23. COMPACTAREA DATELOR

23.1 Parametrii stocarii datelor

Volumul datelor este dat in mai multe feluri. Pentru o colectivitate ale
carei indivizi se descriu cu acelasi sablon, volumul informatiilor este prezent
prin numarul indivizilor. Avem o imagine suficient de clara, despre un fisier
care contine informatii referitoare la 30.000 persoane sau despre o matrice
are 50 linii si 80 coloane, din punct de vedere al volumului de date.

Pentru o mai buna precizare, se vor lua in considerare:

e N - numarul de indivizi ai colectivitatii;

e L - lungimea structurii de date asociate unui individ;
e B - factorul de blocare;

e R - lungimea informatiilor reziduale;

Volumul de date V este dat de relatia:
V=Ff(N*L B)+g(R) (23.1)

unde f si g sunt forme analitice ale dependentei dintre factorii considerati,
forme ce se determina pentru tipuri de suport extern de date, in mod
corespunzator.

Volumul de date astfel calculat este exprimat in numar de baiti.
Documentatiile tehnice consemneaza capacitatea de memorare pentru
fiecare tip de suport extern, ca numar maxim de baiti.

Fie suportul extern i, avand capacitatea C;. Raportul:

V
p; =E*100 (23.2)

reprezinta ponderea pe care o au datele memorate in volumul V, fata de
capacitatea suportului.

De exemplu, pentru un suport de 1200 ko capacitate, un fisier care
ocupa 400 ko, ocupa 33% din suport.

Daca un programator trebuie sa stocheze informatii pe un suport de
capacitate C;, sub forma unor volume V;, V5, ..., V,, el stocheaza numai k
volume, intrucat:

k
Y v,<C, (23.3)
j=1

Apare insa problema existentei unei diferente, care descrie functia
obiectiv:

[min] C, _J.Z:;‘Vi (23.4)

a unui model de optimizare a combinatiei de volume, care sa conduca la
acest obiectiv.

De exemplu, se considera:

G = 1000, V; =200, V, =500, V3; =400, V4, =300 (23.5)

Se calculeaza sumele:

Si=Vi + Vo + V3 + V4 = 1400 > G (23.6)
S, = 200 + 500 + 400 = 1100 > C (23.7)
S;= 200 + 500 + 300 = 1000 = C (23.8)
S, =500 + 400 = 900 < G (23.9)
Ss= 500 + 400 + 300 = 1200 > G (23.10)
Se= 200 + 500 = 700 < G (23.11)
S,= 500 + 300 = 800 < G (23.12)
Sg= 200 + 300 = 500 < G (23.13)
So= 200 + 400 = 600 < C (23.14)
Sio= 400 + 300 = 700 < G (23.15)

Din toate combinatiile, S; reprezinta varianta care conduce la o buna

umplere a capacitatii cu date.

Apar deci ca parametri de descriere ai utilizarii unui suport, urmatorii:

- gradul de ocupare;

- numarul de fisiere;

- volumul de informatii stocat in fisier exprimat prin intermediul
numarului de indivizi pentru care se face stocarea sau numarul de
cuvinte, depinzand de unitatile de masura, de natura fisierelor.

Problema maximizarii, apare pentru:

- cresterea gradului de umplere;

- cresterea numarului de fisiere ce se stocheaza;

- cresterea volumului de informatii.

Exista modalitati specifice, care vin sa amelioreze unul sau altul

dintre parametrii considerati, ceea ce influenteaza insa asupra tuturor
parametrilor, este compactarea datelor.

Prin compactarea datelor, intelegem totalitatea metodelor care

conduc la reducerea lungimii exprimate in baiti, a datelor. Fiind data o
multime de cuvinte:

A=A{a;, a, .. an}, delungimel, L,... |, (23.16)

compactarea datelor revine la a gasi functiile:

unde:

fF:rASK sii g : KA (23.17)

k = { ki ks ..., Kkn} (23.18)

este multimea cuvintelor compactate, asa fel incat exista o pereche (i, j),
pentru care:

kj = f(a,-) (2319)
a = g(k) (23.20)

Functia f() se numeste functie de compactare, iar functia g() este
functia de decompactare.

Deci, orice metoda de compactare este complet definita, daca s-a
identificat si modalitatea de a reduce setul de date in forma initiald, prin
decompactare.

