
23. COMPACTAREA DATELOR

23.1 Parametrii stocării datelor

Volumul datelor este dat în mai multe feluri. Pentru o colectivitate ale

cărei indivizi se descriu cu acelaşi şablon, volumul informaţiilor este prezent
prin numărul indivizilor. Avem o imagine suficient de clară, despre un fişier
care conţine informaţii referitoare la 30.000 persoane sau despre o matrice
are 50 linii şi 80 coloane, din punct de vedere al volumului de date.

Pentru o mai bună precizare, se vor lua în considerare:
 N - numărul de indivizi ai colectivităţii;
 L - lungimea structurii de date asociate unui individ;
 B - factorul de blocare;
 R - lungimea informaţiilor reziduale;

Volumul de date V este dat de relaţia:

V = f (N * L, B) + g(R) (23.1)

unde f şi g sunt forme analitice ale dependenţei dintre factorii consideraţi,
forme ce se determină pentru tipuri de suport extern de date, în mod
corespunzător.

Volumul de date astfel calculat este exprimat în număr de baiţi.
Documentaţiile tehnice consemnează capacitatea de memorare pentru
fiecare tip de suport extern, ca număr maxim de baiţi.

Fie suportul extern i, având capacitatea Ci. Raportul:

100
C

V
p

i
i 

 (23.2)

reprezintă ponderea pe care o au datele memorate în volumul V, faţă de
capacitatea suportului.

De exemplu, pentru un suport de 1200 ko capacitate, un fişier care
ocupă 400 ko, ocupă 33% din suport.

Dacă un programator trebuie să stocheze informaţii pe un suport de
capacitate Ci, sub forma unor volume V1, V2, . . . , Vn, el stochează numai k
volume, întrucât:





k

1j
ij CV (23.3)

Apare însă problema existenţei unei diferenţe, care descrie funcţia

obiectiv:





k

1j
ji VC[min]

(23.4)

a unui model de optimizare a combinaţiei de volume, care să conducă la
acest obiectiv.

De exemplu, se consideră:

Ci = 1000, V1 = 200, V2 = 500, V3 = 400, V4 = 300 (23.5)

Se calculează sumele:

S1 = V1 + V2 + V3 + V4 = 1400 > Ci (23.6)
S2 = 200 + 500 + 400 = 1100 > Ci (23.7)
S3 = 200 + 500 + 300 = 1000 = Ci (23.8)
S4 = 500 + 400 = 900 < Ci (23.9)
S5 = 500 + 400 + 300 = 1200 > Ci (23.10)
S6 = 200 + 500 = 700 < Ci (23.11)
S7 = 500 + 300 = 800 < Ci (23.12)
S8 = 200 + 300 = 500 < Ci (23.13)
S9 = 200 + 400 = 600 < Ci (23.14)
S10 = 400 + 300 = 700 < Ci (23.15)

Din toate combinaţiile, S3 reprezintă varianta care conduce la o bună

umplere a capacităţii cu date.
Apar deci ca parametri de descriere ai utilizării unui suport, următorii:
- gradul de ocupare;
- numărul de fişiere;
- volumul de informaţii stocat în fişier exprimat prin intermediul

numărului de indivizi pentru care se face stocarea sau numărul de
cuvinte, depinzând de unităţile de măsură, de natura fişierelor.

Problema maximizării, apare pentru:
- creşterea gradului de umplere;
- creşterea numărului de fişiere ce se stochează;
- creşterea volumului de informaţii.
Există modalităţi specifice, care vin să amelioreze unul sau altul

dintre parametrii consideraţi, ceea ce influenţează însă asupra tuturor
parametrilor, este compactarea datelor.

Prin compactarea datelor, înţelegem totalitatea metodelor care
conduc la reducerea lungimii exprimate în baiţi, a datelor. Fiind dată o
mulţime de cuvinte:

A = {a1, a2, . . an}, de lungime l1, l2 , . . . ln (23.16)

compactarea datelor revine la a găsi funcţiile:

f : A  K şi g : K  A (23.17)

unde:

k = { k1, k2, . . . , km} (23.18)

este mulţimea cuvintelor compactate, aşa fel încât există o pereche (i, j),
pentru care:

kj = f (ai) (23.19)
ai = g (kj) (23.20)

Funcţia f() se numeşte funcţie de compactare, iar funcţia g() este
funcţia de decompactare.

