21. CONVERSII ALE STRUCTURILOR DE DATE

21.1 Procese de conversie

Dezvoltarea domeniului IT a dus la intensificarea concurentei pe piata
produselor software. Aparitia la momentul potrivit a pachetului de aplicatii
care sa satisfaca cerintele clientilor este telul fiecarui concurent. Din pacate
unii reusesc fructificarea momentului oportun la maximum, chiar daca
eficienta produsului respectiv nu este dintre cele mai bune.

Eficienta produsului software este maritd prin mai multe metode,
capitolul de fata oprindu-se la metoda conversiei structurilor de date. In
dezvoltarea unui program, la un moment, este necesara realizarea
conversiei, de exemplu, de la tipul real la tipul intreg. Acest lucru este
folositor desfasurarii normale a algoritmului gandit de programator. Sub
mediul de programare Microsoft Visual C++, conversia de la un tip la altul
are o importanta deosebita, fapt demonstrat de existenta operatorului de
cast. Acest operator se supraincarca in functie de necesitdtile ulterioare ale
programatorului. .

Aparent, necesitatea operatorului cast este nesemnificativa. In
schimb programarea sub Windows utilizeaza foarte des conversiile, cele mai
des uzitate fiind cele ale pointerilor catre anumite clase. Deci, existenta
conversiei fluidizeaza procesul de programare, mareste eficienta si
simplitatea programului.

Asa cum se afirma mai sus, acest capitol se opreste asupra conversiei
structurilor de date. Asemanarea dintre economie si conversie este data de
nivelul la care se face analiza. Conversia tipurilor de date este asociata
nivelului microeconomic, iar conversia structurilor de date este asociat
nivelului macroeconomic. Deci, conversia structurilor de date este tratata ca
un factor important in cresterea eficientei produsului final.

Eficienta sporita este data si de cresterea gradului de reutilizare a
anumitor structuri de date. Sa presupunem ca numarul matricol al unor
elevi este memorat intr-un vector. Acest vector este folosit intr-o aplicatie
de gestionare a elevilor scolii respective. La un moment dat se doreste
schimbarea aplicatiei. Programatorul care realizeaza noua aplicatie doreste
pastrarea numarului matricol intr-o structura de date de tip lista. Cum se
poate micsora efortul de programare? Simplu, prin folosirea procedurii care
realizeaza conversia de la un vector cdtre o lista.

In acest caz programatorul nu mai este nevoit sa reintroduca toate
numerele matricole asociate elevilor, ceea ce 1i reduce foarte mult efortul de
programare. Existenta unei astfel de biblioteci de functii si proceduri este
foarte folositoare. In continuarea capitolului sunt prezentate proceduri si
functii de conversie a structurilor de date realizate in limbajul de
programare C.

Reprezentarea in limbajul de programare C a structurilor folosite

este:
//lista simplu inléntuita //lista dublu inlantuita
struct lista struct listad
{ {
//informatia elementului //informatia elementului
int info; int info;

};

//pointer elementul urmitor //pointer elementul urmdtor
lista *next; lista* next;

//pointer elementul anterior
lista* prev; };

{

//elementul din lista arcelor //nodul unui graf
struct arc struct nodgraf

//referintd catre nod destinatie //informatia nodului

struct nodgraf * destinatie; int info;

//elementul urmdtor din lista //nodul urmitor
struct arc * next arc; struct nodgraf * next;
//greutatea arcului //capat lista arcelor
int weight; struct arc * capat;

};

{

};

// nodul arborelui binar

struct arbbin

{

// informatia nodului

int info;

// referinta catre nodul stidng si cel drept
arbbin *ss,*sd;

};

Intr-o aplicatie informaticd se utilizeaz& mai multe structuri de date.
Pentru a prelucra informatii referitoare la elementele unei colectivitati,
stocarea este realizata sub forma de fisiere.

Pentru toate structurile de date sunt definite articole ce includ
variabile pointer specifice legaturilor dintre elementele acestora si
informatia utild care descrie elementele unei colectivitati formata din
persone care lucreaza intr-o organizatie, astfel:

cod numeric personal, data de tip vector cu 13 elemente de tip
caracter;

nume si prenume, data de tip vector de caractere;

adresa, structura de tip articol formata 3 campuri: oras, strada,
numar;

varsta, data de tip intreg, definit pe 4 baiti;

salariu, data de tip intreg, definit pe 4 baiti.

Aplicatia informatica pentru rezolvarea sistemului de ecuatii AX=B de
mari dimensiuni presupune:

crearea unui fisier ce contine elementele matricei A;

crearea unui fisier ce contine elementele termenului liber B;
incarcarea in memorie sub forma unei matrici rare a elementelor
matricii A (in blocuri/totalitate);

incarcarea in memorie a elementelor vectorului de termeni liberi B
(Incarcarea se efectueaza partial)

se deruleaza calcule cu aceste informatii;

se obtine solutia sistemului de ecuatii si se memoreaza intr-un
fisier.

Problema se reduce la conversie de date organizate sub forma de
fisier In matrice/vector, respectiv conversie din matrice/vector in fisier.

In acest capitol nu sunt descrise toate combinatiile posibile de
conversii din doud motive: sunt lasate in grija cititorului sau acestea se pot
obtine combinand tipurile prezentate. De exemplu conversia unui graf in
vector se realizeaza combinand conversia graf - matrice si matrice - vector.

21.2 Conversie masiv unidimensional - lista simpla sau
lista dubla

Conversia unei structuri de tip masiv unidimensional in lista simpla
sau lista dublu inlantuita este operatia prin care se formeaza unul din cele
doud tipuri de liste cu elementele vectorului. Operatia consta in citirea
vectorului element dupa element si construirea dinamica a listei in mod
dinamic inserand la sfarsit noile elemente.

Avantajul operatiei consta in prelucrarea ulterioara a datelor care se
afla in lista, prelucrare care se face mai rapid si utilizand mai putine
resurse. In unele cazuri, elementele listelor nu trebuie sa continda numai
valorile vectorului, acest lucru fiind un avantaj, deoarece se adauga
informatii care sa usureze prelucrarea ulterioara, de exemplu un index.