Pentru perechea (i, j):

lg(k) < Ig (a) (23.21)
Rezulta ca efectul compactarii, pentru un text format din cuvintele:
a; a, as as as as (23.22)
de lungime initiala:
L; = 1g(a; a» asz asz as as as) = 1g (a;) + 1g (az) + 4*1g (as) (23.23)
prin compactare este transformat in textul:
k; k» k3 ks ks ks (23.24)
de lungime:
L, = 1g (ki) + 1g (k;) + 4*1g (ks) (23.25)
cu indicile de eficienta a compactarii:

p:%*loo (23.26)

1

23.2 Compactarea la nivel de caracter

Sistemele de coduri asociate caracterelor pornesc de la urmatoarele
aspecte:

- multimea caracterelor ce sunt reprezentate este finita; de
exemplu, codul ASCII permite reprezentarea unei multimi de
caractere formate din 256 elemente;

- lungimea exprimata in biti a unui element al multimii, este
constanta; codul ASCII asociat unui caracter are 8 biti.

Pentru un sir de n biti, se asociaza o multime formata din 2"
elemente distincte, ce sunt puse in corespondenta cu simboluri sau cuvinte,
ale unei multimi cunoscute.

Vom considera un roman, in care apar numai litere mici si litere mari,
semne de punctuatie, separatorul blanc si liniuta corespunzatoare semnului
de dialog.

Analiza textului ce formeaza romanul, pune in evidenta urmatoarele
aspecte:

- dintre literele mari sunt utilizate 15;

- dintre literele mici sunt utilizate 24;

- semnele de punctuatie cu liniuta de dialog, sunt in numar de 8.

Alfabetul nou cu care operam, este format din 24+15+8 = 47
simboluri. Fiecare simbol are reprezentare pe 6 biti, intrucat cel mai mic
numar natural pentru care 2" > 47 este n = 6.

Se vor pune in corespondenta cele 47 de caractere, cu coduri de cate
6 biti si textul romanului care avea o lungime initiala L;:

Li=8*m (23.27)
unde m reprezinta numarul de caractere al textului.
Dupa compactarea la nivel de caracter, textul compactat are o
lungime finala L

Lr = 6*m (23.28)

Indicele de eficienta al acestei compactari este:

p="i7br 100 = 259 (23.29)

f

Decompactarea, presupune interpretarea succesiunilor de 6 biti si
inlocuirea lor cu caractere ASCII corespunzatoare din stiva caracterelor
utilizate in text.

23.3 Compactarea la nivel de cuvant

Prin analiza textului, intelegem construirea unei stive a cuvintelor
diferite din text si inregistrarea frecventei lor de aparitie.

Daca mentinand codul ASCII pentru caracterele uzuale ale textului,
punem in corespondenta cuvintele avand frecventele cele mai mari C;, C,, .
. ., C, cu coduri asociate unor caractere ce nu apar in text, indicile de
eficienta al compactarii este:

k k
L - > f*1g(c)+ D f,
p= H - %100 (23.30)

Daca stiva cu cuvintele definite C;, C,, ..., Ci avand frecvente
ridicate f;, f;, ..., fx este suficient de mare, si multimea G a simbolurilor
neutilizate in text, este insuficienta, este necesara construirea cuvintelor g;,
g ... gk formate din 1, 2, ... ng simboluri neutilizate, atunci
performanta compactarii este:

I—i 'ij *[1g(Cj) _1gj)]

p=— 1 3 *100 (23.31)

Decompactarea revine la a inlocui cuvintele g; din text, cu cuvintele
¢;, intrucat atat algoritmul de compactare cat si cel de decompactare
presupun existenta stivei cuvintelor diferite ale textului initial si cuvintele

din multimea {g;, g> . . ., gx}, a cuvintelor formate din simboluri
neutilizate in text.

23.4 Compactarea prin analiza caracteristicilor textului

Vom exemplifica modul de analiza al unui text, folosind reprezentarea
in memorie a tabelului de mai jos ce trebuie imprimat:

Tabelul nr. 23.1 Situatia materialelor

5 30 15
NR. DENUMIRE VALOARE
CRT.