Deci, orice metodă de compactare este complet definită, dacă s-a
identificat şi modalitatea de a reduce setul de date în forma iniţială, prin
decompactare.

Pentru perechea (i , j):

lg(kj) < lg (ai) (23.21)

Rezultă că efectul compactării, pentru un text format din cuvintele:

a1 a2 a3 a3 a3 a3 (23.22)

de lungime iniţială:

L1 = 1g(a1 a2 a3 a3 a3 a3 a3) = 1g (a1) + 1g (a2) + 4*1g (a3) (23.23)

prin compactare este transformat în textul:

k1 k2 k3 k3 k3 k3 (23.24)

de lungime:

L2 = 1g (k1) + 1g (k2) + 4*1g (k3) (23.25)

cu indicile de eficienţă a compactării:

100
L

L-L
 p

1

21  (23.26)

23.2 Compactarea la nivel de caracter

Sistemele de coduri asociate caracterelor pornesc de la următoarele

aspecte:
- mulţimea caracterelor ce sunt reprezentate este finită; de

exemplu, codul ASCII permite reprezentarea unei mulţimi de
caractere formate din 256 elemente;

- lungimea exprimată în biţi a unui element al mulţimii, este
constantă; codul ASCII asociat unui caracter are 8 biţi.

Pentru un şir de n biţi, se asociază o mulţime formată din 2n
elemente distincte, ce sunt puse în corespondenţă cu simboluri sau cuvinte,
ale unei mulţimi cunoscute.

Vom considera un roman, în care apar numai litere mici şi litere mari,
semne de punctuaţie, separatorul blanc şi liniuţa corespunzătoare semnului
de dialog.

Analiza textului ce formează romanul, pune în evidenţă următoarele
aspecte:

- dintre literele mari sunt utilizate 15;
- dintre literele mici sunt utilizate 24;
- semnele de punctuaţie cu liniuţa de dialog, sunt în număr de 8.

Alfabetul nou cu care operăm, este format din 24+15+8 = 47
simboluri. Fiecare simbol are reprezentare pe 6 biţi, întrucât cel mai mic
număr natural pentru care 2n > 47 este n = 6.

Se vor pune în corespondenţă cele 47 de caractere, cu coduri de câte
6 biţi şi textul romanului care avea o lungime iniţială Li:

Li = 8 * m (23.27)

unde m reprezintă numărul de caractere al textului.

După compactarea la nivel de caracter, textul compactat are o
lungime finală Lf:

Lf = 6 * m (23.28)

Indicele de eficienţă al acestei compactări este:

%25100
L

L-L
p

f

fi  (23.29)

Decompactarea, presupune interpretarea succesiunilor de 6 biţi şi

înlocuirea lor cu caractere ASCII corespunzătoare din stiva caracterelor
utilizate în text.

23.3 Compactarea la nivel de cuvânt

Prin analiza textului, înţelegem construirea unei stive a cuvintelor

diferite din text şi înregistrarea frecvenţei lor de apariţie.
Dacă menţinând codul ASCII pentru caracterele uzuale ale textului,

punem în corespondenţă cuvintele având frecvenţele cele mai mari C1, C2, .
. ., Ck, cu coduri asociate unor caractere ce nu apar în text, indicile de
eficienţă al compactării este:

100*
L

f)1g(c*f-L

p
i

k

1j

k

1j
jjii  

 


 (23.30)

Dacă stiva cu cuvintele definite C1, C2, . . ., Ck, având frecvenţe

ridicate f1, f2, . . ., fk, este suficient de mare, şi mulţimea G a simbolurilor
neutilizate în text, este insuficientă, este necesară construirea cuvintelor g1,
g2, . . ., gk formate din 1, 2, . . ., ng simboluri neutilizate, atunci
performanţa compactării este:

100*
L

)]1g)[1g(C*f-L

p
i

k

1j
jjji 




 (23.31)

Decompactarea revine la a înlocui cuvintele gj din text, cu cuvintele

cj, întrucât atât algoritmul de compactare cât şi cel de decompactare
presupun existenţa stivei cuvintelor diferite ale textului iniţial şi cuvintele

din mulţimea {g1, g2, . . ., gk}, a cuvintelor formate din simboluri
neutilizate în text.

