
21. CONVERSII ALE STRUCTURILOR DE DATE

21.1 Procese de conversie

Dezvoltarea domeniului IT a dus la intensificarea concurenţei pe piaţa

produselor software. Apariţia la momentul potrivit a pachetului de aplicaţii
care să satisfacă cerinţele clienţilor este ţelul fiecărui concurent. Din păcate
unii reuşesc fructificarea momentului oportun la maximum, chiar dacă
eficienţa produsului respectiv nu este dintre cele mai bune.

Eficienţa produsului software este mărită prin mai multe metode,
capitolul de faţă oprindu-se la metoda conversiei structurilor de date. În
dezvoltarea unui program, la un moment, este necesară realizarea
conversiei, de exemplu, de la tipul real la tipul întreg. Acest lucru este
folositor desfăşurării normale a algoritmului gândit de programator. Sub
mediul de programare Microsoft Visual C++, conversia de la un tip la altul
are o importanţă deosebită, fapt demonstrat de existenţa operatorului de
cast. Acest operator se supraîncarcă în funcţie de necesităţile ulterioare ale
programatorului.

Aparent, necesitatea operatorului cast este nesemnificativă. În
schimb programarea sub Windows utilizează foarte des conversiile, cele mai
des uzitate fiind cele ale pointerilor către anumite clase. Deci, existenţa
conversiei fluidizează procesul de programare, măreşte eficienţa şi
simplitatea programului.

Aşa cum se afirmă mai sus, acest capitol se opreşte asupra conversiei
structurilor de date. Asemănarea dintre economie şi conversie este dată de
nivelul la care se face analiza. Conversia tipurilor de date este asociată
nivelului microeconomic, iar conversia structurilor de date este asociat
nivelului macroeconomic. Deci, conversia structurilor de date este tratată ca
un factor important în creşterea eficienţei produsului final.

Eficienţa sporită este dată şi de creşterea gradului de reutilizare a
anumitor structuri de date. Să presupunem că numărul matricol al unor
elevi este memorat într-un vector. Acest vector este folosit într-o aplicaţie
de gestionare a elevilor şcolii respective. La un moment dat se doreşte
schimbarea aplicaţiei. Programatorul care realizează noua aplicaţie doreşte
păstrarea numărului matricol într-o structură de date de tip listă. Cum se
poate micşora efortul de programare? Simplu, prin folosirea procedurii care
realizează conversia de la un vector către o listă.

În acest caz programatorul nu mai este nevoit să reintroducă toate
numerele matricole asociate elevilor, ceea ce îi reduce foarte mult efortul de
programare. Existenţa unei astfel de biblioteci de funcţii şi proceduri este
foarte folositoare. În continuarea capitolului sunt prezentate proceduri şi
funcţii de conversie a structurilor de date realizate în limbajul de
programare C.

Reprezentarea în limbajul de programare C a structurilor folosite
este:

//lista simplu înlănţuită
struct lista
{
//informaţia elementului
int info;

//lista dublu înlănţuită
struct listad
{
//informaţia elementului
int info;

//pointer elementul următor
lista *next;
};

//pointer elementul următor
lista* next;
//pointer elementul anterior
lista* prev; };

//elementul din lista arcelor
struct arc
{
//referinţă către nod destinaţie
struct nodgraf * destinatie;
//elementul următor din listă
struct arc * next_arc;
//greutatea arcului
int weight;
};

//nodul unui graf
struct nodgraf
{
//informaţia nodului
int info;
//nodul următor
struct nodgraf * next;
//capăt lista arcelor
struct arc * capat;
};

// nodul arborelui binar
struct arbbin
{
// informaţia nodului
int info;
// referinţă către nodul stâng şi cel drept
arbbin *ss,*sd;
};

Într-o aplicaţie informatică se utilizează mai multe structuri de date.

Pentru a prelucra informaţii referitoare la elementele unei colectivităţi,
stocarea este realizată sub forma de fişiere.

Pentru toate structurile de date sunt definite articole ce includ
variabile pointer specifice legăturilor dintre elementele acestora şi
informaţia utilă care descrie elementele unei colectivităţi formată din
persone care lucrează într-o organizaţie, astfel:

- cod numeric personal, dată de tip vector cu 13 elemente de tip
caracter;

- nume şi prenume, dată de tip vector de caractere;
- adresa, structură de tip articol formată 3 câmpuri: oraş, stradă,

număr;
- vârsta, dată de tip întreg, definit pe 4 baiţi;
- salariu, dată de tip întreg, definit pe 4 baiţi.
Aplicaţia informatică pentru rezolvarea sistemului de ecuaţii AX=B de

mari dimensiuni presupune:
 crearea unui fişier ce conţine elementele matricei A;
 crearea unui fişier ce conţine elementele termenului liber B;
 încarcarea în memorie sub forma unei matrici rare a elementelor

matricii A (în blocuri/totalitate);
 încarcarea în memorie a elementelor vectorului de termeni liberi B

(încărcarea se efectuează parţial)
 se derulează calcule cu aceste informaţii;
 se obţine soluţia sistemului de ecuaţii şi se memorează într-un

fişier.
Problema se reduce la conversie de date organizate sub forma de

fişier în matrice/vector, respectiv conversie din matrice/vector în fişier.

În acest capitol nu sunt descrise toate combinaţiile posibile de
conversii din două motive: sunt lăsate în grija cititorului sau acestea se pot
obţine combinând tipurile prezentate. De exemplu conversia unui graf în
vector se realizează combinând conversia graf – matrice şi matrice – vector.

21.2 Conversie masiv unidimensional – listă simplă sau

listă dublă

Conversia unei structuri de tip masiv unidimensional în listă simplă

sau listă dublu înlănţuită este operaţia prin care se formează unul din cele
două tipuri de liste cu elementele vectorului. Operaţia constă în citirea
vectorului element după element şi construirea dinamică a listei în mod
dinamic inserând la sfârşit noile elemente.

Avantajul operaţiei constă în prelucrarea ulterioară a datelor care se
află în listă, prelucrare care se face mai rapid şi utilizând mai puţine
resurse. În unele cazuri, elementele listelor nu trebuie să conţină numai
valorile vectorului, acest lucru fiind un avantaj, deoarece se adaugă
informaţii care să uşureze prelucrarea ulterioară, de exemplu un index.