0 1 2

1 CUIE 100

2 TABLA 200

3 VAR 600
TOTAL 900

Pentru memorarea acestui tabel, se defineste un articol de 74 baiti si
in fisierul TABEL.DAT, vor fi memorate 20 de randuri, incluzand si blancurile
dintre antet si capul de tabel. in fisierul TABEL.DAT vor fi ocupati
20*74=1480 baiti cu acest tabel.
Prin conventie, intrucat asteriscul nu este utilizat, in continuare este
folosit ca separator, iar doua asteriscuri consecutive au semnificatia de CR.

27 30b*SITUATIA MATERIALELOR
23 30b*22 - **74b**10b*
27 54 = **10b*!*5b!*30b*!*15b**
60 10b*! NR. ! DENUMIRE !
1Kk
25 10b*! CRT 1*30b* ! *15p* | **
22 10b* ! *5b* ! *30b* ! *15b**
69 10b*54 = **10b*! 0 ! 1 ! 2
69 10b*54 = **10b*! 1 ! CUIE ! 100 1 k*
60 10b*! 2 ! TABLA ! 200 !**
60 10b*! 3 ! VAR ! 600 1*%
9 10b*54 = **
65 10b*! TOTAL ! 900
10b*54 =
523 baiti

VALOARE

KX

EZ

Textul astfel codificat are lungimea de 523 baiti.
Indicele de performanta in acest caz este:

_ 1480-523

*100 = 64%
1480 0 (23.32)

Compactarea merge mai in profunzime, prin identificarea elementelor
invariante. Apar in mod repetat:

10b*54 = *x*
10b* ! *5b* ! *30b* ! *15b* ! **

Daca aceste succesiuni vor fi inlocuite, prima cu caracterul & iar a
doua cu @:

. 1480—-(523-4*8-21) ., ~ao
p'= 1480 100 = 68% (23.33)

Daca se pune in corespondenta constructia **10b* cu :, care are 10
aparitii, inca se obtine o ameliorare a indicelui de eficienta.

23.5 Compactare prin asocierea unor coduri ce permit
eliminarea separatorilor

In textele de orice tip ar fi ele, se utilizeazd diversi separatori, care
ocupa un numar de pozitii, depinzand de regulile acceptate de utilizare,
dintre care se enumera:

- separatorii punct si virgula sunt urmati de un spatiu;

- separatorul linie de dialog cand este urmat de o litera mare sau
precedat de punct sau doua puncte, este precedat de 3-6 spatii
pentru a marca un dialog;

- cuvintele sunt separate prin cel putin un spatiu; in procesarea de
texte, variabilitatea numarului de spatii depinde de Iatimea
textului si de dorinta de a realiza o aliniere la extremitatile definite
pentru un rand.

Se considera de exemplu, inregistrarea profesiilor persoanelor ce

alcatuiesc o colectivitate. Din inregistrarile efectuate, rezulta multimea de
profesii distincte:

forjor
strungar
frezor
economist
mecanic
supraveghetor

Fisierul ce se creeaza, contine insiruirea acestor profesii, urmand ca
programele pentru consultarea lui, sa permita numararea elementelor ce
apartin fiecarei meserii.

Inregistrarea bruta a informatiilor, conduce la ocuparea unei zone de
memorie:

Lb=n;*Ig(forjor)+ny*Ig(strungar)+ns*lg(frezor)+n,*lg(economist)+
+ns*Ig(mecanic)+ng*Ig(supraveghetor) (23.34)

Daca fiecare meserie este pusa in corespondenta cu un mnemonic

precum:

fo pentru
st pentru
fr pentru
ec pentru
me pentru
su pentru

forjor
strungar
frezor
economist
mecanic
supraveghetor

in mod sever, lungimea ocupata se reduce.

L,=2*(n,+Nn,+n;+n,+N,+n) (23.35)

Pentru eliminarea ambiguitatii generate de reducerea lungimii
mnemonicelor de la 2 caractere la un singur caracter, se efectueaza
punerea in corespondenta a meseriilor cu caracterele:

f — forjor

s — strungar

r — frezor

e - economist
m — mecanic

g - supraveghetor

In aceste conditii, lungimea textului este:

Li=n,+n,+Nn,+n, +n, + N, (23.36)

Forma bruta a caracterelor, conduce la calculul lungimii fisierului in
baiti. Lungimea efectiva, exprimata in biti, este in continuare redusa daca
meseriile sunt puse in corespondenta cu siruri de biti, ce se bucura de o

serie de proprietati suplimentare:

forjor
strungar
frezor
economist
mecanic

1

101
1001
10001
10101

supraveghetor 100001

Aceste constructii, se bucura de proprietatea ca prin concatenare,
locul unde s-a produs aceasta operatie apar doua cifre binare de 1. Astfel:

Lg=n,*1+n,*3+n,;*4+n,*5+n,*5+n,*6 (23.37)

Observam ca:

8*L,>8*L,>L, (23.38)

In multe cazuri, lungimea campului este dimensionatd in asa fel
incat, sa poata cuprinde meserii cu cele mai multe caractere, fisierul avand
articole de lungime fixa.