23.4 Compactarea prin analiza caracteristicilor textului

Vom exemplifica modul de analiză al unui text, folosind reprezentarea

în memorie a tabelului de mai jos ce trebuie imprimat:

Tabelul nr. 23.1 Situaţia materialelor

5

30

15

NR.
CRT.

DENUMIRE VALOARE

0 1 2
1 CUIE 100
2 TABLA 200
3 VAR 600

 TOTAL 900

Pentru memorarea acestui tabel, se defineşte un articol de 74 baiţi şi

în fişierul TABEL.DAT, vor fi memorate 20 de rânduri, incluzând şi blancurile
dintre antet şi capul de tabel. În fişierul TABEL.DAT vor fi ocupaţi
20*74=1480 baiţi cu acest tabel.

Prin convenţie, întrucât asteriscul nu este utilizat, în continuare este
folosit ca separator, iar două asteriscuri consecutive au semnificaţia de CR.

27 30b*SITUATIA MATERIALELOR
23 30b*22 - **74b**10b*
27 54 = **10b*!*5b!*30b*!*15b**
60 10b*! NR. ! DENUMIRE ! VALOARE
!**
25 10b*! CRT !*30b*!*15b*!**
22 10b*!*5b*!*30b*!*15b**
69 10b*54 = **10b*! 0 ! 1 ! 2 !**
69 10b*54 = **10b*! 1 ! CUIE ! 100 !**
60 10b*! 2 ! TABLA ! 200 !**
60 10b*! 3 ! VAR ! 600 !**
 9 10b*54 = **
65 10b*! TOTAL ! 900 !**
10b*54 =

523 baiţi

Textul astfel codificat are lungimea de 523 baiţi.
Indicele de performanţă în acest caz este:

64%100*
1480

5231480
p 




 (23.32)

Compactarea merge mai în profunzime, prin identificarea elementelor
invariante. Apar în mod repetat:

10b*54 = **
10b*!*5b*!*30b*!*15b*!**

Dacă aceste succesiuni vor fi înlocuite, prima cu caracterul & iar a

doua cu @:

68%100*
1480

21)8*4(5231480
p' 




 (23.33)

Dacă se pune în corespondenţă construcţia **10b* cu :, care are 10

apariţii, încă se obţine o ameliorare a indicelui de eficienţă.

23.5 Compactare prin asocierea unor coduri ce permit

eliminarea separatorilor

În textele de orice tip ar fi ele, se utilizează diverşi separatori, care

ocupă un număr de poziţii, depinzând de regulile acceptate de utilizare,
dintre care se enumeră:

- separatorii punct şi virgulă sunt urmaţi de un spaţiu;
- separatorul linie de dialog când este urmat de o literă mare sau

precedat de punct sau două puncte, este precedat de 3-6 spaţii
pentru a marca un dialog;

- cuvintele sunt separate prin cel puţin un spaţiu; în procesarea de
texte, variabilitatea numărului de spaţii depinde de lăţimea
textului şi de dorinţa de a realiza o aliniere la extremităţile definite
pentru un rând.

Se consideră de exemplu, înregistrarea profesiilor persoanelor ce
alcătuiesc o colectivitate. Din înregistrările efectuate, rezultă mulţimea de
profesii distincte:

forjor

strungar
frezor

economist
mecanic

supraveghetor

Fişierul ce se creează, conţine înşiruirea acestor profesii, urmând ca

programele pentru consultarea lui, să permită numărarea elementelor ce
aparţin fiecărei meserii.

Înregistrarea brută a informaţiilor, conduce la ocuparea unei zone de
memorie:

Lb=n1*lg(forjor)+n2*lg(strungar)+n3*lg(frezor)+n4*lg(economist)+

+n5*lg(mecanic)+n6*lg(supraveghetor) (23.34)

Dacă fiecare meserie este pusă în corespondenţa cu un mnemonic
precum:

fo pentru forjor
st pentru strungar
fr pentru frezor
ec pentru economist
me pentru mecanic
su pentru supraveghetor

în mod sever, lungimea ocupată se reduce.

