
20. STANDARD TEMPLATE LIBRARY – STL

20.1 Structura STL

 Structura STL cuprinde trei elemente principale: containerele,
iteratorii şi algoritmii.

Containerele sunt diferite tipuri de obiecte care conţin alte obiecte, de
tipuri predefinite sau definite de programator.

Iteratorii sunt obiecte care se comportă asemănător pointerilor şi
care sunt utilizaţi pentru a accesa elementele unui container.

Algoritmii furnizează funcţionalităţi de acces şi prelucrare asupra
elementelor containerelor.
 În tabelul 20.1 este prezentată structura STL.

Tabelul nr. 20.1 Structura STL

vector Implementează vectori
alocaţi dinamic.

#include <vector>

list Lista liniară dublu înlănţuită #include < list >

S
e
cv

e
n
ţi

a
le

deque Asemănător containerului
vector, operaţiile putându-
se realiza la ambele capete.

#include < deque >

set Mulţime sortată de
elemente unice.

#include < set >

multiset Mulţime sortată de
elemente.

#include < set >

map Stochează perechi sortate
de tip <cheie, valoare> în
care o cheie identifică în
mod unic o valoare.

#include < map >

A
so

ci
a
ti

v
e

multimap Stochează perechi sortate
de tip <cheie, valoare> în
care o cheie identifică una
sau mai multe valori.

#include < map >

stack Structură de tip stivă. #include < stack >
queue Structură de tip coadă #include < queue >

Containere

A
d

a
p

ti
v
e

priority_queue Structură de tip coadă în
care elementelor le sunt
asociate priorităţi.

#include < queue >

Acces aleatoriu Stochează şi regăseşte valori. Elemente pot fi accesate
aleatoriu.

Bidirecţionali Stochează şi regăseşte valori. Iteratorul poate înainta şi
reveni.

Înainte Stochează şi regăseşte valori. Iteratorul poate doar
înainta.

De intrare Regăseşte dar nu stochează valori. Iteratorul poate
doar înainta.

Iteratori

De ieşire Stochează dar nu regăseşte valori. Iteratorul poate
doar înainta.

Algoritmi Funcţii globale care oferă servicii generale cum ar fi
sortări, reordonări, modificări, copieri, căutări etc.

#include <algorithm>

În paragrafele următoare sunt exemplificate modalităţi de lucru

utilizând diferitele tipuri de containere, iteratori şi algoritmi.

20.2 Containere STL

 Containerele sunt încadrate în trei mari categorii: secvenţiale,
asociative şi adaptive.

Containerele secvenţiale sunt colecţii liniare şi ordonate de date în
care accesul se face pe baza poziţiei elementului în cadrul containerului.
Cele trei clase predefinite de tip container secvenţial sunt: vector, list şi
deque. Ordinea în care se găsesc elementele în cadrul acestor containere
este ordinea în care ele sunt adăugate. De reţinut că, in cazul şabloanelor
list şi deque elementele pot fi adăugate pe la ambele capete.

Containerele asociative se diferenţiază de celelalte prin faptul că
stocarea elementelor se face pe baza unor chei. Accesul în acest caz se
poate realiza după cheie, deci în mod direct. Elementele sunt reţinute în
ordinea dată de modul de aranjare a cheilor. Din această categorie de
containere fac parte set, multiset, map şi multimap.

Containerele adaptive adaugă funcţionalităţi containerelor
secvenţiale. Acestea nu pot fi parcurse cu ajutorul iteratorilor întrucât nu
sunt folosite în mod independent. Pentru a folosi un astfel de container,
programatorul trebuie să aleagă mai întâi containerul de bază căruia să îi fie
aplicat un container adaptiv. Astfel containerul stack poate adapta
containerele vector, list şi deque, containerul queue poate fi implementat
pentru list şi deque, iar priority_queue poate fi implementat pentru vector
şi deque.
 Pentru a exemplifica modul de lucru cu containerele secvenţiale atât
pe tipuri de date predefinite, cât şi pentru tipuri de date definite
programator, este propus următorul exemplu.

#include <iostream>
#include <vector>
#include <list>
#include <deque>

using namespace std;

class Student
{
private:
 int nrMat;
 char nume[20];
public:
 Student(int nr = 0, char* n = "Student"):nrMat(nr)
 {
 strcpy(nume, n);
 cout<<"Constructor clasa Student"<<endl;
 }

 int getNrMat()
 {
 return nrMat;
 }

 char* getNume()
 {
 return nume;

 }

 void setNume(char* n)
 {
 strcpy(this->nume,n);
 }

 Student(const Student& s)
 {
 this->nrMat = s.nrMat;
 strcpy(this->nume, s.nume);
 cout<<"Constructor de copiere clasa Student"<<endl;
 }

 bool operator<(Student& s)
 {
 return (this->nrMat < s.nrMat);
 }

 friend ostream& operator<<(ostream& o, Student s)
 {
 o<<s.getNrMat()<<" "<<s.getNume()<<endl;
 return o;
 }
};

void main()
{
 Student s1(1, "Gigel");
 Student s2(2, "Ionel");
 Student s3(3, "Balanel");