In exemplul dat, lungimea este data de cuvantul “supraveghetor”,
care are 13 caractere.

L. =8-13-(n, +n, +ny; +n, +n, +nyg) (23.39)

Toti indicii de performanta, se calculeaza in raport cu lungimea L.
Daca de exemplu, intr-o colectivitate de 1000 persoane:

n;=100, n,=300, n3=100, n,=100, ns=300, ng=100 (23.40)
LF=8*13*1000=104000 biti (23.41)
L,=100*6+300*8+100*6+100*9+300*7+100*13=7900 baiti (23.42)
Lg=100+300*3+100*4+100*5+300*5+100*6=4000 biti (23.43)

In cazul in care lungimea codurilor asociate, iau in considerare
frecventele asa fel incat, meseria cu cea mai mare frecventa sa fie codul de
lungime cel mai mic, se obtine:

Lg'=300*1+300*3+100*4+100*5+100*5+100*6=3000 biti (23.44)

104000 - 3000

= S 100 = 97%
P = 104000 o (23.45)
7900*8— 3000
_ * — 0
P2="2500% T0=P" (23.46)
~ 4000-3000,,
P 000 TR (23.47)

23.6 Compactarea prin identificarea de subsiruri
repetitive

Pentru cele 27 litere ale alfabetului, se construieste matricea
frecventelor de aparitie a grupurilor de cate doua litere, X. Astfel, Xx;
reprezinta numarul de aparitii al literei cu pozitia /i, urmata de litera cu
pozitia j din alfabet.

Construirea matricei X se realizeaza, prin parcurgerea unei diversitati
de texte si frecventele depind de particularitatile fonetice ale fiecarei limbi.

Dintre grupurile de cate doua litere, vor fi extrase acelea cu
frecventele cele mai mari si vor fi dispuse pe linii intr-un tabel, ale carui
coloane contin literele alfabetului.

Se construieste matricea Y, ale carei elemente yj;, contin frecventele
de aparitie ale grupului de doua litere de pe linia i, urmat de litere de pe
coloana j a tabelului.

Se are in vedere ca totalitatea grupurilor de litere ce vor fi selectate
in ordinea descrescatoare a frecventelor de aparitie, sa8 nu depaseasca un
numar K asa fel incat:

K+ L < 256 (23.48)

unde L reprezinta numarul de caractere considerat necesar pentru
introducerea unui text intr-un fisier.

In continuare, se vor considera cele 27 litere ale alfabetului, cele 10
simboluri ale cifrelor si caracterele: spatiu, plus, minus, egal, punct, virgula,
doua puncte, punct si virguld, semnul mirarii, semnul intrebarii si asteriscul.
In total sunt 48 de caractere.

Din analizele statistice efectuate pe texte, se retin grupurile de litere
alcatuind o multime formata din 64 de elemente dispuse in tabloul de mai
jos, care au in dreptul liniilor si coloanelor combinatii de biti care alcatuiesc
codul asociat fiecarui sir.

Tabelul nr. 23.2 Combinatii de biti asociate sirurilor de caractere

1000 1001 1010 1011 1100 1101 1110 1111

1000 |ul le pr mb mp ni in lui
1001 lor se ut re tr te ta nu
1010 it la ea ta i ca Oi au
1011 am ar ei ra ne un ns nt
1100 cr SC st 0S ti at ri oa
1101 sa ma ne tre ist tri urile ind
1110 nstr eau eam esti ndu u-se ati nul
1111 asera |res tit ros oasa isem tit art

Aceste grupuri de litere au fost puse in corespondenta cu codul unui
caracter, altul decéat cele 48 considerate.
Astfel, versurile eminesciene:

Dintre sute de catarge
Care leaga malurile
Céte oare le vor sparge
Vénturile, valurile

A fost odata ca-n povesti
A fost ca niciodata

Din rude mari imparatesti
O prea frumoasa fata.