)nnnnn(n*2L 654321m  (23.35)

Pentru eliminarea ambiguităţii generate de reducerea lungimii

mnemonicelor de la 2 caractere la un singur caracter, se efectuează
punerea în corespondenţă a meseriilor cu caracterele:

f – forjor
s – strungar
r – frezor
e – economist
m – mecanic
g – supraveghetor

În aceste condiţii, lungimea textului este:

654321s nnnnnnL  (23.36)

Forma brută a caracterelor, conduce la calculul lungimii fişierului în

baiţi. Lungimea efectivă, exprimată în biţi, este în continuare redusă dacă
meseriile sunt puse în corespondenţă cu şiruri de biţi, ce se bucură de o
serie de proprietăţi suplimentare:

forjor 1
strungar 101
frezor 1001
economist 10001
mecanic 10101
supraveghetor 100001

Aceste construcţii, se bucură de proprietatea ca prin concatenare,

locul unde s-a produs această operaţie apar două cifre binare de 1. Astfel:

6*n5*n5*n4*n3*n1*nL 654321B  (23.37)

Observăm că:

Bsb LL*8L*8  (23.38)

În multe cazuri, lungimea câmpului este dimensionată în aşa fel
încât, să poată cuprinde meserii cu cele mai multe caractere, fişierul având
articole de lungime fixă.

În exemplul dat, lungimea este dată de cuvântul “supraveghetor”,
care are 13 caractere.

)nnnnn(n138L 654321F  (23.39)

Toţi indicii de performanţă, se calculează în raport cu lungimea LF.
Dacă de exemplu, într-o colectivitate de 1000 persoane:

n1=100, n2=300, n3=100, n4=100, n5=300, n6=100 (23.40)

LF=8*13*1000=104000 biţi (23.41)

Lb=100*6+300*8+100*6+100*9+300*7+100*13=7900 baiţi (23.42)

LB=100+300*3+100*4+100*5+300*5+100*6=4000 biţi (23.43)

În cazul în care lungimea codurilor asociate, iau în considerare

frecvenţele aşa fel încât, meseria cu cea mai mare frecvenţă să fie codul de
lungime cel mai mic, se obţine:

LB'=300*1+300*3+100*4+100*5+100*5+100*6=3000 biţi (23.44)

97%100*
104000

3000104000
p1 




(23.45)

95%100*
8*7900

30008*7900
p2 




(23.46)

25%100*
4000

30004000
p3 




 (23.47)

23.6 Compactarea prin identificarea de subşiruri

repetitive

Pentru cele 27 litere ale alfabetului, se construieşte matricea

frecvenţelor de apariţie a grupurilor de câte două litere, X. Astfel, xij
reprezintă numărul de apariţii al literei cu poziţia i, urmată de literă cu
poziţia j din alfabet.

Construirea matricei X se realizează, prin parcurgerea unei diversităţi
de texte şi frecvenţele depind de particularităţile fonetice ale fiecărei limbi.

Dintre grupurile de câte două litere, vor fi extrase acelea cu
frecvenţele cele mai mari şi vor fi dispuse pe linii într-un tabel, ale cărui
coloane conţin literele alfabetului.

Se construieşte matricea Y, ale cărei elemente yij, conţin frecvenţele
de apariţie ale grupului de două litere de pe linia i, urmat de litere de pe
coloana j a tabelului.

Se are în vedere că totalitatea grupurilor de litere ce vor fi selectate
în ordinea descrescătoare a frecvenţelor de apariţie, să nu depăşească un
număr K aşa fel încât:

K + L < 256 (23.48)

unde L reprezintă numărul de caractere considerat necesar pentru
introducerea unui text într-un fişier.

În continuare, se vor considera cele 27 litere ale alfabetului, cele 10
simboluri ale cifrelor şi caracterele: spaţiu, plus, minus, egal, punct, virgulă,
două puncte, punct şi virgulă, semnul mirării, semnul întrebării şi asteriscul.
În total sunt 48 de caractere.

Din analizele statistice efectuate pe texte, se reţin grupurile de litere
alcătuind o mulţime formată din 64 de elemente dispuse în tabloul de mai
jos, care au în dreptul liniilor şi coloanelor combinaţii de biţi care alcătuiesc
codul asociat fiecărui şir.