//

 //vector de tip de data predefinit
 vector<int> vectInt;

 vectInt.push_back(10);
 vectInt.push_back(1);
 vectInt.push_back(25);
 vectInt.push_back(12);

 for(int i=0; i<vectInt.size(); i++)
 cout<<vectInt[i]<<" ";
 cout<<endl;

 //---

 //vector de tip de data definit de programator
 vector<Student> vectStud;

 vectStud.push_back(s3);
 vectStud.push_back(s2);
 vectStud.push_back(s1);

 for(int i=0; i<vectStud.size(); i++)
 cout<<vectStud[i]<<" ";
 cout<<endl;

//

 // lista de tip de data predefinit
 list<int> listInt;

 listInt.push_back(10);//inserare la sfarsit cu ajutorul metodei
push_back()
 listInt.push_front(1);//inserare la inceput prin push_front()
 listInt.insert(listInt.end(),25);//inserare prin insert()
 listInt.insert(listInt.begin(),12);//inserare prin insert()

 //declararea unui iterator cu care va fi traversata lista
 //operatorul [] nu este implementat pentru list
 list<int>::iterator itInt;

 for(itInt=listInt.begin(); itInt!=listInt.end(); itInt++)
 cout<<*itInt<<" ";
 cout<<endl;

 listInt.sort();

 cout<<"Lista sortata"<<endl;
 for(itInt=listInt.begin(); itInt!=listInt.end(); itInt++)
 cout<<*itInt<<" ";
 cout<<endl;

 //--

 // lista de tip de data definit de programator
 list<Student> listStud;

 //inserare la sfarsit cu ajutorul metodei push_back()
 listStud.push_back(s3);
 listStud.push_front(s1);//inserare la inceput prin push_front()
 listStud.insert(listStud.end(),s2);//inserare prin insert()

 //declararea unui iterator cu care va fi traversata lista
 //operatorul [] nu este implementat pentru list
 list<Student>::iterator itStud;

 for(itStud=listStud.begin(); itStud!=listStud.end(); itStud++)
 cout<<*itStud<<" ";
 cout<<endl;

 listStud.sort();

 cout<<"Lista de studenti sortata"<<endl;
 for(itStud=listStud.begin(); itStud!=listStud.end(); itStud++)
 cout<<*itStud<<" ";
 cout<<endl;

///

 //deque pentru tipuri de date predefinite
 deque<int> deqInt;

 deqInt.push_front(10);
 deqInt.push_back(1);
 deqInt.push_front(25);
 deqInt.push_back(12);

 deque<int>::iterator iInt;

 for(iInt = deqInt.begin(); iInt!= deqInt.end(); iInt++)
 cout<<*iInt<<" ";
 cout<<endl;

 //---

 //deque pentru tipuri de date definite de programator
 deque<Student> deqStud;

 deqStud.push_front(s1);
 deqStud.push_back(s3);
 deqStud.push_front(s2);

 deque<Student>::iterator iStud;

 for(iStud = deqStud.begin(); iStud!= deqStud.end(); iStud++)
 cout<<*iStud<<" ";
 cout<<endl;
}

 Pentru tipul de date int şi tipul definit Student sunt construite câte
un container de tip vector, unul de tip list şi unul de tip deque. In fiecare
dintre acestea sunt adăugate elemente de tip int sau Student, după caz,
utilizând metode specifice acestor şabloane.

Clasa vector permite adăugarea elementelor pe la un singur capăt,
pe când clasele list şi deque permit operaţii pe la ambele capete. Metoda
push_back() pentru toate cele trei clase şi metoda push_front() pentru list
şi deque copiază obiectul într-unul dintre elementele clasei. Dacă pentru
tipurile predefinite de date copierea valorii obiectului nu pune nici o
problemă, copierea unui tip definit de programator necesită supraîncărcarea
constructorului de copiere, în special în cazul în care obiectul conţine
atribute cu extensie în memoria dinamică. Clasa Student supraîncarcă
constructorul de copiere şi operatorul >>, pentru tipărirea pe ecran a unui
obiect de tip Student. Vectorul de elemente int şi cel de elemente Student
pot fi parcurşi cu ajutorul unui contor ce ia valori de la 0 la dimensiunea
masivului, dimensiune dată de metoda size() a vectorului. Această
parcurgere se datorează faptului că vectorul ocupă un spaţiu contiguu de
memorie dinamică, ceea ce permite calculul deplasării unui element faţă de
începutul vectorului. Operatorul [] nu este definit şi pentru clasele list şi
deque, de aceea este necesară definirea unui iterator pentru a realiza
accesul la date. Acest iterator poate parcurge masivul de la început – dat de
metoda begin() până la sfârşit, dat de metoda end().
 Clasa list permite sortarea elementelor containerului (sortare
crescătoare implementată de metoda sort() sau sortare descrescătoare,
implementată de metoda reverse()), motiv pentru care, în moment ce
containerul este utilizat pentru stocarea unor obiecte de tip definit de
programator, trebuie supraîncărcat operatorul<. Pe baza acestuia este
stabilită relaţia de ordine în clasa respectivă.
 Şablonul deque combină facilităţile oferite de vector cu cele oferite de
list. Acesta este proiectat ca un vector ce poate creşte în ambele direcţii,
deci metodele push_back()/pop_back() şi push_front()/pop_front() sunt
valide. Adăugarea de elemente în interiorul unui deque este mai lentă decât