1 2 3 4 5 6 7

2 3 5 6 7 4 1 NULL

Conversie

Vector

Listă simplu înlănţuită

Figura 21.1 Conversia unui vector în listă simplu înlănţuită

Funcţia care transformă un vector într-o listă simplă primeşte ca

parametrii vectorul respectiv şi dimensiunea sa. Se apelează funcţia
ajutătoare lista *inssf(lista *cap, int info), pentru a crea dinamic lista
simplă.

void vector_to_lista(int v[10], int n)
{
 for (int i=0; i<n; i++) l=inssf(l,v[i]);
}

lista *inssf(lista *cap, int info)
{
 lista *temp;
 lista *nou=(lista*) malloc(sizeof(lista)); /*se alocă dinamic
spaţiu pentru element*/
 nou->info=info;
 nou->next=NULL;
 if (cap==NULL) return nou; /*dacă lista era vidă, noul element
devine capătul ei*/

 temp=cap;
 while (temp->next) temp=temp->next;
 temp->next=nou;
 return cap;
}

În celălalt caz, transformarea vectorului într-o listă dublu înlănţuită,

se foloseşte funcţia lista* vector_to_lista_dubla(int v[10], int n) care
returnează capătul listei şi primeşte ca parametrii vectorul de transformat şi
dimensiunea sa. Lista este construită dinamic direct în corpul acestei funcţii.

lista* vector_to_lista_dubla(int v[10], int n)
{
 listad *temp;
 for (int i=0; i<n; i++)
 {
 listad *nou=(lista*) malloc(sizeof(lista)); /*se alocă dinamic
spaţiu pentru element*/
 nou->info=v[i];
 nou->next=NULL;
 if(cap==NULL) {nou->prev=NULL; cap= nou; temp = cap;}
 nou->prev=temp;
 temp->next=nou;
 temp=nou;
 }
 return cap;
}

1 2 3 4 5 6 7

2 3 5 6 7 4 1 NULL

Conversie

Vector

Listă dublu înlănţuită

NULL

Figura 21.2 Conversia unui vector în listă dublu înlănţuită

Conversia în celălalt sens constă doar în parcurgerea listei şi

iniţializarea elementelor vectorului. Problema care se pune în acest caz este
alegerea modului de lucru. Ori se declară vectorul static cu un număr mai
mare de elemente decât al listei, din motive de risipă de spaţiu şi chiar de
incapacitate de realizarea a conversiei, dacă lista are mai multe elemente,
sau se numără elementele listei şi se alocă dinamic spaţiu pentru vector.

21.3 Conversie masiv bidimensional – masiv

unidimensional

O mare aplicabilitate are şi vectorizarea unei matrice sau conversia
acesteia la vector. Aceasta s-a concretizat prin funcţia void
matrice_to_vector(int a[30][30], int n, int m, int x[], int *k).

Această funcţiei preia o matrice şi o transformă într-un vector de
n*m+2 componente. Traversarea matricei se face pe linii, deci în vector vor
fi regăsite elementele matricei ca şi când am cap la cap fiecare linie.
Dimensiunea vectorului este cu două componente mai mare decât numărul
de elemente ale matricei deoarece pe ultimele două poziţii se păstrează
numărul de linii, respectiv numărul de coloane ale matricei.

Este importantă păstrarea dimensiunilor matricei pentru o eventuală
operaţie inversă, de la vector la matrice, sau pentru operaţiile de adunare,
scădere, transpunere şi înmulţire cu matrice vectorizate.

Funcţia primeşte următorii parametrii:
 int a[30][30] – parametru de intrare şi reprezintă matricea care va fi

vectorizată;
 int n, m – parametrii de intrare; reprezintă dimensiunile matricei

a;
 int x[] – parametru de ieşire şi reprezintă vectorul în care va fi

transformată matricea a;
 int *k – parametru de ieşire şi reprezintă dimensiunea vectorului

x; transferul se face prin valoare.
Funcţia are următoarea structură:

void matrice_to_vector (int a[30][30], int n, int m, int x[], int *k)
{
int i,j;
*k=0;
for(i=0; i<n; i++)
 for(j=0; j<m; j++)
 {
 x[*k]=a[i][j];
 (*k)++;
 }
x[*k]=n;
(*k)++;
x[*k]=m;
*k=(n*m)+2;
}

Pentru a înţelege mai bine algoritmul, se consideră următorul masiv

de 3 linii şi 3 coloane:


















987

654

321

M (21.1)

În urma apelării funcţiei matrice_to_vector se obţine următorul

vector:

1 2 3 4 5 6 7

Vector rezultat

8 9 3 3

Figura 21.3 Vectorul rezultat prin conversie

După cum se observă, apar două componente diferite de elementele

matricei. Ele reprezintă dimensiunile matricei şi vor întotdeauna memorate
pe ultimele două poziţii din vector, de unde şi dimensiunea 3*3+2
componente. Dacă operaţia nu se vrea a fi reversibilă, atunci se renunţă la
ultimele două elemente ale vectorului.

21.4 Conversie listă simplă – fişier

Conversia unei liste simplu înlănţuită într-un fişier este echivalentă cu

scrierea elementelor listei într-un fişier, el reprezentând la rândul său o
structură de date. Această operaţie este diferită de memorarea unei liste
într-un fişier, pentru că în acest caz se scriu în fişier şi informaţiile de
legătură dintre elementele listei.

Funcţia care transformă o listă într-un fişier este void
lista_to_fisier(lista *cap) şi are ca parametru de intrare adresa de început a
listei. Aceasta se parcurge şi pentru fiecare element se scrie în fişier
informaţia sa.

void lista_to_fisier(lista *cap)
{
FILE *f;
if ((f=fopen("elem.dat","wb"))==NULL)
{
 printf("\n Fisierul nu se poate deschide ");
 exit(1);
}
lista *temp=cap;
while(temp) fwrite (&temp->info, sizeof(temp->info) ,1, f);
temp=temp->next;
fclose(f);
}

2 3 5 6 7 4 1 NULL

Conversie

Date aflate în fişier

Listă simplu înlănţuită

1 2 3 4 5 6 7

Figura 21.4 Conversia unei liste simplu înlănţuite în fişier

Luând lista cu elementele 1, 2, 3, 4, 5, 6, 7 şi convertind-o în fişierul

elem.dat atunci acesta conţine doar numerele întregi 1, 2, 3, 4, 5, 6, 7 şi
are dimensiunea de 7 baiţi.