Tabelul nr. 23.2 Combinaţii de biţi asociate şirurilor de caractere

 1000 1001 1010 1011 1100 1101 1110 1111
1000 u1 1e pr mb mp ni in lui
1001 lor se ut re tr te ta nu
1010 it la ea ta ti ca oi au
1011 am ar ei ra ne un ns nt
1100 cr sc st os ti at ri oa
1101 sa ma ne tre ist tri urile ind
1110 nstr eau eam esti ndu u-se ati nul
1111 asera res tit ros oasa isem tit art

Aceste grupuri de litere au fost puse în corespondenţă cu codul unui

caracter, altul decât cele 48 considerate.
Astfel, versurile eminesciene:

Dintre sute de catarge
Care leagă malurile
Câte oare le vor sparge
Vânturile, valurile

 A fost odată ca-n poveşti
 A fost ca niciodată
 Din rude mari împărăteşti
 O prea frumoasă fată.

care însumează 177 caractere incluzând şi spaţiile care separă cuvintele,
vor fi compacte astfel:

Dx x sux de x x rge
 17 64 26 36 27

x x x aga x lux x
 26 24 12 62 57 12

Cix x x x vor spx ge
 26 58 24 12 42

Vix ux x , valux x
 48 57 12 57 12
A fox odată ca-n povex

53 73

A fox x x ciodată
 53 26 16

Dx rude x x ix aratx
 17 62 57 15 74

o x x fata
 13 33 85

ceea ce conduce la un indice de performanţă:

22%100*
177

137177
p 




 (23.49)

Construirea matricei generale a subşirurilor, are avantajul că este

unică pentru orice text care se compactează, dar există posibilitatea de
apariţie a situaţiei ca frecvenţele grupurilor în textul de compact să nu
urmeze nivelurile de frecvenţă a textelor care au stat la baza obţinerii ei.

Dacă pentru fiecare compactare se construieşte o matrice de subşiruri
proprie, performanţa este cu totul alta.

Pentru textul analizat, subşirurile identificare se organizează într-un
tabel, căruia i se ataşează o matrice C a codurilor, ce conduce la un text de
116 caractere, având un indice de performanţă:

34%100*
177

116177
p 




(23.50)

Dacă pornim de la ideea că acest text este memorat folosind

succesiuni de 6 biţi, pentru că el conţine 25 de combinaţii de biţi,
corespunzătoare grupurilor de litere şi cele 27 de litere, comparativ cu
memorarea ca text având fiecare caractere câte 8 biţi, indicele de
performanţă este:

52%100*
8*177

6*1168*177
p 




(23.51)

Se observă că algoritmii de compactare, vizează atât lungimea

codului sub care se reprezintă un caracter din text, cât şi modul în care se
identifică elementele invariante în texte.

Spaţiul ocupat de textul compactat, i se adaugă o zonă cu informaţii
care permit reconstituirea textului iniţial. Aceste informaţii conţin:

- lungimea codurilor asociate caracterelor;

- mulţimea subşirurilor şi a codurilor cu care acestea se pun în
corespondenţă.

În cazul în care se identifică pentru reguli complexe de scriere a
textelor proceduri, acestea se pun în corespondenţă cu coduri şi ori de câte
ori apar codurile respective în text, vor fi activate procedurile care vor
prelucra textul adecvat.

De exemplu, dacă un text este centrat pe un rând, blancurile vor fi
eliminate, respectivul text fiind precedat de un cod care odată identificat,
preia textul, îl centrează, reconstituind blancurile eliminate la compactare.

În cazul dialogurilor, începerii unui nou paragraf sau scrierii unei
formule, reconstituirea poziţiei reale a textului, se efectuează cu ajutorul
procedurilor activate odată cu apariţia codurilor care semnalizează fiecare
dintre situaţiile menţionate.

23.7 Compactarea programelor date în formă executabilă

Pentru utilizatori, prezintă importanţă programele executabile.

Obiectivele programelor care efectuează compactarea acestui tip de text,
sunt găsirea unor modalităţi care să determine stocarea unui număr cât mai
mare de programe executabile pe un suport. În acelaşi timp, se urmăreşte
şi găsirea posibilităţii de a efectua decompactarea textului transformat.

Programele de compactare a programelor executabile, iau în
considerare următoarele aspecte:

- limbajul de asamblare are o mulţime finită de coduri de
instrucţiuni, dintre care programatorii folosesc sub 40%, ca
diversitate în programe;

- programele executabile sunt rezultate ale compilării şi editării de
legături; în cea mai mare parte, aceste operaţii conduc la o
pondere ridicată a secvenţelor construite mecanic, pe baza unor
reguli tip;

- programele executabile, au ca entitate instrucţiunea şi aceasta
este plasată într-o zonă de memorie de lungime şi structură fixă;
toate analizele, vizează componentele în număr restrâns de pe o
zonă restrânsă; frecvenţele construite vin să ajute alături de
celelalte consideraţii, la dimensionarea codurilor cu care se pun în
corespondenţă, instrucţiunile programului executabil.