pe o poziţie interioară într-o listă întrucât în cazul deque toate elementele
trebuie mutate.
 Pentru exemplificarea modului de lucru cu containerele asociative se
consideră clasa Student şi prelucrările corespunzătoare din exemplul
următor.

#include <iostream>
#include <set>

using namespace std;

class Student
{
private:
 int nrMat;
 int varsta;
 char nume[20];
public:
 Student(int nr = 0, int v=0, char* n = "Student"):nrMat(nr),
 varsta(v)
 {
 strcpy(nume, n);
 cout<<"Constructor clasa Student"<<endl;
 }

 int getNrMat(){return nrMat;}
 char* getNume(){return nume;}
 int getVarsta(){return varsta;}
 void setNume(char* n){strcpy(this->nume,n);}

 Student(const Student& s){
 this->nrMat = s.nrMat;
 this->varsta = s.varsta;
 strcpy(this->nume, s.nume);
 cout<<"Constructor de copiere clasa Student"<<endl;
 }

 bool operator<(const Student& s)const{
 return (this->nrMat < s.nrMat);
 }

 friend ostream& operator<<(ostream& o, Student s){
 o<<s.getNrMat()<<" "<<s.getNume()<<endl;
 return o;
 }
};
void main()
{
 Student s1(1, 19, "Gigel");
 Student s2(2, 20, "Ionel");
 Student s3(3, 19, "Balanel");
 Student s4(4, 19, "Ilie");

/////////////////////////
//sablon set //
/////////////////////////
set<Student> setStud;

setStud.insert(s4);
setStud.insert(s2);

setStud.insert(s3);
setStud.insert(s1);

cout<<"Comparatie dupa cheie:";
cout<<s4.getNume()<<" este"<<(setStud.key_comp()(s4,s2)?" inaintea ":"
dupa ")<<s2.getNume()<<endl;
cout<<"Comparatie dupa valoarea elementului:";
cout<<s4.getNume()<<" este"<<(setStud.value_comp()(s4,s2)?" inaintea
":" dupa ")<<s2.getNume()<<endl;

cout<<"Comparatie dupa cheie:";
cout<<s3.getNume()<<" este"<<(setStud.key_comp()(s3,s1)?" inaintea ":"
dupa ")<<s1.getNume()<<endl;
cout<<"Comparatie dupa valoarea elementului:";
cout<<s3.getNume()<<" este"<<(setStud.value_comp()(s3,s1)?" inaintea
":" dupa ")<<s1.getNume()<<endl;

cout<<"Comparatie dupa cheie:";
cout<<s1.getNume()<<" este"<<(setStud.key_comp()(s1,s4)?" inaintea ":"
dupa ")<<s4.getNume()<<endl;
cout<<"Comparatie dupa valoarea elementului:";
cout<<s1.getNume()<<" este"<<(setStud.value_comp()(s1,s4)?" inaintea
":" dupa ")<<s4.getNume()<<endl;

set<Student>::iterator itStud;

itStud = setStud.find(2);
while(itStud!=setStud.end())
{
 cout<<itStud->getNume()<<" ";
 itStud++;
}
}

Întrucât toate containerele asociative reţin elementele sortate pe
baza cheilor, clasa Student supraîncarcă operatorul< pentru a defini relaţia
de ordine. Clasa Student utilizată în lucrul cu şablonul set defineşte relaţia
de ordine pe baza numărului matricol al studentului, număr ce identifică în
mod unic un student. Metodele key_comp() şi value_comp() au acelaşi efect
în lucrul cu şabloane set întrucât fiecare valoare a unui element corespunde
unei singure chei. Aşadar, valoarea şi cheia sunt identice. Rezultatele rulării
programului confirmă ordinea impusă prin supraîncărcarea operatorului<.
Containerele asociative dispun şi de metode de regăsire directă a
elementelor, adică după valoare cheii. Această metodă se numeşte find() şi
primeşte ca parametru valoarea cheii, întorcând un pointer către elementul
respectiv. In exemplul prezentat, este definit un iterator care adresează
într-o primă fază elementul ce are valoarea cheii egală cu 2. Acest element
este obţinut cu ajutorul metodei find(). De la respectiva poziţie şi până la
sfârşitul mulţimii aceasta este parcursă, iar toate numele ce aparţin acestui
interval sunt tipărite pe ecran.