21.5 Conversie fişier – listă simplă

Conversia unui fişier într-o listă simplu înlănţuită este echivalentă cu

crearea unei liste de elemente care să conţină datele din fişier. Această
operaţie este inversa conversiei listă – fişier.

Lista este creată dinamic, pe măsură ce sunt citite elementele
fişierului. Funcţia întoarce adresa de început a listei.

lista * fisier_to_lista()
{
FILE *f;
int i, temp;
lista *cap=NULL;
if ((f=fopen("elem.dat","rb"))==NULL)
{
 printf("\n Fisierul nu se poate deschide ");
 exit(1);
}
for (i=0; i<n; i++) fread(&temp,sizeof(temp),1,f);
cap=inssf(cap,temp);
fclose(f);
}

Lucrul cu structuri dinamice presupune opera�ia de creare a

structurii de date cu alocare dinamică şi temporară de memorie, efectuarea
de prelucrări în condi�ii de performan�ă crescută, folosind elementele
structurii dinamice şi, în final, încheierea lucrului cu structura dinamică,
înso�ită de dealocarea de memorie, cu pierderea informa�iei utile
rezultate din prelucrare.

Pentru a asigura conditiile continuării ciclului de prelucrări este
necesar să se salveze informa�ia utilă din structura de date alocată dinamic
într-un fisier.

Dacă aplica�ia utilizează liste simple sunt necesare apeluri pentru:
- copierea informa�iei utile dintr-un fişier într-o listă simplă, în

vederea prelucrărilor eficiente folosind procedurile
corespunzătoare opera�iilor pe liste simple;

- salvarea informa�iei utile din lista simplă alocată dinamic în fişier
la sfârşitul prelucrărilor corespunzătoare aplica�iei, asigurând în
acest fel condi�iile de reluare a prelucrărilor în alte momente de
timp.

21.6 Conversie arbore binar – fişier

Conversia unui arbore binar într-o altă structură de date de tip fişier,

constă în crearea unui fişier care să conţină informaţia nodului arborelui. Ca
şi în cazul conversiei listă – fişier, conversia nu însemnă copierea sau
scrierea arborelui într-un fişier, fapt care implică scrierea nodului
(informaţia şi legăturile către celelalte noduri).

1

2 3

4 65

7

1 2 4 3 5 6 7

Conversie

Date aflate în fişier

Arbore binar

Figura 21.5 Conversia unui arbore binar în fişier

Rezultatul conversiei depinde în primul rând de modul în care este

traversat arborele. Cum există trei moduri de parcurgere: preordine,
inordine şi postordine şi datele din fişier vor reflecta acest lucru.

Funcţia care realizează acest tip de conversie este void
arbore_binar_to_fisier(arbbin *rad). Ea primeşte ca parametru de intrare
adresa nodului părinte a arborelui.

void arbore_binar_to_fisier(arbbin *rad)
{
FILE *f;
if ((f=fopen("elem.dat","wb"))= =NULL) //se creează fişierul
{
 printf("\n Fisierul nu se poate deschide ");
 exit(1); //dacă nu se deschide fişierul
}
if(rad)
{ //arborele se parcurge utilizând unul din cele 3 moduri
 fwrite(&rad->info,1,sizeof(rad->info),fis);
 arbore_binar_to_fisier(rad->ss);
 arbore_binar_to_fisier(rad->sd);
 //în acest caz, se parcurge în preordine
}
}

În exemplul din figura 21.5, arborele este traversat în preordine.
Problemele complexe presupun procese de căutare şi regăsire a

informa�iei după o cheie în care structura dinamică arbore binar se
dovedeşte a fi deosebit de eficientă.

Probleme economice reale, care reflectă colectivită�i formate din
sute şi mii de persoane, conduc la construirea unor arbori binari cu sute sau
mii de noduri, organiza�i pe zeci de niveluri.

Informa�ia utilă din arborii binari, care este supusă prelucrării
provine dintr-un fişier, iar la sfârşitul prelucrărilor, este necesară salvarea
acestei informa�ii, de asemenea, într-un fisier.

21.7 Conversie graf – matrice

Conversia unui graf într-o matrice se defineşte ca fiind operaţia de

creare a matricei de adiacenţă asociată grafului respectiv.

 7 1

8

 5 3

0

1

2

3

0

1

2

3

Figura 21.6 Graf orientat cu greutate şi fără greutate

Acest tip de conversie este utilizat în cazul lucrului cu grafuri

reprezentate prin intermediul listelor de liste şi nu au asociate matrice de
adiacenţă. Un motiv al necesităţii conversiei graf – matrice este dat de
următorul fapt: în cazul grafului cu un număr de mic de noduri, matricea de
adiacenţă ocupă un spaţiu relativ mic şi este mai uşor de lucrat cu aceasta.

Funcţia primeşte ca date de intrare pointer la capătul grafului şi
construieşte matricea de adiacenţă asociată grafului. Codul sursă se
bazează pe logica faptului că nodurile grafului sunt numerotate începând cu
0. Dacă de exemplu graful este compus din trei noduri notate cu 99, 100,
106, în final s-ar obţine o matrice de adiacenţă cu 107 linii şi 107 coloane.

void graf_to_matrice(nodgraf *cap)
{
nodgraf* p,*q;
int max,i,j;
int **matr;
if(cap==NULL) printf("\n Graful nu exista !");
else
{
 max=cap->info;
 for(p=cap; p!=NULL; p=p->next) //se caută nodul notat
 { //cu cel mai mare număr de ordine
 if (max<p->info) max=p->info;
 }
 matr=alocmatr(max+1,max+1); /*se alocă dinamic memorie ptr.
Matrice*/
 for(i=0; i<=max; i++)
 for(j=0; j<=max; j++)
 matr[i][j]=0; //se iniţializează elementele sale cu 0

 //Matricea de adiacenta asociata grafului este:
 for(p=cap; p!=NULL; p=p->next)
 for(q=cap; q!=NULL; q=q->next)
 if(q->info!=p->info)
 {
 //dacă există arc între 2 noduri se găseşte
 //valoarea arcului
 matr[p->info][q->info]=verif_arc(p,q);
 }
}
}

Funcţia int verif_arc(nodgraf *s, nodgraf *d) este apelată în interiorul

funcţiei precedente pentru a verifica dacă există arc între două noduri
indicate prin pointer şi pentru a întoarce greutatea lui în caz afirmativ. În
caz contrar funcţia returnează valoarea 0. Astfel dacă între nodurile i şi j

există arcul cu greutatea g, atunci elementul matricei matr[i][j] ia valoarea
g.