Se consideră în continuare programul:

 ORG 420 H
 MOV D , E
 PUSH B
 XRA A
CICLU: LDAX B
 ADC M
 DCR E
 JZ BETA
 STAX B
 INX B
 INX H
 JMP CICLU
BETA: MOV

 LOAX B
 XRA M
 MOV A , E
 STAX B
 STC
 JM GAMA
 MOV A , M
 XRA E
 STC
 JM DELTA
GAMA: CMC
DELTA: POP B
 MOV E , D
 RET
 END

Acestui program îi corespunde codul obiect:

0420 53
0421 C5
0422 AF
0423 OA
0424 8E
0425 1D
0426 CA 2F 04
0429 02
042A 03
042B 23
042C C3 23 04
042F 5F
0430 OA
0431 AE
0432 7B
0433 02
0434 37
0435 FA 3F 04
0438 7E
0439 AB
0440 37
043B FA 3F 04
043F C1
0440 5A
0441 C9
0000

Textul obiect generat are 31 baiţi. Se vor scrie frecvenţele de apariţie

a elementelor din acest text.

Tabelul nr. 23.3 Frecvenţele de apariţie a elementelor textului

Element Frecvenţa
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

8
2
4
9
4
4
-
4
1
1
6
1
3
1
4
6

Împrăştierea cifrelor hexazecimale, reduce masiv posibilitatea

efectuării unor prelucrări directe pe textul obiect.
Se procedează la efectuarea modificărilor:
a) se începe contorizarea de la zero şi se memorează 0420 şi textul

devine:

0000 53
0001 C5
0002 AF
0003 OA

0004 8E

0005 1D

0006 CA 00 OF

0009 02

000A 03

000B 23

000C C3 00 03

000F 5F

0010 0A

0011 AE

0012 7B

0013 02

0014 37

0015 FA 00 1F

0018 7E

0019 AB

001A 37

001B FA 00 1F

001F C1

0020 5A

0021 C9

Cea mai mică valoare din prima cifră hexazecimală a părţii de

instrucţiune, este 0 şi cea mai mare este F.

Tabelul nr. 23.4 Frecvenţele de apariţie a elementelor textului

Element Frecvenţa
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

5
1
-
2
-
2
-
2
1
-
2
-
5
-
-
2

Din 15 simboluri lipsesc 7. Construim pe 2 baiţi masca elementelor

absente:

0 1 2 3 4 5 6 7 8 9 A B C D E F

--
 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1

Se analizează frecvenţa de apariţie a cifrelor hexazecimale pe al II-

lea bait al instrucţiunii.

Tabelul nr. 23.5 Frecvenţele de apariţie a cifrelor hexazecimale

pe baitul II al instrucţiunii

Element Frecvenţa
0
1
2
3
4
5
6
7
8
9

-
1
2
4
-
1
-
2
-
1

A
B
C
D
E
F

6
2
-
1
3
2

Se construieşte pe 2 baiţi masca elementelor absente:

0 1 2 3 4 5 6 7 8 9 A B C D E F

--
0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1

Se observă că pentru un text de lungime redusă, elementele

repetitive nu se identifică şi deci compactarea are efecte reduse, uneori nule
sau chiar păgubitoare.

Limbajele de asamblare moderne, au în definire operaţii de tip RR
(registru-registru) şi întrucât numărul registrelor este redus, sunt asociate
coduri diferite pentru combinaţia de cod operaţie R1, R2 ceea ce reprezintă
o compactare la nivel de limbaj. Tot astfel, în cazul instrucţiunilor memorate
pe trei baiţi, deplasarea operandului este reprezentată pe un singur baiţ,
prin recalcularea ei.

În cazul unor texte mult mai lungi, dacă resursele sunt folosite
convenabil şi programatorii stabilesc reguli precise de realizare a unor
anumite prelucrări, compactarea este realizabilă.