Pentru a exemplifica lucrul cu multiset va fi stabilită o nouă relaţie de
ordine a clasei Student, pe baza vârstei. Astfel, o cheie nu va identifica în
mod unic neapărat doar un element.

class Student
{
...
//supraincarcare operator< a clasei Student modificata
bool operator<(const Student& s)const{
 return (this->varsta < s.varsta);
}
...
}; //sfarsit clasa Student
//////////////

void main()
{
 Student s1(1, 19, "Gigel");
 Student s2(2, 20, "Ionel");
 Student s3(3, 19, "Balanel");
 Student s4(4, 19, "Ilie");
 Student s5(5, 20, "Maricica");
 Student s6(6, 20, "Lenuta");

 Student vectStud[] = {s6, s1, s5, s4, s2, s3};
//////////////////////////////
//lucrul cu sablon multiset //
//////////////////////////////
multiset<Student> mSetStud;

for(int i=0; i<6; i++)
 mSetStud.insert(vectStud[i]);

multiset<Student>::iterator itStud;
std::pair<multiset<Student>::iterator,multiset<Student>::iterator>
itVarsta;

cout<<"Persoane de aceeasi varsta cu "<<s1.getNume()<<": ";
itVarsta = mSetStud.equal_range(s1);
for(itStud=itVarsta.first; itStud!= itVarsta.second; itStud++)
 cout<<itStud->getNume()<<" ";
cout<<endl;

cout<<"Persoane de aceeasi varsta cu "<<s2.getNume()<<": ";
itVarsta = mSetStud.equal_range(s2);
for(itStud=itVarsta.first; itStud!= itVarsta.second; itStud++)
 cout<<itStud->getNume()<<" ";
cout<<endl;
}

 Pentru a putea identifica în cadrul mulţimii de studenţi pe ci cu

aceeaşi vârstă este definită o pereche de iteratori ai multisetului. Această
pereche este încărcată cu valori prin apelul metodei equal_range(obiect),
primul dintre ei adresând primul obiect ce satisface condiţia, iar al doilea
adresând primul obiect ce numai satisface condiţia. Cu ajutorul unui nou
iterator, itStud, sunt parcurse toate adresele ce se încadrează în intervalul
precizat, iar numele studenţilor sunt tipărite pe ecran.

 Containerele set şi multiset sunt implementate în C++ cu ajutorul
arborilor de căutare, astfel regăsirea fiind foarte rapidă.

 Utilizarea containerul asociativ map este prezentat într-un exemplu
de agendă telefonică. Se consideră o adresă telefonică, în care vor fi
inserate perechi de şiruri de caracter sub forma <nume, număr de telefon>.
Pentru a putea insera într-un container map valori, acestea trebuie să fie

furnizate mai întâi ca parametru constructorului clasei pair<string, string>.
Numele persoanei este cheie unică, iar fiecărei persoane îi este asociat un
număr de telefon. Agenda permite căutarea unui număr de telefon după
numele persoanei. Pentru căutarea în agendă este folosit un iterator.

#include <iostream>
#include <map>
#include <string>

using namespace std;

int main()
{
 map<string, string> agenda;
 typedef pair<string, string> String_pair;

 agenda.insert(String_pair("Gigel", "021111111"));
 agenda.insert(String_pair("Georgiana", "023666777"));
 agenda.insert(String_pair("Ionel", "021333456"));
 agenda.insert(String_pair("Balanel", "021999888"));
 agenda.insert(String_pair("Maricica", "021333444"));
 agenda.insert(String_pair("Lenuta", "023444555"));

 map<string, string>::iterator itAgenda;

 cout<<"Numele valabile: ";
 for(itAgenda = agenda.begin(); itAgenda != agenda.end();
itAgenda++)
 cout<<(*itAgenda).first<<" "; /* scrie prima valoare
stocata, adica numele */
 cout<<endl;
 cout<<"--"<<endl;

 cout<<"Introduceti numele: ";
 string nume;
 cin>>nume;
 while(nume != "IESIRE")
 {
 cout<<endl;
 map<string, string>::iterator itNume = agenda.find(nume);
 if(itNume != agenda.end()){
 cout<<(*itNume).first<<" "<<(*itNume).second
<<endl<<endl;
 }
 else{
 cout<<"Acest contact nu exista in agenda"
<<endl<<endl;
 }
 cout<<"Introduceti numele: ";
 cin>>nume;
 }
}

 Numele persoanei, care este cheie, este prima valoare stocată din
cadrul perechii şi poate fi referit ca (*numeIterator).first. Numărul de
telefon este a doua valoare memorată şi poate fi referit cu ajutorul
iteratorului astfel: (*numeIterator).second. Căutarea unui număr de telefon
după numele persoanei este realizată cu ajutorul metodei
find(valoare_cheie) a şablonului map. Această funcţie returnează un

iterator, a cărui valoare indică fie elementul pentru care valoarea cheii este
egală cu valoarea căutată, fie o adresă egală cu cea furnizată de metoda
end() a clasei map, în cazul în care nu există nici un element în container
pentru care valoarea cheii să fie egală cu valoarea dorită.
 Containerul asociativ multimap permite identificarea unei sau mai
multor valori pe baza unei valori a cheii. Mai exact, cheia nu este unică, pot
exista oricâte perechi pentru care cheia să fie egală.
 Modul de lucru cu containere adaptive este pus în evidenţă de
exemplul următor.