int verif_arc(nodgraf *s,nodgraf *d)
{
arc * p,*aux;
int gasit=0;

for(p=s->capat; p!=NULL; p=p->next_arc)
 if(p->destinatie==d) {
 gasit=1;
 aux=p;
 return aux->weight; //întoarce greutatea arcului
 }

if (gasit==0) {
 return 0;
}
else return aux->weight;
}

Funcţia int ** alocmatr(int n,int m), după cum s-a observat, este

folosită pentru a aloca dinamic spaţiu matricei de adiacenţă, ea întorcând un
pointer la matrice. Este un mod economic de a lucra cu matrice mai ales în
cazul în care nu se ştie de la început dimensiunile ei.

int ** alocmatr(int n,int m)
{
int **x;
int i,j;
x=(int **)malloc(n * sizeof(int));
for(i=0;i<n;i++) x[i]=(int *)malloc(m * sizeof(int));
return x;
}

Matricele de adiacenţă corespunzătoare grafurilor sunt :





















0000

3000

1800

0570

1M (21.2) şi (21.3)





















0000

1000

1100

0110

2M

Funcţia prezentată este folosită în cazul grafului cu greutate, dar

făcând mici modificări ea este aplicată şi grafului fără greutate. Aceste
modificări constau în schimbarea funcţiei verif_arc astfel încât să întoarcă
valoarea 1 dacă există arc între cele două noduri cercetate.

21.8 Omogenitatea prelucrărilor

Alegerea tipului de dată este determinată de domeniul căruia aparţin

nivelele consemnate pentru fiecare caracteristică la descrierea elementelor
unei mulţimi.

Dacă de exemplu, pentru specificarea mediului din care provin
persoanele unui eşantion se înregistrează răspunsurile mediu rural sau
mediu urban, domeniul asociat celor două nivele este format din elementele
0 şi 1. D = {0, 1}, unde:
 0 – pentru mediul rural;
 1 – pentru mediul urban.

Caracteristica aceasta se reprezintă pe un bit.
Pentru specificarea vârstei persoanelor, domeniul este cuprins între 0

şi 130, DV=[0,130]. Reprezentarea vârstelor se efectuează pe zone de
memorie de un bait, domeniul D = [0, 255], cu DV D. De asemenea,
numărul de copii aflaţi în îngrijirea unei persoane se reprezintă pe 5 biţi,
domeniul caracteristicii număr_copii fiind DC=[0,31]. Aceleaşi aprecieri se
efectuează şi în legătură cu alte caracteristici ale altor colectivităţi.

Se obţine o diversitate de domenii, care în final determină
constituirea de structuri de tip articol, cu câmpuri neomogene.

Necesitatea omogenităţii apare în procesul prelucrării.
Pentru calculul totalului unei facturi se utilizează membri definiţi în

structura:

struct factura {
 int numar;
 struct data_emiterii dat;
 struct rand y[10];
 float total_tva;
 double total;
} f;

struct data_emiterii {
 int ziua;
 int luna;
 int anul;
};

struct rand {
 int nr_crt;
 char denum[30];
 char um[5];
 int cantitate;
 float pret_unitar;
 double pret;
 int tva;
 float tva_calculat;

 float pret_vanzare;
};

Se construiesc expresiile:

f.y[i].pret = f.y[i].cantitate * f.y[i].pret_unitar;

f.y[i].tva_calculat = f.y[i].pret * f.y[i].tva / 100;

f.y[i].pret_vanzare = f.y[i].pret + f.y[i].tva_calculat;

Câmpurile care intervin sunt neomogene. Astfel, cantitate are tipul
întreg, reprezentat pe 2 baiţi. Câmpul pret_unitar este de tip float,
reprezentat pe 4 baiţi. Rezultatul înmulţirii, pret, este de tip double.

Pentru evaluarea acestei expresii se efectuează conversiile din figura
21.7.

cantitate preţ unitar

conversie întreg
spre float

*

produsul cu
reprezentare

float

conversie float
spre double

preţ

Figura 21.7 Omogenizarea expresiei de calcul pret.

Pentru obţinerea tva_calculat se face conversia din figura 21.8.

 100

tva pret

conversie întreg
spre double

*

float

conversie float
spre double rezultat intermediar

conversie
double spre float

tva_calculat

Figura 21.8 Conversii necesare obţinerii tva_calculat

Pentru calculul pret_vanzare se efectuează conversiile din figura

21.9.

 tva pret

conversie float
spre double

+

rezultat intermediar

conversie
double spre float

pret_vanzare

Figura 21.9 Conversii necesare calculului pret_vanzare

Dacă toate datele se definesc cu acelaşi tip, având un nivel de

omogenitate maxim, de la încărcarea fişierelor se utilizează structura:

struct rand_omogen {
 int nr_crt;
 char denum[30];
 char um[5];
 double cantitate;
 double pret_unitar;
 double pret;
 double tva;
 double tva_calculat;
 double pret_vanzare;
};

Fişierul FACTURI, având iniţial articole de lungimea sizeof(struct

facturi), o dată cu definirea masivului y[] prin struct rand_omogen y[10];
va avea articole de lungimea sizeof(struct factura_omogena), unde:

struct factura_omogena {
 int numar;

 struct data_emiterii dat;
 struct rand_omogen y[10];
 double total_tva;
 double total;
} g;

devenind fişierul FACTURI_OMO.

Dacă se consideră un număr n de facturi, prelucrările din fişierul
FACTURI_OMO nu necesită conversii datorită omogenităţii datelor, în timp
ce prin utilizarea fişierului FACTURI sunt necesare conversiile:

1. întreg (cantitate) spre float;
2. float (rezultat) spre double (pret);
3. întreg (tva) spre double;
4. constantă float (100) spre double;
5. double (rezultat) spre float (tva_calculat);
6. float (tva_calculat) spre double;
7. double (rezultat) spre float (pret_vanzare);

pentru fiecare articol prelucrat, deci un total de 7*n conversii.
Apare problema luării unei decizii în legătură, pe de o parte pentru a

economisi spaţiul de memorie cu:

 (21.4) 100*
)_(

)(
1 










omogenafacturasizeof

facturasizeof
G

dar în schimb cu un volum de 7*n conversii, iar pe de altă parte, fără
economie de spaţiu pe suport, fişierul FACTURI_OMO având
n*sizeof(factura_omogena) baiţi şi prelucrările necesitând zero conversii.