Vector

|1|2|3|4|5|6|7| ‘Conversie

A R o R o N 1 O T G

Lista simplu inlantuita
Figura 21.1 Conversia unui vector in listd simplu inlantuita

Functia care transforma un vector intr-o lista simpla primeste ca
parametrii vectorul respectiv si dimensiunea sa. Se apeleaza functia
ajutatoare lista *inssf(lista *cap, int info), pentru a crea dinamic lista
simpla.

void vector_ to_lista(int v[10], int n)

{
for (int i=0; i<n; i++) l=inssf(1l,v[i]);

lista *inssf(lista *cap, int info)
{

lista *temp;

lista *nou=(lista*) malloc(sizeof (lista)); /*se alocd dinamic
spatiu pentru element*/

nou->info=info;

nou->next=NULL;

if (cap==NULL) return nou; /*dacd lista era wvidd, noul element
devine capdtul ei*/

temp=cap;

while (temp->next) temp=temp->next;
temp->next=nou;

return cap;

In celdlalt caz, transformarea vectorului intr-o listd dublu inl&ntuita,
se foloseste functia lista* vector_to_lista_dubla(int v[10], int n) care
returneaza capatul listei si primeste ca parametrii vectorul de transformat si
dimensiunea sa. Lista este construita dinamic direct in corpul acestei functii.

lista* vector_to_lista dubla(int v[10], int n)
{
listad *temp;
for (int i=0; i<n; i++)
{
listad *nou=(lista*) malloc(sizeof(lista)); /*se alocd dinamic
spatiu pentru element*/
nou->info=v[i];
nou->next=NULL;
if (cap==NULL) {nou->prev=NULL; cap= nou; temp = cap;}
nou->prev=temp;
temp->next=nou;
temp=nou;
}

return cap;

Vector

|1|2|3|4|5|6|7| ‘Conversie

NULL

I

Lol 2 s el Isif{le]|[[7]] nue

Listi dublu inlintuiti
Figura 21.2 Conversia unui vector in lista dublu inlantuita

Conversia in celdlalt sens consta doar in parcurgerea listei si
initializarea elementelor vectorului. Problema care se pune in acest caz este
alegerea modului de lucru. Ori se declara vectorul static cu un numar mai
mare de elemente decat al listei, din motive de risipa de spatiu si chiar de
incapacitate de realizarea a conversiei, daca lista are mai multe elemente,
sau se numara elementele listei si se aloca dinamic spatiu pentru vector.

21.3 Conversie masiv bidimensional - masiv
unidimensional

O mare aplicabilitate are si vectorizarea unei matrice sau conversia
acesteia la vector. Aceasta s-a concretizat prin functia void
matrice_to_vector(int a[30][30], int n, int m, int x[], int *k).

Aceasta functiei preia o matrice si o transforma intr-un vector de
n*m+2 componente. Traversarea matricei se face pe linii, deci in vector vor
fi regasite elementele matricei ca si cand am cap la cap fiecare linie.
Dimensiunea vectorului este cu doua componente mai mare decat numarul
de elemente ale matricei deoarece pe ultimele doua pozitii se pastreaza
numarul de linii, respectiv numarul de coloane ale matricei.

Este importanta pastrarea dimensiunilor matricei pentru o eventuala
operatie inversa, de la vector la matrice, sau pentru operatiile de adunare,
scadere, transpunere si inmultire cu matrice vectorizate.

Functia primeste urmatorii parametrii:

e inta[30][30] - parametru de intrare si reprezintda matricea care va fi
vectorizata;

e intn, m - parametrii de intrare; reprezinta dimensiunile matricei
a;

e int x[] - parametru de iesire si reprezinta vectorul in care va fi
transformata matricea a;

e int *k - parametru de iesire si reprezinta dimensiunea vectorului

x; transferul se face prin valoare.
Functia are urmatoarea structura:

void matrice_to_vector (int a[30][30], int n, int m, int x[], int *k)
{
int i,3;
*k=0;
for (i=0; i<n; i++)

for (j=0; j<m; Jj++)

{

x[*k]=al[il []];

(*k) ++;
}
x[*k]=n;
(*k) ++;
x[*k]=m;
*k=(n*m)+2;

}

Pentru a intelege mai bine algoritmul, se considera urmatorul masiv
de 3 linii si 3 coloane:

1 2 3
M=|4 5 6 (21.1)
7 8 9

In urma apeldrii functiei matrice_to_vector se obtine urmatorul
vector:

Vector rezultat

Figura 21.3 Vectorul rezultat prin conversie

Dupa cum se observa, apar doua componente diferite de elementele
matricei. Ele reprezinta dimensiunile matricei si vor intotdeauna memorate
pe ultimele doua pozitii din vector, de unde si dimensiunea 3*3+2
componente. Daca operatia nu se vrea a fi reversibila, atunci se renunta la
ultimele doua elemente ale vectorului.

21.4 Conversie lista simpla - fisier

Conversia unei liste simplu inlantuita intr-un fisier este echivalenta cu
scrierea elementelor listei intr-un fisier, el reprezentand la randul sau o
structura de date. Aceasta operatie este diferita de memorarea unei liste
intr-un fisier, pentru ca in acest caz se scriu in fisier si informatiile de
legatura dintre elementele listei.

Functia care transforma o lista intr-un fisier este void
lista_to_fisier(lista *cap) si are ca parametru de intrare adresa de inceput a
listei. Aceasta se parcurge si pentru fiecare element se scrie in fisier
informatia sa.

void lista to fisier(lista *cap)

{

FILE *f;

if ((f=fopen("elem.dat","wb"))==NULL)

{
printf ("\n Fisierul nu se poate deschide ");
exit(1l);

}

lista *temp=cap;

while (temp) fwrite (&temp->info, sizeof(temp->info) ,1, f£f);

temp=temp->next;

fclose (£) ;

}

Lista simplu inlantuita

) B) s Lsf) []] nuw

Conversie

Date aflate in fisier

1234567

Figura 21.4 Conversia unei liste simplu inlantuite in fisier

Luand lista cu elementele 1, 2, 3, 4, 5, 6, 7 si convertind-o in fisierul
elem.dat atunci acesta contine doar numerele intregi 1, 2, 3, 4, 5, 6, 7 si
are dimensiunea de 7 baiti.

21.5 Conversie fisier - lista simpla

Conversia unui fisier intr-o lista simplu inlantuita este echivalenta cu
crearea unei liste de elemente care sa contina datele din fisier. Aceasta
operatie este inversa conversiei lista - fisier.

