparirea pe ecran a elementelor, al treilea parametru este dat de un iterator
de iesire, care leaga copierea valorilor de fluxul standard de iesire, ecranul:
ostream_iterator<char>(cout, " "). Functia replace() efectueaza inlocuirea
unei valori cu altd valoare, pentru elementele ce apartin unui interval dat.
Asadar, in lista din exemplu, valoarea A este inlocuita cu a, de la inceputul
listei si pana la sfarsitul ei.

B. Algoritmi care nu modifica ordinea elementelor in container — non-
modifying sequence operations. Cei mai intalniti din aceasta categorie sunt:
for_each(), find(), count() si equal().

#include <iostream>
#include <list>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

void scrie(char c)

{
cout<<++c<<"/";
}
void main()
{

list<char> lista;

lista.push_back("A");
lista.push_back("B");
lista.push_back("C");
lista.push_back(*D");
lista.push_back("A");
lista.push_back("A");

for_each(lista.begin(), lista.end(), scrie);

cout<<"Numar de elemente egale cu A: '<<count(lista.begin(),
lista.end(), "A")<<endl;

cout<<"Elemente dupa D:"';

list<char>::iterator it = find(lista.begin(), lista.end(), "D");

it++;

for(;it 1= lista.end(); it++)
cout<<*it<<" '';

cout<<endl;

Functia for_each() itereaza de-a lungul intervalului delimitat de cei
doi iteratori primiti ca primi doi parametrii si prelucreaza fiecare element
inclus n acest interval. In exemplul de mai sus, functia for_each() tipareste
pe ecran caracterele incluse in lista, incrementate. Daca lista contine A,
atunci in locul acestuia va fi tiparit B. Functia count() numara cate elemente
dintr-un interval dat al containerului au o valoare egala cu o valoare data.
Functia find() returneaza un iterator catre pozitia din cadrul containerului
unde exista primul element ce are o valoare egala cu valoarea primita ca
parametru. Aceasta functie este utilizata in exemplu pentru a tipari toate
caracterele din lista care ii urmeaza caracterului D.

C. Algoritmi de sortare si operatii similare. Dintre cei mai cunoscuti
algoritmi inclusi in aceasta categorie, ii reamintim pe urmatorii: sort(),
equal_range(), merge() si includes().

#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

bool less(int nl, int n2){return nl<n2;}

bool greater(int nl, int n2){return nl>n2;}
void main()
vector<int> vect;

vect.push_back(10);
vect.push_back(5);
vect.push_back(7);
vect.push_back(1l);
vect.push_back(13);

sort(vect._begin(), vect.end());
copy(vect.begin(), vect.end(), ostream_iterator<int>(cout,

"));

cout<<endl ;

sort(vect.begin(), vect.end(), less);

copy(vect.begin(), vect.end(), ostream_iterator<int>(cout, "
"));

cout<<endl;

sort(vect.begin(), vect.end(), greater);

copy(vect.begin(), vect.end(), ostream_iterator<int>(cout, "
ll)) ;

cout<<endl;
by

Functia sort() sorteaza elementele unui container dupa o conditie
data prin intermediul unui pointer la o functie. Aceasta functie trebuie sa
primeasca doua variabile de tipul elementelor containerului ca parametrii si
sa intoarca un boolean. Daca ceea ce intoarce este egal cu false, functia
sort() interschimba elementele. In exemplul de mai sus, sunt definite doua
functii, less si greater, cu ajutorul carora elementele vectorului vect sunt
sortate crescator, respectiv descrescator. Functia sort() sorteaza elementele
in mod implicit (daca nu primeste si pointer catre o functie ca parametru)
crescator. Daca tipul obiectelor stocate in container este unul definit de
programator, este necesara supraincarcarea operatorului < pentru a defini o
relatie de ordine in cadrul containerului. Totodata, daca se doreste tiparirea
pe ecran a elementelor containerului, este necesara supraincarcarea
operatorului <<.

D. Algoritmi generali pentru operatii numerice, precum min() si
max().

#include <iostream>
#include <algorithm>

using namespace std;

void main()

int a = 10;

int b = 11;

int c = 12;

cout<<"Minimul dintre <<a<<" Si ""<<b<<" este: <<
min(a,b)<<endl;

cout<<"Minimul dintre "<<a<<", "<<b<<"™ siI ''<<c<<" este: "<<

min(min(a,b),c)<<endl;

cout<<"Maximul dintre "<<a<<" Si "<<ph<<™ este: <<
max(a,b)<<endl;

cout<<"Maximul dintre "<<a<<", "<<b<<"™ si ''<<c<<" este: '"<<
max(max(a,b),c)<<endl;

Functiile min() si max() puse la dispozitie de STL returneaza minimul,
respectiv maximul dintre doua numere. Ele pot fi utilizate si in cascada,
pentru a calcula minimul, respectiv maximul dintre mai multe numere.

In practica, biblioteca standard STL este suportatd de toate
compilatoarele C++ (Intel, Microsoft, Unix) pe toate tipurile de platforme -
UNIX, Windows.