#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <deque>
#include <list>

using namespace std;

template <class T> popStiva(T& st)
{
 while(!st.empty()){
 cout<<st.top()<<" ";
 st.pop();
 }
}

template <class T> popCoada(T& cd)
{
 while(!cd.empty()){
 cout<<cd.front()<<" ";
 cd.pop();
 }
}

void main()
{

 //stiva adaptata pentru container deque -> implicit
 stack<char, deque<char> > stivaDeq; /* echivalent cu stack<int>
stivaDeq; */
 //stiva adaptata pentru container vector
 stack<char, vector<char> > stivaVect;
 //stiva adaptate pentru container list
 stack<char, list<char> > stivaList;

 //coada adaptata pentru container deque
 queue<char, deque<char> > coadaDeq;
 //coada adaptata pentru conatainer list
 queue<char, list<char> >coadaList;

 for(char i=57; i>47; i--)
 {
 stivaDeq.push(i);
 coadaDeq.push(i);
 stivaVect.push(i+17);
 stivaList.push(i+49);
 coadaList.push(i+49);
 }

 cout<<"Stiva deque: ";
 popStiva(stivaDeq);
 cout<<endl;

 cout<<"Coada deque: ";
 popCoada(coadaDeq);
 cout<<endl;

 cout<<"Stiva vector: ";
 popStiva(stivaVect);
 cout<<endl;

 cout<<"Stiva list: ";
 popStiva(stivaList);
 cout<<endl;

 cout<<"Coada list: ";
 popCoada(coadaList);
 cout<<endl;
}

 In exemplul de mai sus este creat un container adaptiv de tip stivă
pentru fiecare container secvenţial. Aşadar, stivaDeq corespunde
implementării unei stive pentru un container de tip deque, stivaVect este o
adaptare a clasei vector la o structură de stivă iar stivaList este
implementarea stivei pentru o listă. Totodată au fost create şi două
containere de tip coadă pentru cele două containere secvenţiale ce permit
această adaptare: coadaDeq – adaptarea unui deque pentru a implementa o
structură de tip coadă şi coadaList – adaptarea unei liste. In stiva şi coada
corespunzătoare şablonului deque sunt introduse cifrele de la 0 la 9.
Afişarea elementelor din cadrul stivei şi cozii se face cu ajutorul metodelor
top(), respectiv front(). Elementele din cadrul cozii vor fi afişate în ordine
inversă faţă de cele din cadrul stivei. In stiva corespunzătoare şablonului
vector sunt inserate caracterele de la J la A. Afişarea se face în ordine
inversă, deci aceste vor apărea pe ecran de la A la J. Similar, în coada şi
stiva corespunzătoare şablonului list sunt inserate caracterele de la j la a.
Afişarea pe baza cozii se face în ordinea în care au fost introduse, deci de la
j la a, iar afişarea pe baza stivei se face în ordine inversă, deci de la a la j.
 Următorul program exemplifică utilizarea containerului asociativ
multimap.

#include "stdafx.h"
#include <map>
#include <string>
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{

 multimap<string, string> agenda;

 agenda.insert(pair<string,string>("Alina","0711111111"));
 agenda.insert(pair<string,string>("Alina","0211111111"));

 agenda.insert(pair<string,string>("Alina","0311111111"));
 agenda.insert(pair<string,string>("Dragos","0711111112"));
 agenda.insert(pair<string,string>("Dragos","0311111112"));
 agenda.insert(pair<string,string>("Vlad","0711111112"));
 agenda.insert(pair<string,string>("Ionut","0711111114"));
 agenda.insert(pair<string,string>("Marian","0711111115"));

 multimap<string, string>::iterator it;

 //Parcurgere intreaga agenda
 for (it = agenda.begin(); it != agenda.end(); it++)
 cout << "Persoana de contact " << (*it).first << ", are
numarul: " << (*it).second<< endl;

 cout<<"Dragos are " <<agenda.count("Dragos")<<" intrari in
agenda"<<endl;

 cout<<"Numerele de telefon ale lui Dragos sint:" << endl;
 for (it = agenda.lower_bound("Dragos");it !=
agenda.upper_bound("Dragos"); it++)
 cout << "\t" << it->second << endl;

 agenda.erase("Dragos");
 cout<<"Dragos are " <<agenda.count("Dragos")<<" intrari in
agenda"<<endl;

 cin.get();
 return 0;
}

În programul de mai sus s-a utilizat clasa multimap pentru a crea o

agendă de contacte. Cheia de căutare este numele persoanei, o persoană
putând avea asociate mai multe numere de telefon. Sunt exemplificate
pentru clasa multimap operaţiile de inserare, numărare a elementelor,
ştergere şi parcurgere.