Lista este creata dinamic, pe masura ce sunt citite elementele
fisierului. Functia intoarce adresa de inceput a listei.

lista * fisier to_lista()

{

FILE *f;

int i, temp;

lista *cap=NULL;

if ((f=fopen("elem.dat","rb"))==NULL)

{
printf ("\n Fisierul nu se poate deschide ");
exit(1l);

}

for (i=0; i<n; i++) fread(&temp,sizeof(temp),1,f);

cap=inssf (cap, temp) ;

fclose (f) ;

}

Lucrul cu structuri dinamice presupune operallia de creare a
structurii de date cu alocare dinamica si temporara de memorie, efectuarea
de prelucrari in condillii de performan[da crescuta, folosind elementele
structurii dinamice si, in final, incheierea lucrului cu structura dinamica,
insodlita de dealocarea de memorie, cu pierderea informaliei utile
rezultate din prelucrare.

Pentru a asigura conditiile continuarii ciclului de prelucrari este
necesar sa se salveze informallia utila din structura de date alocata dinamic
intr-un fisier.

Daca aplicallia utilizeaza liste simple sunt necesare apeluri pentru:

- copierea informaliei utile dintr-un fisier intr-o lista simpla, in
vederea prelucrarilor eficiente folosind procedurile
corespunzatoare operalliilor pe liste simple;

- salvarea informaliei utile din lista simpla alocata dinamic in fisier
la sfarsitul prelucrarilor corespunzatoare aplicalliei, asigurand in
acest fel condildiile de reluare a prelucrarilor in alte momente de
timp.

21.6 Conversie arbore binar - fisier

Conversia unui arbore binar intr-o alta structura de date de tip fisier,
consta in crearea unui fisier care sa contina informatia nodului arborelui. Ca
si in cazul conversiei lista - fisier, conversia nu insemna copierea sau
scrierea arborelui intr-un fisier, fapt care implica scrierea nodului
(informatia si legaturile catre celelalte noduri).

Arbore binar

Date aflate in fisier

)y 243567

Conversie

Figura 21.5 Conversia unui arbore binar in fisier

Rezultatul conversiei depinde in primul rand de modul in care este
traversat arborele. Cum exista trei moduri de parcurgere: preordine,
inordine si postordine si datele din fisier vor reflecta acest lucru.

Functia care realizeaza acest tip de conversie este void
arbore_binar_to_fisier(arbbin *rad). Ea primeste ca parametru de intrare
adresa nodului parinte a arborelui.

void arbore binar to fisier (arbbin *rad)

{

FILE *f;

if ((f=fopen("elem.dat","wb"))= =NULL) //se creeazd fisierul
{

printf ("\n Fisierul nu se poate deschide ");

exit(1l); //dacd nu se deschide figierul
}
if (rad)
{ //arborele se parcurge utilizdnd unul din cele 3 moduri

fwrite (&rad->info,1l,sizeof (rad->info) , fis);
arbore binar to_fisier (rad->ss);

arbore binar to_fisier (rad->sd);

//in acest caz, se parcurge in preordine

In exemplul din figura 21.5, arborele este traversat in preordine.

Problemele complexe presupun procese de cautare si regasire a
informaldiei dupa o cheie in care structura dinamica arbore binar se
dovedeste a fi deosebit de eficienta.

Probleme economice reale, care reflecta colectivitalli formate din
sute si mii de persoane, conduc la construirea unor arbori binari cu sute sau
mii de noduri, organizalli pe zeci de niveluri.

Informalia utilda din arborii binari, care este supusa prelucrarii
provine dintr-un fisier, iar la sfarsitul prelucrarilor, este necesara salvarea
acestei informaldii, de asemenea, intr-un fisier.

21.7 Conversie graf — matrice

Conversia unui graf intr-o matrice se defineste ca fiind operatia de
creare a matricei de adiacenta asociata grafului respectiv.

Figura 21.6 Graf orientat cu greutate si fara greutate

Acest tip de conversie este utilizat in cazul lucrului cu grafuri
reprezentate prin intermediul listelor de liste si nu au asociate matrice de
adiacenta. Un motiv al necesitatii conversiei graf - matrice este dat de
urmatorul fapt: in cazul grafului cu un numar de mic de noduri, matricea de
adiacenta ocupa un spatiu relativ mic si este mai usor de lucrat cu aceasta.

Functia primeste ca date de intrare pointer la capatul grafului si
construieste matricea de adiacenta asociata grafului. Codul sursa se
bazeaza pe logica faptului ca nodurile grafului sunt numerotate incepand cu
0. Daca de exemplu graful este compus din trei noduri notate cu 99, 100,
106, in final s-ar obtine o matrice de adiacenta cu 107 linii si 107 coloane.

void graf to matrice(nodgraf *cap)

{

nodgraf* p,*q;

int max,i,j;

int **matr;

if (cap==NULL) printf("\n Graful nu exista !'");

else
{

max=cap->info;

for (p=cap; p!=NULL; p=p->next) //se cautd nodul notat

{ //cu cel mai mare numdr de ordine

if (max<p->info) max=p->info;

}

matr=alocmatr (max+1l,max+1) ; /*se alocd dinamic memorie ptr.
Matrice*/

for (i=0; i<=max; i++)
for (j=0; j<=max; j++)
matr[i][j]=0; //se initializeazid elementele sale cu 0

//Matricea de adiacenta asociata grafului este:
for (p=cap; p!=NULL; p=p->next)
for (g=cap; q'!=NULL; g=g->next)
if (g->info!=p->info)
{
//dacd existd arc intre 2 noduri se gédseste
//valoarea arcului
matr[p->info] [g->info]=verif arc(p,q);

Functia int verif_arc(nodgraf *s, nodgraf *d) este apelata in interiorul
functiei precedente pentru a verifica daca exista arc intre doua noduri
indicate prin pointer si pentru a intoarce greutatea Iui in caz afirmativ. In
caz contrar functia returneaza valoarea 0. Astfel daca intre nodurile j si j

exista arcul cu greutatea g, atunci elementul matricei matr[ij[j] ia valoarea
g.

int verif arc(nodgraf *s,nodgraf *d)
{

arc * p,*aux;

int gasit=0;

for (p=s->capat; p!=NULL; p=p->next_arc)
if (p->destinatie==d) {
gasit=1;
aux=p;
return aux->weight; //intoarce greutatea arcului