21.9 Resursele conversiilor

Se consideră două alfabete A şi B, A= {a1, a2, …,an }, B= {b1, b2,

…,bm }, unde ai reprezintă simbolul i al alfabetului A, iar bj simbolul j al
alfabetului B. Alfabetul A are n simboluri şi alfabetul B are m simboluri.

Cu alfabetul A se construiesc cuvinte, alcătuindu-se vocabularul VA,
cu simbolurile alfabetului B se alcătuiesc cuvinte care formează vocabularul
VB. Fiecare cuvânt are o lungime dată de numărul simbolurilor din care
este alcătuit.

Se numeşte algoritm de conversie succesiunea de prelucrări care
pornind de la un cuvânt xVA conduce la obţinerea cuvântului yVB şi
succesiunea de prelucrări care pornind de la cuvântul yVB conduce la
obţinerea cuvântului xVA.

Când cuvintele x şi y se reprezintă sub forma unor configuraţii de biţi,
lungimile cuvintelor ca număr de biţi sunt lg(x) şi, respectiv, lg(y).

În acest fel se realizează legarea cuvintelor de zone de memorie, iar
algoritmii de conversie de restricţiile acestei resurse, respectiv zona de
memorie.

Definiţiile care antrenează ca resurse alfabete, zone de memorie şi
seturi de prelucrări dau o maximă generalitate conversiilor.

Procesul de compresie de date este un caz particular de conversie, în
care singurul obiectiv urmărit este ca pornind de la un alfabet A să se
construiască un alfabet W bazat pe particularităţi de construire a cuvintelor
din vocabularul VA astfel încât, pentru orice cuvânt xVA să se obţină un
cuvânt yVW aşa fel încât lg(x) >> lg(y).

Algoritmul de compresie este operaţional dacă este posibilă
construirea şi a algoritmului de decompresie care permite ca pornind de la
cuvântul yVW să se obţină cuvântul xVA.

În cazul în care cuvântul x este chiar fişierul însuşi, y devine fişierul
compresat.

Manipularea zonelor de memorie impune gestionarea parametrului de
definire a acesteia, lungimea, ca număr de baiţi.

Conversie de lungime

Fie un cuvânt xVA şi lg(x) = k biţi.
Dacă se defineşte o zonă de memorie Z având m biţi, m > k, se pune

problema memorării cuvântului x în Z.
Instrucţiunile de atribuire sau de transfer din limbajele evoluate

realizează conversiile în diferite moduri.
Dacă în limbajul COBOL era definit:

77 x1 PIC 9(5) VALUE 12345.
77 x2 PIC 9(7).

instrucţiunea:

MOVE x1 TO x2

realizează conversia de lungime cu generare de zerouri în partea stângă a
configuraţiei iniţiale de biţi, figura 21.10:

x1

1 2 3 4 5

x2

0 0 1 2 3 4 5

 generat

Figura 21.10 Conversie pe lungime date numerice zecimal despachetat

În cazul în care tipul de dată este alfanumeric la conversia de lungime

se generează configuraţia de biţi asociată caracterului spaţiu 32h.
Pentru definirea în limbajul COBOL:

77 y1 PIC X(4) VALUE 'ABCD'.
77 y2 PIC X(7).

instrucţiunea:

MOVE y1 TO y2

conduce la obţinerea configuraţiei de biţi din figura 21.11:

y1
A B C D

y2
A B C D

Figura 21.11 Conversie pe lungime şir de alfanumerice

Conversia numerică

Cele mai frecvente conversii sunt cele numerice.
Se consideră următoarele tipuri de date:

întreg
virgulă mobilă simplă precizie
virgulă mobilă dublă precizie
zecimal împachetat
zecimal despachetat
caractere numerice
hexazecimal

Pentru toate numerele există o reprezentare sub formă de

configuraţie de biţi. Reprezentarea unui număr în zone de memorie este
dată în tabelul 21.1.

Tabelul nr. 21.1 Reprezentarea valorilor numerice

 Valori
Tip

25 -25 1 -1 0

întreg 0019 FFE7 0001 FFFF 0000
virgulă
mobilă
simplă
precizie

 00000000

virgulă
mobilă dublă
precizie

 000000000
0000000

zecimal
împachetat

0205 S0205 01 S01 00

zecimal
despachetat

0025 S0025 01 S01 00

caractere
numerice

3235 2D3235 31 2D31 30

De la tastatură de introduc în zonele de memorie şiruri de caractere.

Funcţiile de I/E realizează conversii. În acest scop se folosesc descriptori.
Astfel, descriptorul %d realizează conversia de la şir numeric-caracter spre
întreg binar.

Descriptorul %f activează realizarea conversiei de la şir de caractere
numerice spre tipul float.

Pentru realizarea conversiei unui şir de simboluri cifrice într-un întreg
binar este utilizată funcţia:

int atoi(char sir[])
 {
 int i,numar,semn;
 for(i=0;sir[i]<'0' || sir[i] >'9' ||
sir[i]!='-' || sir[i]!='+';i++);
 if(sir[i]=='-') { semn=-1; i++;}
 if(sir[i]=='+') { semn=1; i++;}
 for(numar=0; sir[i]>='0' && sir[i]<='9'; i++)
 numar=numar*10+(sir[i]-'0');
 numar*=semn;
 return numar;
}

Pentru conversia de la întreg binar spre sir de simboluri numerice

este folosită funcţia:

itoa(int numar,char sir[])
{
 int i, j, semn, lungime, carc;
 if(n<0) {
 semn=-1;
 numar=-numar;
 }
 i=0;
 do
 {
 sir[i++]=numar%d+'0';
 }
 while((n/10)>0);
 if(semn <0) sir[i++]='-';
 else sir[i++]='+';
 sir[i]='\0';
 lungime=strlen(sir)-1;
 for(i=0, j=lungime; i<j; i++, j--)
 {
 carc=sir[i];
 sir[i]=sir[j];
 sir[j]=carc;
 }
}

Există o diversitate de funcţii pentru conversie.
Ipotezele de lucru pentru realizarea conversiei şi ceea ce returnează

reprezintă un aspect esenţial. Astfel, pentru conversia unui şir de simboluri
numerice se consideră şirul declarat prin:

char sir[];

a cărui lungime trebuie impusă să nu depăşească k poziţii.