Un adaptor priority-queue furnizează un subset restrâns de
funcţionalităţi containerului secvenţial corespunzător. Aceste funcţionalităţi
se referă la inserţia de noi elemente, consultarea şi extragerea/ştergerea de
elemente. O coadă cu priorităţi nu poate fi parcursă prin intermediul unui
iterator. Containerul asociat în mod implicit este vector. Elementul din vârful
unei cozi cu priorităţi este elementul cu cea mai mare prioritate.

#include <iostream>
#include <queue>

using namespace std;

void main()
{
 priority_queue<char> Q;

 Q.push('A');
 Q.push('C');
 Q.push('B');
 Q.push('E');
 Q.push('D');
 Q.push('F');

 while(!Q.empty())
 {
 cout<<Q.top()<<" ";
 Q.pop();
 }

 //iesire: F E D C B A
}

 Metoda top() returnează o referinţă către elementul cu valoarea cea
mai mare din coadă. Acest lucru este realizat astfel datorită definirii
implicite a unui Comparator. În exemplu, deşi literele nu au fost introduse în
coadă astfel încât să fie tipărite de la mare la mic – de la F la A, stocarea lor
coada cu priorităţi a rezultat în afişarea lor de la F la A.

20.3 Iteratori STL

 Iteratorii se aseamănă cu pointerii, dar sunt de fapt obiecte ce
adresează alte obiecte. Cu ajutorul lor pot fi adresate elemente ale
containerelor care aparţin anumitor intervale. Iteratorii reprezintă interfaţa
de comunicaţie între algoritmi şi containere, fiind preluaţi ca parametrii de
către algoritmi. Containerele le furnizează algoritmilor o cale de acces către
elementele lor prin intermediul iteratorilor.
 In exemplele prezentate anterior au fost utilizaţi pentru parcurgerea
containerelor iteratori definiţi de programator după modelul
container<tip_data>::iterator numeIterator;. STL furnizează şi iteratori
predefiniţi, a căror utilizare presupune includerea fişierului iterator.
 Un iterator de tip istream, notat istream_iterator<T,distanta>
formatează intrarea provenită de la un obiect de tip T dintr-un flux de
intrare. In momentul în care fluxul ajunge la sfârşit iteratorul ia o valoare de
sfârşit specială pentru a specifica sfârşitul datelor. Acest iterator permite
modificarea elementului pe care îl referă.
 Un iterator de tip ostream, notat ostream_iterator<T> este un
iterator de ieşire ce realizează legătura unui iterator cu un flux de ieşire. De
menţionat că elementul referit de acest tip de iterator nu poate fi modificat,
ci doar consultat.

#include <iostream>
#include <iterator>
#include <vector>

using namespace std;

void main()
{
 vector<char> vect;
 istream_iterator<char>inIterator(cin);
 ostream_iterator<char>outIterator(cout, "\n");

 //varianta a - stream intrare
 copy(istream_iterator<char>(cin),
 istream_iterator<char>(), back_inserter(vect));

 //varianta b - stream intrare

 /* while(*inIterator)
 {
 vect.push_back(*inIterator);
 inIterator++;
 } */

 //varianta a - stream iesire
 copy(vect.begin(),
 vect.end(), ostream_iterator<char>(cout, "\n"));

 //varianta b - stream iesire
 /* while(!vect.empty())
 {
 *outIterator = vect.back();
 vect.pop_back();
 } */
}

 În exemplul de mai sus este prezentat modul de lucru cu iteratori de
tip istream_iterator şi ostream_iterator. La declararea unui iterator de
intrare, respectiv de ieşire, trebuie specificate tipul dedate al elementelor
din colecţie (exemplul utilizează elemente de tip char) şi fluxul de date –
cin, respectiv cout. ”\n” este o constantă care va fi afişată automat după
afişarea unui element. Practic elementele vor fi afişate câte unul pe linie.
Varianta a din exemplul, atât pentru fluxul de intrare cât şi pentru cel de
ieşire este echivalentă cu varianta b. In varianta a însă, nu s-au folosit
iteratori declaraţi anterior. Funcţia copy(InputIterator prim, InputIterator
ultim, OutputIterator rezultat) copiază elementele care aparţin intervalului
[prim, ultim) în intervalul [rezultat, rezultat + (ultim - prim)).
 Un iterator invers, de tip reverse_iterator este folosit pentru
parcurgerea în ordine inversă a elementelor unei colecţii.