}

if (gasit==0) {
return O;

}

else return aux->weight;

}

Functia int ** alocmatr(int n,int m), dupa cum s-a observat, este
folosita pentru a aloca dinamic spatiu matricei de adiacenta, ea intorcand un
pointer la matrice. Este un mod economic de a lucra cu matrice mai ales in
cazul in care nu se stie de la inceput dimensiunile ei.

int ** alocmatr(int n,int m)

{

int **x;

int i,3;

x=(int **)malloc(n * sizeof(int));

for (i=0;i<n;i++) x[i]=(int *)malloc(m * sizeof(int));
return x;

}

Matricele de adiacenta corespunzatoare grafurilor sunt :
0750 0110
loosl 21.2) A 21.3)
10003 <3 0001 '
0000 0000

Functia prezentata este folosita in cazul grafului cu greutate, dar
facand mici modificari ea este aplicata si grafului fara greutate. Aceste
modificari constau in schimbarea functiei verif_arc astfel incat sa intoarca
valoarea 1 daca exista arc intre cele doua noduri cercetate.

21.8 Omogenitatea prelucrarilor

Alegerea tipului de data este determinata de domeniul caruia apartin
nivelele consemnate pentru fiecare caracteristica la descrierea elementelor
unei multimi.

Daca de exemplu, pentru specificarea mediului din care provin
persoanele unui esantion se inregistreaza raspunsurile mediu rural sau
mediu urban, domeniul asociat celor doua nivele este format din elementele
Osil.D={0, 1}, unde:

e 0 - pentru mediul rural;
e 1 - pentru mediul urban.

Caracteristica aceasta se reprezinta pe un bit.

Pentru specificarea varstei persoanelor, domeniul este cuprins intre 0
si 130, Dy=[0,130]. Reprezentarea varstelor se efectueaza pe zone de
memorie de un bait, domeniul D = [0, 255], cu Dyc D. De asemenea,
numarul de copii aflati in ingrijirea unei persoane se reprezinta pe 5 biti,
domeniul caracteristicii numar_copii_fiind Dc=[0,31]. Aceleasi aprecieri se
efectueaza si in legatura cu alte caracteristici ale altor colectivitati.

Se obtine o diversitate de domenii, care in final determina
constituirea de structuri de tip articol, cu cd@mpuri neomogene.

Necesitatea omogenitatii apare in procesul prelucrarii.

Pentru calculul totalului unei facturi se utilizeaza membri definiti in
structura:

struct factura {
int numar;
struct data_emiterii dat;
struct rand y[10];
float total_tva;
double total;
} £

struct data_emiterii {
int ziua;
int luna;
int anul;

};

struct rand {
int nr_crt;
char denum[30];
char um[5];
int cantitate;
float pret unitar;
double pret;
int tva;
float tva_calculat;

float pret_vanzare;

};

Se construiesc expresiile:

f.y[i] .pret = f.y[i] .cantitate * f.y[i].pret unitar;

f.y[i] .tva_calculat = f.y[i].pret * f.y[i].tva / 100;

f.y[i] .pret_vanzare = f.y[i] .pret + f.y[i].tva calculat;

Campurile care intervin sunt neomogene. Astfel, cantitate are tipul
intreg, reprezentat pe 2 baiti. Campul pret _unitar este de tip float,
reprezentat pe 4 baiti. Rezultatul inmultirii, pret, este de tip double.

Pentru evaluarea acestei expresii se efectueaza conversiile din figura
21.7.

cantitate pret unitar

[[] L[T]

conversie Tntreg
spre float

L[T]

*

produsul cu
reprezentare
float

conversie float
spre double

pret ¥V
Lt ol

Figura 21.7 Omogenizarea expresiei de calcul pret.

Pentru obtinerea tva_calculat se face conversia din figura 21.8.

tva pret

N e (R O I O B R

conversie intreg
spre double

float
%

100

l conversie float
spre double

| A A I A O N

rezultat intermediar

conversie
double spre float

tva_calculat ¢

Figura 21.8 Conversii necesare obtinerii tva_calculat

Pentru calculul pret_vanzare se efectueaza conversiile din figura
21.9.

tva pret

conversie float
spre double

rezultat intermediar

conversie

ret_vanzare
Pret— double spre float

Figura 21.9 Conversii necesare calculului pret_vanzare

Daca toate datele se definesc cu acelasi tip, avand un nivel de
omogenitate maxim, de la incarcarea fisierelor se utilizeaza structura:

struct rand_omogen {

int nr_crt;

char denum[30];

char um[5];

double cantitate;
double pret unitar;
double pret;
double tva;

double tva calculat;

double pret:vanzare;

};

Fisierul FACTURI, avand initial articole de lungimea sizeof(struct
facturi), o data cu definirea masivului y[] prin struct rand_omogen y[10];
va avea articole de lungimea sizeof(struct factura_omogena), unde:

struct factura omogena {
int numar;

struct data_emiterii dat;
struct rand omogen y[10];
double total_ tva;

double total;

}g;

devenind fisierul FACTURI_OMO.

Daca se considera un numar n de facturi, prelucrarile din fisierul
FACTURI_OMO nu necesita conversii datorita omogenitatii datelor, in timp
ce prin utilizarea fisierului FACTURI sunt necesare conversiile:
intreg (cantitate) spre float;
float (rezultat) spre double (pret);
intreg (tva) spre double;
constanta float (100) spre double;
double (rezultat) spre float (tva_calculat);
float (tva_calculat) spre double;
double (rezultat) spre float (pret_vanzare);
pentru ﬂecare articol prelucrat, deci un total de 7*n conversii.

Apare problema luarii unei decizii in legatura, pe de o parte pentru a
economisi spatiul de memorie cu:

y N U A wWN =

G=|1-— sizeof (factura) 100 (21.4)
sizeof (factura _omogena)

dar in schimb cu un volum de 7*n conversii, iar pe de altda parte, fara
economie de spatiu pe suport, fisierul FACTURI_OMO avand
n*sizeof(factura_omogena) baiti si prelucrarile necesitand zero conversii.