Dacă este vorba de o conversie de la şir de simboluri numerice spre
întregul binar numar, definit pe cuvânt şi -32768 ≤ cont(numar) ≤ 32767,

şirul de tip char trebuie să conţină secvenţe de simboluri numerice care să
nu depăşească lungimea 5.

'9' '2' '4' 'a' 'b' 'c' '4' '2' '9' '8' 'x' '1' '\0

sir[]

Figura 21.12 Secvenţe de simboluri numerice

Traversarea de la stânga la dreapta a masivului unidimensional

permite extragerea simbolurilor 9, 2, 4 şi constituirea numărului întreg 924
în reprezentarea binară din zona de memorie asociată variabilei x.

Delimitatorul de sfârşit al secvenţei este un caracter diferit de simbol
cifric.

De asemenea, poate fi interpretat delimitator de sfârşit de secvenţă
însuşi delimitatorul de sfârşit de şir ’\0’.

Funcţia iniţializează cu zero variabila y în cazul în care şirul are
structura dată în figura 21.13.

'x' 'y' 'z' 'a' 'b' 'd' '+' '\0

0000

sir[]

y

Figura 21.13 Iniţializarea cu zero în cazul secvenţei vide
de simboluri cifrice

Se introduce o ambiguitate, în ceea ce priveşte imposibilitatea de a

face o conversie şi cazul real în care secvenţa conţine o succesiune de
simboluri de 0.

Lipsa testelor privind simbolurile cifrice şi lungimea secvenţei face
imposibilă introducerea în limitele specifice tipului int.

Este utilă construirea funcţiei de evaluare a lungimii secvenţei
consecutive de simboluri numerice nstrlen().

int nstrlen (char sir[])
{
 int i,k;
 i=k=0;
 while(sir[i+1]!='\0')
 {
 if(sir[i]>='0' && sir[i]<='9' &&
(sir[i+1]>='0' && sir[i+1]<='9'))
 k++;
 i++;
 }
 return ((k) ? k++ : k);
}

Funcţia returnează lungimea secvenţei de simboluri cifrice şi se

utilizează pentru testarea din interiorul funcţiei atoi():

 …
if(nstrlen(sir)>4) return 0;
if(nstrlen(sir)==4 && sir[i]-'0'>3) return 0;
if(nstrlen(sir)==4 && sir[i]-'0'>2) return 0;
if(nstrlen(sir)==4 && sir[i]-'0'>7) return 0;
if(nstrlen(sir)==4 && sir[i]-'0'>6) return 0;
if(nstrlen(sir)==4 && sir[i]-'0'>7) return 0;
 …

Conversia începe numai după ce s-a efectuat încadrarea între limitele

domeniului asociat tipului int, respectov [-32768, 32767].
În acest caz, funcţia nu returnează şi o informaţie privind modul în

care s-a efectuat conversia.
Este de dorit să se construiască funcţii de conversie care să ofere mai

multe informaţii, mai ales că funcţiile nu sunt apelate oricum.
Astfel, este posibilă identificarea următoarelor situaţii:
 secvenţă vidă de simboluri cifrice;
 secvenţă de simboluri cifrice mai mare ca 4;
 secvenţa de 4 simboluri cifrice care prin conversie conduce la o

valoare din afara intervalului [-32768, 32767].
Procedura care efectuează conversia de la şir de simboluri cifrice,

sir[] spre tipul zecimal despachetat în şirul upk[], este:

int atoupk(char sir[],char upk[])
{
 int i;
 i=0;
 while(sir[i]!='\0')
 {
 upk[i] = sir[i] - '0';
 i++;
 }
 upk[i]='*';
 return i;
}

Funcţia returnează lungimea şirului convertit.
Funcţia care efectuează conversia numărului zecimal despachetat

spre şir de simboluri cifrice este:

int upktoa(char upk[],char sir[])
{
 int i;
 i=0;
 while(upk[i]!='*')
 {
 sir[i]=upk[i]+'0';
 i++;

 }
 sir[i]='\0';
 return i;
}

S-a ales delimitatorul de sfârşit al numărului zecimal despachetat

caracterul '*' pentru a nu se denatura conversia din cauza coincidenţei
caracterului '\0' cu zero binar.

Funcţia care efectuează conversia unui şir de simboluri cifrice într-un
număr zecimal împachetat este:

int atopk(char sir[],char pk[])
{

 int i,k;

 k=i=0;

 while(sir[i]!='\0')

 {
 pk[k]=sir[i]-'0';

 if(sir[i+1]!='\0')

 {

 pk[k]<<4;

 pk[k]|=sir[i+1]-'0';

 k++;

 i++;

 }

 }
 return k;

}

Masivul unidimensional sir[] trebuie să conţină în mod obligatoriu

simboluri cifrice pentru ca rezultatul conversiei să fie corect. Pentru şirul 'A2
B4F8\0' se va obţine prin conversie şirul:

pk[0]=0xA2
pk[0]=0x20 prin pk[0]<<4
pk[0]=0xA4 prin 0xB4-0x30=0x84
 0x84+0x20=0xA4.

O ameliorare constă în operarea cu masca 0x0F, funcţia devenind:

int atopk(char sir[],char pk[])
{
 int i,k;
 k=i=0;
 while(sir[i]!='\0')
 {
 pk[k]=sir[i]&0x0F;
 if(sir[i+1]!='\0')
 {
 pk[k]<<4;
 pk[k]|=sir[i+1]&0x0F;

 k++;
 i++;
 }
 }
 return k;
}

Puterea unor limbaje de programare este dată în primul rând de

diversitatea de tipuri de date şi de diversitatea conversiilor acceptate.
Când se prezintă limbajele este necesară definirea tabelelor de

conversie, de forma tabelului 21.2.

Tabelul nr. 21.2 Conversii posibile

TIP Tip1 Tip2 … Tipj … Tipk … Tipn

Tip1
Tip2
…
Tipi D N
…
Tipn

Simbolul D arată că este permisă conversia de la tipul Tipi la tipul de

dată Tipj. Simbolul N arată că nu este permisă conversia de la tipul de dată
Tipi la tipul de dată Tipk.

Conversia matricelor

Matricele în care un număr important de elemente, peste 70%, sunt

nule, necesită un alt fel de stocare.
O posibilitate de conversie a matricelor revine la a considera o

matrice A rară încărcată în memorie şi de a trece de la aceasta la o listă
simplă ale cărei elemente conţin numai informaţii care prezintă valori
nenule.