#include <iostream>
#include <vector>
#include <iterator>

using namespace std;

void main()
{
 vector<char> vect;
 vector<char>::reverse_iterator reverseIt;

 for(int i=57; i>47; i--)
 vect.push_back(i);

 for(reverseIt=vect.rbegin(); reverseIt != vect.rend();
reverseIt++)
 cout<<*reverseIt<<" ";
}

 Metoda rbegin() este echivalentă cu metoda end() a vectorului, iar
metoda rend() este echivalentă cu begin(). Metodele rbegin() şi redn() sunt
utilizate pentru a lucra cu iteratori inverşi, iar operatorul ++ semnifică de
fapt decrementarea acestuia. In vector sunt introduse cifrele de la 9 la 0, iar
parcurgerea elementelor cu ajutorul iteratorului invers afişează pe ecran

cifrele de la 0 la 9. Practic, afişarea se face ca şi cum vectorului i-ar fi
aplicat un adaptor de tip stivă, aceasta fiind golită prin metoda pop().
 Un iterator de inserare, insert_iterator<container<T> > este un
iterator specializat pe inserări în cadrul containerelor. Parametrul primit de
către acest tip de iterator este tipul containerului în care se face inserarea,
iar tipul containerului va primi ca parametru tipul de dată al elementelor.
Există şi două forme specializate ale acestui iterator, back_insert_iterator
pentru inserări la sfârşitul containerelor şi front_insert_iterator pentru
inserări la începutul containerelor.

#include <iostream>
#include <list>
#include <iterator>

using namespace std;

void main()
{
 list<char> lista;
 lista.push_front('D');

 //definesc un iterator cu care inserez la inceputul
containerului
 insert_iterator<list<char> > insertItBegin(lista,
lista.begin());
 //inserez in lista
 *insertItBegin = 'A'; *insertItBegin = 'B';*insertItBegin = 'C';

 //afisez pe ecran
 copy(lista.begin(),lista.end(),ostream_iterator<char>(cout,"
"));
}

 Constructorul iteratorului de inserare primeşte ca parametru
containerul în care vor fi inserate elemente şi poziţia din cadrul
containerului unde se vor efectua inserările.

20.4 Algoritmi STL

 Pe lângă metodele care aparţin de clasele container, STL pune la
dispoziţie funcţii globale ce oferă posibilitatea efectuării unor prelucrări
asupra mai multor containere prin includerea fişierului algorithm. Aceste
funcţii primesc ca parametri iteratori ai diferitelor containere, acesta fiind
modul de realizare a accesului la elementele containerelor.
 Algoritmii STL se împart în patru mari categorii:
 A. Algoritmi care modifică ordinea elementelor în container –
modifying sequence operations. Dintre cei mai folosiţi algoritmi care fac
parte din această categorie sun amintiţi: copy(), replace(), transform() şi
remove().

#include <iostream>
#include <list>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

void main()
{
 vector<char> vect;
 list<char> lista(6);

 vect.push_back('A');
 vect.push_back('B');
 vect.push_back('C');
 vect.push_back('D');
 vect.push_back('A');
 vect.push_back('A');

 //functia COPY - pentru copierea elementelor
 //dintr-un container in altul
 copy(vect.begin(), vect.end(), lista.begin());

 //functia COPY pentru tiparirea pe ecran
 //a elementelor copiate
 copy(lista.begin(), lista.end(), ostream_iterator<char>(cout, "
"));
 cout<<endl;

 //functia REPLACE - pentru inlocuirea
 //caracterelor A cu a
 replace(lista.begin(), lista.end(), 'A', 'a');
 cout<<"Lista dupa efectuarea inlocuirilor:"<<endl;
 copy(lista.begin(), lista.end(), ostream_iterator<char>(cout, "
"));
}

 Funcţiilor le sunt furnizate ca parametrii intervale de acţiune asupra
elementelor prin intermediul a doi iteratori: unul care indică de unde începe
acţiunea funcţiei, unul unde se termină. Funcţia copy() este utilizată în
cadrul exemplului pentru a copia elemente dintr-un container în altul şi
pentru a afişa pe ecran elementele containerului în care s-au efectuat
modificări. Pe lângă cei doi iteratori ce definesc intervalul căruia îi aparţin
elementele, funcţia mai primeşte ca parametru şi un iterator ce defineşte
destinaţia copierilor. Pentru copierea elementelor dintr-un container în altul,
al treilea parametru este poziţia din containerul destinaţie unde se doresc să
fie inserate elementele, adică lista.begin() (la începutul listei). Pentru
tipărirea pe ecran a elementelor, al treilea parametru este dat de un iterator
de ieşire, care leagă copierea valorilor de fluxul standard de ieşire, ecranul:
ostream_iterator<char>(cout, " "). Funcţia replace() efectuează înlocuirea
unei valori cu altă valoare, pentru elementele ce aparţin unui interval dat.
Aşadar, în lista din exemplu, valoarea A este înlocuită cu a, de la începutul
listei şi până la sfârşitul ei.
 B. Algoritmi care nu modifică ordinea elementelor în container – non-
modifying sequence operations. Cei mai întâlniţi din această categorie sunt:
for_each(), find(), count() şi equal().