21.9 Resursele conversiilor

Se considera doua alfabete A si B, A= {a;, az, ...,.a, }, B= {b;, b,
.,bm }, unde a; reprezinta simbolul i al alfabetului A, iar b; simbolul j al
alfabetului B. Alfabetul A are n simboluri si alfabetul B are m simboluri.

Cu alfabetul A se construiesc cuvinte, alcatuindu-se vocabularul V,,
cu simbolurile alfabetului B se alcatuiesc cuvinte care formeaza vocabularul
Vs. Fiecare cuvant are o lungime data de numarul simbolurilor din care
este alcatuit.

Se numeste algoritm de conversie succesiunea de prelucrari care
pornind de la un cuvant xeV, conduce la obtinerea cuvantului yeVs si
succesiunea de prelucrari care pornind de la cuvantul yeVs conduce la
obtinerea cuvantului xeV,.

Cand cuvintele x si y se reprezinta sub forma unor configuratii de biti,
lungimile cuvintelor ca numar de biti sunt /g(x) si, respectiv, Ig(y).

In acest fel se realizeaza legarea cuvintelor de zone de memorie, iar
algoritmii de conversie de restrictiile acestei resurse, respectiv zona de
memorie.

Definitiile care antreneaza ca resurse alfabete, zone de memorie si
seturi de prelucrari dau o maxima generalitate conversiilor.

Procesul de compresie de date este un caz particular de conversie, in
care singurul obiectiv urmarit este ca pornind de la un alfabet A sa se
construiasca un alfabet W bazat pe particularitati de construire a cuvintelor
din vocabularul V, astfel incat, pentru orice cuvant xeV, sa se obtina un
cuvant yeVy asa fel incat Ig(x) >> Ig(y).

Algoritmul de compresie este operational daca este posibila
construirea si a algoritmului de decompresie care permite ca pornind de la
cuvantul y eVy sa se obtina cuvantul xeV,.

In cazul in care cuvantul x este chiar fisierul insusi, y devine fisierul
compresat.

Manipularea zonelor de memorie impune gestionarea parametrului de
definire a acesteia, lungimea, ca numar de baiti.

Conversie de lungime

Fie un cuvant xeV, si Ig(x) = k biti.

Daca se defineste o zona de memorie Z avand m biti, m > k, se pune
problema memorarii cuvantului x in Z.

Instructiunile de atribuire sau de transfer din limbajele evoluate
realizeaza conversiile in diferite moduri.

Daca in limbajul COBOL era definit:

77 x1 PIC 9(5) VALUE 12345.
77 x2 PIC 9(7).

instructiunea:

MOVE x1 TO x2

realizeaza conversia de lungime cu generare de zerouri in partea stanga a
configuratiei initiale de biti, figura 21.10:

x1

x2

O [0 |1 |2 |3 [4 |5

generat
Figura 21.10 Conversie pe lungime date numerice zecimal despachetat
In cazul in care tipul de dat3 este alfanumeric la conversia de lungime

se genereaza configuratia de biti asociata caracterului spatiu 32h.
Pentru definirea in limbajul COBOL:

77 yl PIC X(4) VALUE 'ABCD'.
77 y2 PIC X(7).

instructiunea:

MOVE yl TO y2
conduce la obtinerea configuratiei de biti din figura 21.11:

yl
A [B [c |D |

y2
lalB |c [p] | [|

Figura 21.11 Conversie pe lungime sir de alfanumerice
Conversia numerica

Cele mai frecvente conversii sunt cele numerice.
Se considera urmatoarele tipuri de date:

intreg

virgula mobila simpla precizie
virguld mobila dubla precizie
zecimal impachetat

zecimal despachetat
caractere numerice
hexazecimal

Pentru toate numerele exista o reprezentare sub forma de
configuratie de biti. Reprezentarea unui numar in zone de memorie este
data in tabelul 21.1.

Tabelul nr. 21.1 Reprezentarea valorilor numerice

Valori 25 -25 1 -1 0
Tip
intreg 0019 FFE7 0001 FFFF 0000
virgula 00000000
mobila
simpla
precizie
virgula 000000000
mobila dubla 0000000
precizie
zecimal 0205 S0205 01 So1 00
impachetat
zecimal 0025 S0025 01 S01 00
despachetat
caractere 3235 2D3235 31 2D31 30
numerice

De la tastatura de introduc in zonele de memorie siruri de caractere.
Functiile de I/E realizeaza conversii. In acest scop se folosesc descriptori.
Astfel, descriptorul %d realizeaza conversia de la sir numeric-caracter spre
intreg binar.

Descriptorul %f activeaza realizarea conversiei de la sir de caractere
numerice spre tipul float.

Pentru realizarea conversiei unui sir de simboluri cifrice intr-un intreg
binar este utilizata functia:

int atoi(char sir[])

{

int i,numar,semn;

for (i=0;sir[i]<'0' || sir[i] >'9' ||
sir[i]!'="-" || sir[i]!='+';i++);
if (sir[i]=='-"') { semn=-1; i++;}

if(sir[i]=="+"') { semn=l; i++;}
for (numar=0; sir[i]>='0' && sir[i]<='9'; i++)
numar=numar*10+ (sir[i]-"'0");
numar*=semn;
return numar;

}

Pentru conversia de la intreg binar spre sir de simboluri numerice
este folosita functia:

itoa(int numar,char sir[])
{
int i, j, semn, lungime, carc;
if (n<0) {
semn=-1;
numar=-numar;

i=0;
do
{
sir[i++]=numar%d+'0"';
}
while ((n/10)>0);
if (semn <0) sir[i++]='-";
else sir[i++]="+"';
sir[i]="\0";
lungime=strlen(sir)-1;
for (i=0, j=lungime; i<j; i++, j--)
{
carc=sir[i];
sir[i]=sir[]j];
sir[j]=carc;

Exista o diversitate de functii pentru conversie.

Ipotezele de lucru pentru realizarea conversiei si ceea ce returneaza
reprezinta un aspect esential. Astfel, pentru conversia unui sir de simboluri
numerice se considera sirul declarat prin:

char sir[];

a carui lungime trebuie impusa sa nu depaseasca k pozitii.
Daca este vorba de o conversie de la sir de simboluri numerice spre
intregul binar numar, definit pe cuvant si -32768 < cont(numar) < 32767,

sirul de tip char trebuie sa continda secvente de simboluri numerice care sa
nu depaseasca lungimea 5.

sir[]

!9! !2! !4! !a! !b! !C! !4! !2! !9! !X! !8! !1! !\0

Figura 21.12 Secvente de simboluri numerice

Traversarea de la stanga la dreapta a masivului unidimensional
permite extragerea simbolurilor 9, 2, 4 si constituirea numarului intreg 924
in reprezentarea binara din zona de memorie asociata variabilei x.