Dacă se consideră o matrice de mari dimensiuni cu m linii şi n
coloane, mai întâi aceasta este stocată în fişierul F, după care programul de
conversie realizează citirea de date din fişier şi transpunerea acestora într-
una din forme de prezentare în memorie a matricei de mari dimensiuni,
figura 21.14.

Figura 21.14 Conversia fişier-matrice

 Pentru conversia matricei sub forma de fişier, figura 21.15, trebuie
specificat modul în care sunt preluate elementele matricei, fie linie de linie,
fie coloană de coloană.

Figura 21.15 Conversia matrice-fişier

Problemele de optimizare, probleme de calcule inginereşti complexe,
presupun lucrul cu matrice de dimensiuni mari, matrice pentru care trebuie
asigurată completitudinea şi corectitudinea datelor.

Există foarte mari riscuri legate de procesul de asigurare a calită�ii
con�inutului unei matrice, fapt pentru care încărcarea elementelor matricei
şi verificarea acestora trebuie să respecte reguli stricte de management a
con�inutului.

Matricea încărcată în memoria internă este supusă prelucrărilor,
ob�inându-se o nouă matrice sau valori agregate.

Este necesar ca matricele complete şi corecte să fie salvate în fişier.
Fişierele care con�in matrice sunt folosite pentru a încărca matricea

în memorie în vederea utilizării acestei proceduri de prelucrare.

Conversia listelor simple şi duble

În cazul în care se doreşte conversia de la structură de tip listă simplu

înlănţuită, la cea de tip listă dublu înlănţuită, se parcurg nodurile listei şi se
copiază informaţia utilă în nodurile listei duble, figura 21.16.

Figura 21.16 Conversia listă simplu înlănţuită- listă dublu înlănţuită

Pentru lista simplu înlănţuită definită mai jos:

struct lista_simpla
{
 float info;
 lista_simpla* next;
};

se va implementa o procedură de conversie în listă dublu înlănţuită, cu
următoarea structură:

struct lista_dubla
{
 float info;
 lista_dubla *prev,*next;
};

Dacă se consideră structurile de date S1, S2, …, SN problema

conversiei revine la a scrie proceduri de reprezentare a informa�iei utile din
structura Si într-o structură Sj.

Procedura are rolul de a crea şi ini�ializa variabile pointer care să
ajute la traversarea corectă în structura Sj folosind reguli deja definite
pentru structura Si.

Sunt necesare n*n-n proceduri, întrucât conversia de la Si la Si nu se
justifica.

Dacă se consideră o structură de bază Sb şi se doreşte conversia de la
structura Si la structura Sj prin intermediul structurii de bază, se vor scrie n-
1 proceduri de conversie de la structura Si la structura Sb, respectiv, tot n-1
proceduri de conversie de la structura Sb la structura Sj. În total, vor fi
necesare 2(n-1) proceduri de conversie, şi nu n*n-n.

Conversia listei simple spre arbore binar se implementează folosind o
procedură care copiază informa�ia utilă a elementului din lista simplă în
partea destinată informa�iei utile din nodul arborelui binar. Variabilele
pointer ale arborelui binar se ini�ializează la construirea acestuia, astfel
încât să se asigure traversarea corectă a nodurilor.

Variabila pointer din lista simplă nu este preluată în arborele binar
datorită volatilită�ii procesului de alocare dinamică a memoriei, nefiind
utilizabil la o conversie de la arborele binar spre lista simplă.
 Pentru conversia listei duble în listă simplă, se utilizează procedura
care:

- traversează lista dublă;
- creează un element al listei simple;
- asigură legatura cu elementul precedent al listei simple;
- copiază informa�ia utilă din elementul listei duble în elementul

creat al listei simple;
- asigură ini�ializarea variabilei pointer de legatură;
- reia procesul.
Pentru conversia listei duble în fişier este necesar ca procedura să

realizeze:
- traversarea listei duble;
- preluarea informa�iei utile din lista dublă în articolul fişierului;
- scrierea articolului în fişier;
- reluarea procesului până la încheierea procesului de traversare.
Conversia listei duble în arbore binar constă în:
- traversarea listei duble;
- crearea unui nod din arborele binar prin alocare dinamică de

memorie;
- asigurarea legăturii cu nodul părinte;
- copierea informa�iei utile din lista dublă în zona de memorie

aferentă nodului creat;
- reluarea procesului de traversare a listei duble până la epuizarea

elementelor acesteia.

Conversia de fişiere

În cazul în care există două sisteme de operare S1 şi S2, avem

algoritmi de conversie pentru tipurile de date diferite, moduri diferite de
gestionare a pozi�iei semnelor, a mantisei, a caracteristicii, lungimi diferite
ale cuvintelor şi modalită�i specifice de construire a etichetelor, a
delimitatorilor de articole.

Fiecare suport tehnic de stocare a fişierelor are caracteristicile sale.
Conversia de suport revine la a realiza un fişier F2 pe suportul X

pornind de la fişierul F1 aflat pe suportul Y. Astfel de probleme apar la
trecerile spre noi generaţii de purtători tehnici de informa�ie.

Recensămintele anilor ’70 au fost realizate cu genera�ia a III-a de
calculatoare, iar fişierele care con�in fondul de date se află pe benzi
magnetice. Filosofia noilor calculatoare impune o altă abordare. Pentru a
efectua compara�ii, ori se reintroduc datele din documentele primare, dacă
mai există, ori se face conversie fişiere, de suport.

Pornind de la structura fişierelor pe bandă magnetică, de la
reprezentarea informa�iei pentru genera�iile de calculatoare din anii ’70,
se vor scrie programe care să convertească aceste fişiere.

Un alt mod de a privi conversia de fişiere constă în elaborarea unui
program care are ca intrare un fişier F1 realizat pentru a efectua anumite
prelucrări şi a prelua din fişier anumite articole, anumite câmpuri, a le
modifica aşa încât să se ob�ină la ieşire un fişier F2. Fişierul F2 este fişier de
intrare pentru un program care efectuează prelucrări.

Situa�ia este des întâlnită. Fişiere realizate în FoxPro trebuie
prelucrate în programe C++.

Pentru conversia de fişiere, sistemul FoxPro dispune de comanda
IMPORT FROM.