Astfel, în toate subprogramele, secvenţa de preluare a parametrilor
este standardizată şi deci este pusă în corespondenţă cu un cod şi înlocuită
cu acesta.

Aplicând principiile de analiză ale textului, compactarea se realizează
în principal prin tratarea elementelor repetitive şi în programele scrise în
limbajul de asamblare sau generate de compilatoare, acestea nu au o
pondere importantă.

23.8 Compactarea datelor numerice

Reprezentarea matricelor rare, este un exemplu de compactare a

datelor. În cazul seriilor de date, problema compactării este importantă
dacă seriile au variaţii mici sau dacă seriile au o lungime foarte mare.

Fie seria de date X având termenii:

11120 11130 11131 11136
11170 11135 11131 11109
11121 11122 11120 11104

Cei 12 termeni ai seriei de date, dacă sunt reprezentaţi binar, ocupă

fiecare câte 2 baiţi, deci în total 24 baiţi. Observăm că termenul minim al
seriei este 11104, iar termenul maxim este 11170.

D = Xmax – Xmin = 66 (23.52)

iar:

0,005
11108

60

Xmin

D


 (23.53)

ceea ce arată că datele se află într-un interval foarte îngust în raport cu
mărimea lor.

Considerăm Xmin = 11104. Se calculează o nouă serie x':

xi' = xi – xmin (23.54)

al cărei termeni sunt:

 16 26 27 32 66 51
27 5 17 18 16 0

Numerele acestea se reprezintă pe 7 biţi. Deci, pentru cei 12 termeni

sunt necesari 84 de biţi, iar pentru 11104 sunt necesari 2 biţi.

52%100
192

100
100

8*24

8*284
p 




 (23.55)

Compactarea la nivel de biţi, se dovedeşte cu efecte mai importante

dacă se combină cu alte procedee de compactare.

111 111 111 112 112 112
113 113 111 112 112 112

Elementul minim este 111, iar elementul maxim este 113. În

reprezentare binară a întregilor, pentru fiecare termen este necesar un baiţ.
Seria aceasta necesită 12 baiţi.

Observăm că există elementele repetitive 111, 112 şi 113, care vor fi
puse în corespondenţă cu caracterele a, b, c, respectiv 00, 01, 10. Pentru
cele trei numere sunt necesari 7 biţi.

46%100
96

45
100

812

21273
p 






 (23.56)

23.9 Programe care efectuează compactarea

Un program P de lungime L, se zice că este compactat de programul

X, dacă forma obţinută P', are o lungime L' cu peste 20% mai mică decât
lungimea L.

Programul X execută complet compactarea, dacă încercând
compactarea programului P', se obţine un program P" de lungime L" şi dacă
L' = L" şi P" este identic cu P'.

Programul Y realizează decompactarea programului P', dacă după
executarea sa se obţine programul P' ' ' de lungime L' ' ', aşa fel încât L' ' '
= L şi P' ' ' este identic cu P'.

Programele de compactare sunt specializate să aibă ca intrare, fie
texte sursă, fie texte obiect, fie componente executabile. Există şi programe
generale care efectuează compactarea şi decompactarea. Exemple de astfel
de programe sunt PKZIP . EXE, PKUNZIP . EXE, ARJ . EXE, PKARC . EXE.
Fiecare dintre acestea folosesc algoritmi specifici de compactare, în funcţie
de tipul fişierelor supuse comprimării.

Formatul general al unei etichete de fişier arhivat, îl descriem prin
structura următoare în C:

struct fisier_compactat
{
 int metoda_compactare[10];
 char nume_fisier[8];
 char extensie_fisier[3];
 unsigned char atribut_fisier;
 short int data;
 short int timp;
 short int cluster_start;
 long int lungime_fisier_initial;
 long int lungime_fis_compactat;
 int suma_control;
};

Se asociază fiecărei metode de compactare folosită un anumit cod, ca

de exemplu:
- 0, dacă fişierul a fost memorat în forma sa iniţială, compactarea

nefiind eficientă;
- 1, dacă fişierul a fost comprimat printr-un algoritm nerepetitiv;
- 2, dacă fişierul a fost comprimat în mai multe etape.
Aceste probleme sunt înzestrate cu funcţii specifice gestionării de

fişiere arhivate, respectiv adăugare, ştergere, modificare, protecţie.
Unul dintre algoritmii utilizaţi de aceste programe de compactare este

cel al lui Huffman. Acest algoritm are drept scop de a minimiza numărul de
biţi necesar pentru reprezentarea oricărui simbol dintr-un alfabet. Astfel, se
atribuie simbolurilor cu o frecvenţă de utilizare mare, coduri mai scurte, iar
simbolurilor mai rar folosite, coduri mai lungi. În acest mod, media lungimii
codului, este mai redusă.