Delimitatorul de sfarsit al secventei este un caracter diferit de simbol
cifric.

De asemenea, poate fi interpretat delimitator de sfarsit de secventa
insusi delimitatorul de sfarsit de sir \0".

Functia initializeaza cu zero variabila y in cazul in care sirul are
structura data in figura 21.13.

sirf]

00 | 00

Figura 21.13 Initializarea cu zero in cazul secventei vide
de simboluri cifrice

Se introduce o ambiguitate, in ceea ce priveste imposibilitatea de a
face o conversie si cazul real in care secventa contine o succesiune de
simboluri de 0.

Lipsa testelor privind simbolurile cifrice si lungimea secventei face
imposibila introducerea in limitele specifice tipului int.

Este utila construirea functiei de evaluare a lungimii secventei
consecutive de simboluri numerice nstrlen().

int nstrlen (char sir[])
{
int i,k;
i=k=0;
while (sir[i+1]'='\0")
{
if(sir[i]>='0"' && sir[i]<='9' &&
(sir[i+1]>='0"' && sir[i+1]<='9"))
k++;
i++;
}
return ((k) ? k++ : k);
}

Functia returneaza lungimea secventei de simboluri cifrice si se
utilizeaza pentru testarea din interiorul functiei atoi():

if (nstrlen(sir)>4) return O;

if (nstrlen(sir)==4 && sir[i]-'0'>3) return O;
if (nstrlen(sir)==4 && sir[i]-'0'>2) return O;
if (nstrlen(sir)==4 && sir[i]-'0'>7) return O;
if (nstrlen(sir)==4 && sir[i]-'0'>6) return O;
if (nstrlen(sir)==4 && sir[i]-'0'>7) return O;

Conversia incepe numai dupa ce s-a efectuat incadrarea intre limitele
domeniului asociat tipului int, respectov [-32768, 32767].

In acest caz, functia nu returneaza si o informatie privind modul in
care s-a efectuat conversia.

Este de dorit sa se construiasca functii de conversie care sa ofere mai
multe informatii, mai ales ca functiile nu sunt apelate oricum.

Astfel, este posibila identificarea urmatoarelor situatii:

- secventa vida de simboluri cifrice;

- secventa de simboluri cifrice mai mare ca 4;

— secventa de 4 simboluri cifrice care prin conversie conduce la o

valoare din afara intervalului [-32768, 32767].

Procedura care efectueaza conversia de la sir de simboluri cifrice,

sir[] spre tipul zecimal despachetat in sirul upk[], este:

int atoupk(char sir[],char upk[])
{
int i;
i=0;
while(sir[i]!'="'\0")
{
upk[i] = sir[i] - '0';
it++;
}
upk[i]="*";
return i;

}

Functia returneaza lungimea sirului convertit.
Functia care efectueaza conversia numarului zecimal despachetat
spre sir de simboluri cifrice este:

int upktoa(char upk[],char sir[])
{
int i;
i=0;
while (upk[i]!'="*")
{
sir[i]=upk[i]+'0"';
i++;

}
sir[i]="'\O0"';
return i;

}

S-a ales delimitatorul de sfarsit al numarului zecimal despachetat
caracterul '*' pentru a nu se denatura conversia din cauza coincidentei

caracterului '\0' cu zero binar.
Functia care efectueaza conversia unui sir de simboluri cifrice intr-un

numar zecimal impachetat este:

int atopk(char sir[],char pk[])
{
int i k;
k=i=0;
while(sir[i]!="'\0")
{
pklk]=sir[i]-'0";
if(sir[i+1]'="\0")

pkl[k]l<<4;
pk[k] |=sir[i+1]-'0";
k++;
i++;
}
}
return k;

}

Masivul unidimensional sir[] trebuie sa contina in mod obligatoriu
simboluri cifrice pentru ca rezultatul conversiei sa fie corect. Pentru sirul ‘A2

B4F8\0' se va obtine prin conversie sirul:

pk[0]=0xA2

pk[0]=0x20 prin pk[0]<<4

pk[0]=0xA4 prin 0xB4-0x30=0x84
0x84+0x20=0xA4.

O ameliorare consta in operarea cu masca 0x0F, functia devenind:

int atopk(char sir[],char pk[])
{
int i,k;
k=i=0;
while(sir[i]'="'\0")
{
pPkl[k]=sir[i] &0xO0F;
if(sir[i+1]!'="\0")
{
pklk]<<4;
pk[k] |=sir[i+1] &0xO0F;

k++;
i++;

}

return k;

}

Puterea unor limbaje de programare este data in primul rand de
diversitatea de tipuri de date si de diversitatea conversiilor acceptate.

Cand se prezintd limbajele este necesara definirea tabelelor de
conversie, de forma tabelului 21.2.

Tabelul nr. 21.2 Conversii posibile

TIP | Tip, | Tip2 vee | Tipj| v | Tipk | o | Tipn
Tip,

Tip

Tip: D N

Tipn

Simbolul D arata ca este permisa conversia de la tipul Tip; la tipul de
datd Tip;. Simbolul N arata cd nu este permisa conversia de la tipul de data
Tip; la tipul de data Tipy.

Conversia matricelor

Matricele in care un numar important de elemente, peste 70%, sunt
nule, necesita un alt fel de stocare.

O posibilitate de conversie a matricelor revine la a considera o
matrice A rara incarcatda in memorie si de a trece de la aceasta la o lista
simpla ale carei elemente contin numai informatii care prezinta valori
nenule.

Daca se considera o matrice de mari dimensiuni cu m linii si n
coloane, mai intai aceasta este stocata in fisierul F, dupa care programul de
conversie realizeaza citirea de date din fisier si transpunerea acestora intr-
una din forme de prezentare in memorie a matricei de mari dimensiuni,
figura 21.14.

|Iinia0 ‘ finia 1 ‘ Iinia2| |Iiniam-1‘

CITIRE FISIER

v

a[0][e] aloqi1] a[0][2] a[t]n-1]

aptel | appy | a2 | .. a[1]n-1]

a[m-11[01| alm-1][1]] alm-11[2]| .. alm-1][n-1]

Figura 21.14 Conversia fisier-matrice

Pentru conversia matricei sub forma de fisier, figura 21.15, trebuie
specificat modul in care sunt preluate elementele matricei, fie linie de linie,
fie coloana de coloana.