Se consideră un program care efectuează calcule de salarii. Fişierul
de intrare con�ine:

 numărul de intervale pentru diferenţierea procentului de
impozitare: int n; 0<n<20;

 limitele superioare ale intervalelor: float x[20];
 articolele fişierului ce conţin date despre salariaţi, având

structura:

struct salariat {
 int marca;
 char nume[30];

 int vârsta;
 int timp;
 float salariu_orar;

 float reţineri;
 float sporuri;
};

Fişierul iniţial conţine numai articole cu date ale salariaţilor construite

după structura:

struct sal {
 int marca;
 char nume[20];
 int timp_lucrat;
 int salariu_orar;

 int reţineri;
};

Lipsesc câmpurile vârsta şi sporuri.
La conversia de fişiere nu se realizează completarea cu valori

câmpurilor, ci se alocă numai spaţiu, eventual iniţializat cu zero. Procedurile
de conversie efectuează trecerea de la structura articolului sal la structura
articolului salariat, figura 21.17:

sal

salariat

marca nume timp_lucrat salariu_orar retineri

marca nume varsta timp salariu_orar retineri sporuri

0 0

Figura 21.17 Conversia de structură a articolelor unui fişier

Programul C++ care efectuează conversia acestor fişiere este :

#include <stdio.h>
#include <string.h>

 struct salariat {
 int marca;
 char nume[30];
 int varsta;
 int timp;
 float salariu_orar;
 float retineri;
 float sporuri;
};

struct sal {
 int marca;
 char nume[20];
 int timp_lucrat;
 int salariu_orar;
 int retineri;
};

void main()
{
 sal S1;
 salariat S2;
 FILE *pf1,*pf2;
 pf1=fopen("sal.dat","rb");
 pf2=fopen("salariat.dat","wb");
 S2.varsta=0;
 for(int i=20; i<30; i++)
 S2.nume[i]=' ';
 while(fread(&S1,sizeof(struct sal),1,pf1))
{
 S2.marca=S1.marca;
 strncpy(S2.nume,S1.nume,20);
 S2.timp=S1.timp_lucrat;
 S2.salariu_orar=S1.salariu_orar;
 S2.retineri=S1.retineri;
 fwrite(&S2,sizeof(struct salariat),1,pf2);
}
 fclose(pf1);
 fclose(pf2);
}

Pentru a reduce volumul conversiilor în timpul execuţiei programelor

se efectuează conversia de câmpuri în fişiere.
Se consideră seriile de timp T1, T2, T3, T4 având n termeni. Un articol

din fişierul F1 care le descrie are forma:

struct articol {
 int anul;
 int t1;
 float t2;
 int t3;
 float t4;
};

Pentru calculul valorilor medii ale celor patru serii se impun conversii.

Cel mai simplu este să se efectueze conversiile câmpurilor din articole,
ajungându-se la structura:

struct art {
 int anul;
 float t[4];
};

În loc de efectua prelucrările cu două funcţii din programul:

#include <stdio.h>
#define N 10

struct articol {
 int anul;
 int t1;
 float t2;
 int t3;
 float t4;
};

float media(int x[], int n)
{
 int s=0;
 for(int i=0; i<n; i++)
 s+=x[i];
 return (float)s/n;
}

float media(float x[], int n)
{
 float s=0.0;
 for(int i=0; i<n; i++)
 s+=x[i];
 return s/n;
}

void main()
{
 float medii[4];
 int T1[N],T3[N];
 float T2[N],T4[N];
 articol A;
 FILE *pf;
 pf=fopen("serii.dat","rb");
 for(int i=0;i<N;i++)
 {
 fread(&A,sizeof(struct articol),1,pf);
 T1[i]=A.t1;
 T2[i]=A.t2;
 T3[i]=A.t3;
 T4[i]=A.t4;
 }
 fclose(pf);
 medii[0]=media(T1,N);
 medii[1]=media(T2,N);
 medii[2]=media(T3,N);

 medii[3]=media(T4,N);
 for(i=0;i<4;i++)
 printf("\n media seriei %d este %f",i+1,medii[i]);
}

se va efectua aceeaşi prelucrare cu programul:

#include <stdio.h>
#define N 10

struct art {
 int anul;
 float t[4];
};

float media(float x[], int n)
{
 float s=0.0;
 for(int i=0; i<n; i++)
 s+=x[i];
 return s/n;
}

void main()
{
 float medii[4];
 float T[4][N];
 art A1;
 FILE *pf;
 pf=fopen("serii1.dat","rb");
 for(int i=0; i<N; i++)
 {
 fread(&A1,sizeof(struct art),1,pf);
 T[0][i]=A1.t[i];
 T[1][i]=A1.t[i];
 T[2][i]=A1.t[i];
 T[3][i]=A1.t[i];
 }
 fclose(pf);
 for(i=0; i<4; i++)
 {
 medii[i]=media(T[i],N);
 printf("\n media seriei %d este %f",i+1,medii[i]);
 }
}

În limbajul C++ delimitatorul de sfârşit de şir de caractere este ‘\0’.

În limbajul Pascal un şir este structurat printr-un bait ce conţine numărul de
poziţii urmat de şirul propriu-zis de lungimea indicată.

Conversia fişierului F1 realizat în C++ la fişierul F2 realizat în Pascal
presupune:

 alocare un bait;
 copierea şirului din F1 în F2 cu contorizarea în variabila x a

caracterelor;
 la apariţia ‘\0’ se pune în baitul alocat valoarea contorului x.
Conversia fişierului F2 Pascal în fişierul F1 C++ presupune :
 preluarea în variabila x a lungimii şirului;

 copierea unui număr de caractere cât arată contorul x din fişierul
F2 în fişierul F1;

 inserarea în F1 în continuare a simbolului ‘\0’ pentru a marca
sfârşitul fişierului.

Programul este:

#include <stdio.h>

void main()
{
 char c,x;
 int i=0;
 FILE *pf1,*pf2;
 pf1=fopen(“F2.txt”,”r”);
 pf2=fopen(“F1.txt”,”w”);
 x=fgetc(pf1);
 while(i<x)
 {
 c=getc(pf1);
 putc(c,pf2);
 i++;
 }
putc(‘\0’,pf2);
fclose(pf1);
fclose(pf2);
}

	21.2 Conversie masiv unidimensional – listă simplă sau listă dublă
	21.6 Conversie arbore binar – fişier