Această tehnică a utilizat-o şi Samuel Morse când a definit alfabetul
Morse.

În codul Huffman, frecvenţa de apariţie a caracterelor din textul
sursă, trebuie cunoscută sau estimată. Apoi, se asociază fiecărui simbol o
secvenţă de biţi unică, care este definită utilizând un arbore binar.

Un cod Huffman este construit astfel:
- se ordonează descrescător, după frecvenţă sau probabilitatea de

apariţie, simbolurile din textul sursă;
- se consideră fiecare simbol un nod în arbore, fiecărui nod fiindu-i

asociat o probabilitate (frecvenţa) de apariţie;
- se leagă două noduri cu probabilitatea de apariţie cea mai mică,

într-un nod a cărui probabilitate este dată de suma probabilităţilor
celor două noduri acest proces se încheie în momentul în care
rămâne un nod nelegat.

Rezultatul acestei operaţii este un arbore binar, în care ramura
stângă a unui nod părinte are eticheta 0, iar ramura din dreapta, eticheta
1 .

Să presupunem că textul nostru iniţial este format din 40 de
caractere, utilizând un alfabet din 8 simboluri; frecvenţele de apariţie ale
fiecărui simbol, sunt calculate ca raport între numărul de apariţii a
simbolului respectiv şi numărul total de caractere ale textului.

În tabelul de mai jos, presupunem numărul de apariţii ale simbolurilor
şi în funcţie de acest număr calculăm numărul total de biţi pe care îl ocupă
simbolul respectiv, în reprezentarea normală (8 biţi/caracter).

Tabelul nr. 23.6 Varianta I de construire a codului Huffman

Simbol Nr. de apariţii

simbol
Total nr. de biţi

pentru un simbol
(reprez. normală)

Total nr. de biţi
pentru un simbol
(cod Huffman)

0
1
2
3
4
5
6
7

12
8
6
5
4
3
2
0

96
64
48
40
32
24
16
0

12
16
18
20
20
18
14
0

Total 40 320 118

20%

12%

10%

100 %

70 %

50 %

35 %

23%

13 %

5 %

0

0

0

0

0

0

0

1

1

1

1

1

1

1
1111111

0

10

110

1110

11110

111110

1111110

0

1

2

3

4

5

6

7

30%

15%

8%

5%

0%

Figura 23.1 Structura arborescentă a codurilor Huffman

Dacă însă, cuplăm nodurile în felul următor:

 0

100%

111111

0

110

100

101

1110

11110

0

1

2

30%

20%

15%

12%

10%

8%

5%

0%

3

4

5

6

7

0

0

170%

43% 1
0

1

1

0

0

1
1

23%

13%

5%

111110

0

1

27%

Figura 23.2 Structura arborescentă a codurilor Huffman după cuplarea
nodurilor

vom obţine:

Tabelul nr. 23.7 Varianta II de construire a codurilor Huffman

Simbol Nr. de
apariţii
simbol

Total nr. de biţi
pentru un simbol
(reprez. normală)

Total nr. de biţi
pentru un simbol
(cod Huffman)

0
1
2
3
4
5
6
7

12
8
6
5
4
3
2
0

96
64
48
40
32
24
16
0

12
24
18
15
16
15
12
0

Total 40 320 112

şi se observă că am obţinut un număr total de biţi mai mic decât în prima
variantă, iar diferenţa este cu atât mai mare, cu cât avem texte de lungime
mai mari.

Observăm, că pe lângă faptul că codul Huffman foloseşte în medie,
un număr de biţi mai mic decât codul ASCII pentru reprezentarea unui
caracter, mai are proprietatea că secvenţa binară asociată fiecărui simbol,
nu este prefixul unui alt simbol şi de aceea, secvenţele de biţi sunt
concatenate fără să se folosească nici o punctuaţie de delimitare a acestora.

	Tabelul nr. 23.1 Situaţia materialelor