MATRICE
linia ©
CONVERSIE FISIER
linia 1
—[}- SCRIEREE IH FISIER —& |Iinia0 | linia 1 | linia 2 ‘ |Iiniam-1|
linia m-1

Figura 21.15 Conversia matrice-fisier

Problemele de optimizare, probleme de calcule ingineresti complexe,
presupun lucrul cu matrice de dimensiuni mari, matrice pentru care trebuie
asigurata completitudinea si corectitudinea datelor.

Exista foarte mari riscuri legate de procesul de asigurare a calitaldii
coninutului unei matrice, fapt pentru care incarcarea elementelor matricei
si verificarea acestora trebuie sa respecte reguli stricte de management a
conUinutului.

Matricea incarcata in memoria interna este supusa prelucrarilor,
obOinandu-se o noua matrice sau valori agregate.

Este necesar ca matricele complete si corecte sa fie salvate in fisier.

Fisierele care conldin matrice sunt folosite pentru a incarca matricea
in memorie in vederea utilizarii acestei proceduri de prelucrare.

Conversia listelor simple si duble
In cazul in care se doreste conversia de la structurd de tip listd simplu

inlantuita, la cea de tip lista dublu inlantuita, se parcurg nodurile listei si se
copiaza informatia utila in nodurile listei duble, figura 21.16.

CAP LISTA SIMPLU INHLAHTINTA

CONVERSIE LA
LISTA DUBLA

CAP ¢
uﬁ_Li]I 4] HULL

LISTA DUBLY INLANTWINITA

Figura 21.16 Conversia lista simplu inlantuita- lista dublu inlantuita

Pentru lista simplu inlantuita definita mai jos:

struct lista_simpla

{
float info;
lista_simpla* next;

};

se va implementa o procedura de conversie in lista dublu inlantuita, cu
urmatoarea structura:

struct lista_dubla

{
float info;
lista_dubla *prev, *next;

};

Daca se considera structurile de date S;, S,, .., Sy problema
conversiei revine la a scrie proceduri de reprezentare a informalliei utile din
structura S; intr-o structura S;.

Procedura are rolul de a crea si inildializa variabile pointer care sa
ajute la traversarea corecta in structura S; folosind reguli deja definite
pentru structura S;.

Sunt necesare n*n-n proceduri, intrucat conversia de la S; la S; nu se
justifica.

Daca se considera o structura de baza S, si se doreste conversia de la
structura S; la structura S; prin intermediul structurii de baza, se vor scrie n-
1 proceduri de conversie de la structura S; la structura Sy, respectiv, tot n-1
proceduri de conversie de la structura Sy la structura S;. In total, vor fi
necesare 2(n-1) proceduri de conversie, si nu n*n-n.

Conversia listei simple spre arbore binar se implementeaza folosind o
procedura care copiaza informallia utila a elementului din lista simpla in
partea destinata informalliei utile din nodul arborelui binar. Variabilele
pointer ale arborelui binar se inilializeaza la construirea acestuia, astfel
incat sa se asigure traversarea corecta a nodurilor.

Variabila pointer din lista simpla nu este preluata in arborele binar
datorita volatilitadii procesului de alocare dinamica a memoriei, nefiind
utilizabil la o conversie de la arborele binar spre lista simpla.

Pentru conversia listei duble in lista simpla, se utilizeaza procedura
care:

- traverseaza lista dubl3;

- creeaza un element al listei simple;

- asigura legatura cu elementul precedent al listei simple;

- copiaza informalia utila din elementul listei duble in elementul

creat al listei simple;

- asigura iniOializarea variabilei pointer de legatura;

- reia procesul.

Pentru conversia listei duble in fisier este necesar ca procedura sa
realizeze:

- traversarea listei duble;

- preluarea informaOliei utile din lista dubla in articolul fisierului;

- scrierea articolului in fisier;

- reluarea procesului pana la incheierea procesului de traversare.

Conversia listei duble in arbore binar consta in:

- traversarea listei duble;

- crearea unui nod din arborele binar prin alocare dinamica de

memorie;

- asigurarea legaturii cu nodul parinte;

- copierea informalliei utile din lista dubla in zona de memorie

aferenta nodului creat;

- reluarea procesului de traversare a listei duble pana la epuizarea

elementelor acesteia.

Conversia de fisiere

In cazul in care existd doud sisteme de operare S; si S, avem
algoritmi de conversie pentru tipurile de date diferite, moduri diferite de
gestionare a pozilliei semnelor, a mantisei, a caracteristicii, lungimi diferite
ale cuvintelor si modalitaldi specifice de construire a etichetelor, a
delimitatorilor de articole.

Fiecare suport tehnic de stocare a fisierelor are caracteristicile sale.

Conversia de suport revine la a realiza un fisier F, pe suportul X
pornind de la fisierul F; aflat pe suportul Y. Astfel de probleme apar la
trecerile spre noi generatii de purtatori tehnici de informalie.

Recensamintele anilor ‘70 au fost realizate cu generallia a III-a de
calculatoare, iar fisierele care conlin fondul de date se afla pe benzi
magnetice. Filosofia noilor calculatoare impune o alta abordare. Pentru a
efectua comparallii, ori se reintroduc datele din documentele primare, daca
mai exista, ori se face conversie fisiere, de suport.

Pornind de la structura fisierelor pe banda magnetica, de la
reprezentarea informalliei pentru generalliile de calculatoare din anii 70,
se vor scrie programe care sa converteasca aceste fisiere.

Un alt mod de a privi conversia de fisiere consta in elaborarea unui
program care are ca intrare un figier F; realizat pentru a efectua anumite
prelucrari si a prelua din fisier anumite articole, anumite cadmpuri, a le
modifica asa incat sa se obldina la iesire un fisier F,. Fisierul F, este fisier de
intrare pentru un program care efectueaza prelucrari.