#include <iostream>
#include <list>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

void scrie(char c)
{
 cout<<++c<<"/";
}

void main()
{
 list<char> lista;

 lista.push_back('A');
 lista.push_back('B');
 lista.push_back('C');
 lista.push_back('D');
 lista.push_back('A');
 lista.push_back('A');

 for_each(lista.begin(), lista.end(), scrie);

 cout<<"Numar de elemente egale cu A: "<<count(lista.begin(),
lista.end(), 'A')<<endl;
 cout<<"Elemente dupa D:";
 list<char>::iterator it = find(lista.begin(), lista.end(), 'D');
 it++;
 for(;it != lista.end(); it++)
 cout<<*it<<" ";
 cout<<endl;
}

 Funcţia for_each() iterează de-a lungul intervalului delimitat de cei
doi iteratori primiţi ca primi doi parametrii şi prelucrează fiecare element
inclus în acest interval. In exemplul de mai sus, funcţia for_each() tipăreşte
pe ecran caracterele incluse în lista, incrementate. Dacă lista conţine A,
atunci în locul acestuia va fi tipărit B. Funcţia count() numără câte elemente
dintr-un interval dat al containerului au o valoare egală cu o valoare dată.
Funcţia find() returnează un iterator către poziţia din cadrul containerului
unde există primul element ce are o valoare egală cu valoarea primită ca
parametru. Această funcţie este utilizată în exemplu pentru a tipări toate
caracterele din listă care îi urmează caracterului D.
 C. Algoritmi de sortare şi operaţii similare. Dintre cei mai cunoscuţi
algoritmi incluşi în această categorie, îi reamintim pe următorii: sort(),
equal_range(), merge() şi includes().

#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

bool less(int n1, int n2){return n1<n2;}

bool greater(int n1, int n2){return n1>n2;}

void main()
{
 vector<int> vect;

 vect.push_back(10);
 vect.push_back(5);
 vect.push_back(7);
 vect.push_back(1);
 vect.push_back(13);

 sort(vect.begin(), vect.end());
 copy(vect.begin(), vect.end(), ostream_iterator<int>(cout, "
"));
 cout<<endl;
 sort(vect.begin(), vect.end(), less);
 copy(vect.begin(), vect.end(), ostream_iterator<int>(cout, "
"));
 cout<<endl;
 sort(vect.begin(), vect.end(), greater);
 copy(vect.begin(), vect.end(), ostream_iterator<int>(cout, "
"));
 cout<<endl;
}

 Funcţia sort() sortează elementele unui container după o condiţie
dată prin intermediul unui pointer la o funcţie. Această funcţie trebuie să
primească două variabile de tipul elementelor containerului ca parametrii şi
să întoarcă un boolean. Dacă ceea ce întoarce este egal cu false, funcţia
sort() interschimbă elementele. In exemplul de mai sus, sunt definite două
funcţii, less şi greater, cu ajutorul cărora elementele vectorului vect sunt
sortate crescător, respectiv descrescător. Funcţia sort() sortează elementele
în mod implicit (dacă nu primeşte şi pointer către o funcţie ca parametru)
crescător. Dacă tipul obiectelor stocate în container este unul definit de
programator, este necesară supraîncărcarea operatorului < pentru a defini o
relaţie de ordine în cadrul containerului. Totodată, dacă se doreşte tipărirea
pe ecran a elementelor containerului, este necesară supraîncărcarea
operatorului <<.
 D. Algoritmi generali pentru operaţii numerice, precum min() şi
max().

#include <iostream>
#include <algorithm>

using namespace std;

void main()
{

 int a = 10;
 int b = 11;
 int c = 12;

 cout<<"Minimul dintre "<<a<<" si "<<b<<" este: "<<
min(a,b)<<endl;
 cout<<"Minimul dintre "<<a<<", "<<b<<" si "<<c<<" este: "<<
min(min(a,b),c)<<endl;

 cout<<"Maximul dintre "<<a<<" si "<<b<<" este: "<<
max(a,b)<<endl;
 cout<<"Maximul dintre "<<a<<", "<<b<<" si "<<c<<" este: "<<
max(max(a,b),c)<<endl;
}

 Funcţiile min() şi max() puse la dispoziţie de STL returnează minimul,
respectiv maximul dintre două numere. Ele pot fi utilizate şi în cascadă,
pentru a calcula minimul, respectiv maximul dintre mai multe numere.
 În practică, biblioteca standard STL este suportată de toate
compilatoarele C++ (Intel, Microsoft, Unix) pe toate tipurile de platforme –
UNIX, Windows.