Situaldia este des intalnita. Fisiere realizate in FoxPro trebuie
prelucrate in programe C++.
Pentru conversia de fisiere, sistemul FoxPro dispune de comanda
IMPORT FROM.
Se considera un program care efectueaza calcule de salarii. Fisierul
de intrare conOine:
— numarul de intervale pentru diferentierea procentului de
impozitare: int n; 0<n<20;
— limitele superioare ale intervalelor: float x[20];
— articolele fisierului ce contin date despre salariati, avand
structura:

struct salariat {
int marca;
char nume[30];
int varsta;
int timp;
float salariu_orar;
float retineri;
float sporuri;

};

Fisierul initial contine numai articole cu date ale salariatilor construite
dupa structura:

struct sal {
int marca;
char nume[20];
int timp_ lucrat;
int salariu_orar;

int retineri;

};

Lipsesc campurile vérsta si sporuri.

La conversia de fisiere nu se realizeazd completarea cu valori
campurilor, ci se aloca numai spatiu, eventual initializat cu zero. Procedurile
de conversie efectueaza trecerea de la structura articolului sa/ la structura
articolului salariat, figura 21.17:

marca nume timp_lucrat salariu_orar retineri

marca nume varsta timp salariu orar retineri sporuri

Sa

salariat 0 v v v 0

Figura 21.17 Conversia de structura a articolelor unui fisier

Programul C++ care efectueaza conversia acestor fisiere este :

#include <stdio.h>
#include <string.h>

struct salariat {
int marca;
char nume[30];
int varsta;
int timp;
float salariu_orar;
float retineri;
float sporuri;

};

struct sal {
int marca;
char nume[20];
int timp lucrat;
int salariu orar;
int retineri;

};

void main ()

{
sal S1;
salariat S2;
FILE *pfl,*pf2;
pfl=fopen("sal.dat","rb") ;
pf2=fopen("salariat.dat","wb") ;
S2.varsta=0;
for (int i=20; i<30; i++)

S2.nume[i]=" ';

while (fread (&S1,sizeof (struct sal),1,pfl))

S2 .marca=S1l.marca;
strncpy (S2.nume, S1.nume, 20) ;
S2.timp=Sl.timp_ lucrat;
S2.salariu orar=Sl.salariu orar;
S2.retineri=Sl.retineri;
fwrite (&S2,sizeof (struct salariat),1,pf2);
}
fclose (pfl) ;
fclose (p£f2) ;
}

Pentru a reduce volumul conversiilor in timpul executiei programelor
se efectueaza conversia de campuri in fisiere.

Se considera seriile de timp T;, T, T3, T4 avand n termeni. Un articol
din fisierul F; care le descrie are forma:

struct articol {
int anul;
int t1;
float t2;
int t3;
float t4;

Pentru calculul valorilor medii ale celor patru serii se impun conversii.
Cel mai simplu este sa se efectueze conversiile campurilor din articole,
ajungandu-se la structura:

struct art {
int anul;
float t[4]:;
};

In loc de efectua prelucrérile cu doud functii din programul:

#include <stdio.h>
#define N 10

struct articol {
int anul;
int t1;
float t2;
int t3;
float t4;
};

float media (int x[], int n)
{
int s=0;
for(int i=0; i<n; i++)
s+=x[1i];
return (float)s/n;

}

float media(float x[], int n)
{
float s=0.0;
for (int i=0; i<n; i++)
s+=x[1i];
return s/n;

}

void main ()
{
float medii[4];
int T1[N],T3[N];
float T2[N],T4[N];
articol A;
FILE *pf;
pf=fopen ("serii.dat","rb") ;
for (int i=0;i<N;i++)
{
fread (&A,sizeof (struct articol),1,pf);
Tl[i]=A.tl;
T2[i]=A.t2;
T3[i]=A.t3;
T4[i]=A.t4;
}
fclose (pf) ;
medii[0]=media (T1l,N) ;
medii[l]=media(T2,N);
medii[2]=media (T3,N) ;

medii[3]=media (T4,N) ;
for (i=0;i<4;i++)
printf ("\n media seriei %d este %f",i+l,medii[i]);

}

se va efectua aceeasi prelucrare cu programul:

#include <stdio.h>
#define N 10

struct art {
int anul;
float t[4];
};

float media(float x[], int n)

{

float s=0.0;

for (int i=0; i<n; i++)
s+=x[1i];

return s/n;

}

void main ()
{
float medii[4];
float T[4][N];
art Al;
FILE *pf;
pf=fopen("seriil.dat","rb") ;
for (int i=0; i<N; i++)
{
fread (&Al,sizeof (struct art),1,pf);
T[O0][i]=A1l.t[i];
T[1][i]l=A1l.t[i];
T[2][i]=A1l.t[i];
T[3][i]=A1l.t[i];
}
fclose (pf) ;
for (i=0; i<4; i++)
{
medii[i]=media(T[i],6 N);
printf ("\n media seriei %d este %f",i+l,mediil[i]);

A in limbajul C++ delimitatorul de sfarsit de sir de caractere este '\0".
In limbajul Pascal un sir este structurat printr-un bait ce contine numarul de
pozitii urmat de sirul propriu-zis de lungimea indicata.

Conversia fisierului F; realizat in C++ la fisierul F, realizat in Pascal
presupune:

— alocare un bait;

— copierea sirului din F; in F, cu contorizarea in variabila x a

caracterelor;

— la aparitia '\0’ se pune in baitul alocat valoarea contorului x.

Conversia fisierului F, Pascal in fisierul F; C++ presupune :

— preluarea in variabila x a lungimii sirului;

— copierea unui numar de caractere cat arati contorul x din fisierul
F> in fisierul F;;

- inserarea in F; in continuare a simbolului '\0” pentru a marca
sfarsitul fisierului.

Programul este:

#include <stdio.h>

void main()
{
char c,x;
int i=0;
FILE *pfl,*pf2;
pfl=fopen (“F2.txt”,"”r”);
pf2=fopen (“F1.txt”,"w”);
x=fgetc (pfl) ;
while (i<x)
{
c=getc (pfl) ;
putc (c,pf2);
i++;
}
putc (‘\0’ ,p£f2) ;
fclose (pfl) ;
fclose (p£f2) ;
}

	21.2 Conversie masiv unidimensional – listă simplă sau listă dublă
	21.6 Conversie arbore binar – fişier