care insumeaza 177 caractere incluzand si spatiile care separa cuvintele,
vor fi compacte astfel:

Dx X sux de x Xx rge
17 64 26 36 27

X X X aga x lux x
26 24 12 62 57 12

Cix X X X vor spx ge

26 58 24 12 42
Vix ux x , valux x
48 57 12 57 12
A fox odatd ca-n povex
53 73

A fox X X ciodata
53 26 16

Dx rude x x ix aratx
17 62 57 15 74

0 X X fata
13 33 85

ceea ce conduce la un indice de performanta:

177 -137
— * — 0,
P 100 =22% (23.49)

Construirea matricei generale a subsirurilor, are avantajul ca este
unica pentru orice text care se compacteaza, dar exista posibilitatea de
aparitie a situatiei ca frecventele grupurilor in textul de compact sa nu
urmeze nivelurile de frecventa a textelor care au stat la baza obtinerii ei.

Daca pentru fiecare compactare se construieste o matrice de subsiruri
proprie, performanta este cu totul alta.

Pentru textul analizat, subsirurile identificare se organizeaza intr-un
tabel, caruia i se ataseaza o matrice C a codurilor, ce conduce la un text de
116 caractere, avand un indice de performanta:

177-116
_ *100 = 349
= 177 100 = 34% (23.50)

Daca pornim de la ideea ca acest text este memorat folosind
succesiuni de 6 biti, pentru ca el contine 25 de combinatii de biti,
corespunzatoare grupurilor de litere si cele 27 de litere, comparativ cu
memorarea ca text avand fiecare caractere cate 8 biti, indicele de
performanta este:

_177*8-116%6,.
- 177*8 100=52% (23.51)

Se observa ca algoritmii de compactare, vizeaza atat lungimea
codului sub care se reprezinta un caracter din text, cat si modul in care se
identifica elementele invariante in texte.

Spatiul ocupat de textul compactat, i se adauga o zona cu informatii
care permit reconstituirea textului initial. Aceste informatii contin:

- lungimea codurilor asociate caracterelor;

- multimea subsirurilor si a codurilor cu care acestea se pun in

corespondenta.

In cazul in care se identificd pentru reguli complexe de scriere a
textelor proceduri, acestea se pun in corespondenta cu coduri si ori de cate
ori apar codurile respective in text, vor fi activate procedurile care vor
prelucra textul adecvat.

De exemplu, daca un text este centrat pe un rand, blancurile vor fi
eliminate, respectivul text fiind precedat de un cod care odata identificat,
preia textul, il centreaza, reconstituind blancurile eliminate la compactare.

In cazul dialogurilor, inceperii unui nou paragraf sau scrierii unei
formule, reconstituirea pozitiei reale a textului, se efectueaza cu ajutorul
procedurilor activate odata cu aparitia codurilor care semnalizeaza fiecare
dintre situatiile mentionate.

23.7 Compactarea programelor date in forma executabila

Pentru utilizatori, prezinta importanta programele executabile.
Obiectivele programelor care efectueaza compactarea acestui tip de text,
sunt gdsirea unor modalitdti care sa determine stocarea unui numar cat mai
mare de programe executabile pe un suport. In acelasi timp, se urmareste
si gasirea posibilitatii de a efectua decompactarea textului transformat.

Programele de compactare a programelor executabile, iau in
considerare urmatoarele aspecte:

- limbajul de asamblare are o multime finita de coduri de
instructiuni, dintre care programatorii folosesc sub 40%, ca
diversitate in programe;

- programele executabile sunt rezultate ale compilarii si editarii de
legaturi; in cea mai mare parte, aceste operatii conduc la o
pondere ridicata a secventelor construite mecanic, pe baza unor
reguli tip;

- programele executabile, au ca entitate instructiunea si aceasta
este plasata intr-o zona de memorie de lungime si structura fixa;
toate analizele, vizeaza componentele in numar restrans de pe o
zona restransa; frecventele construite vin sa ajute alaturi de
celelalte consideratii, la dimensionarea codurilor cu care se pun in
corespondenta, instructiunile programului executabil.

Se considera in continuare programul:

ORG 420 H

MOV D , E

PUSH B

XRA A
CICLU: LDAX B

BETA: MOV

LOAX B
XRA M
MOV A , E
STAX B
STC

JM GAMA
MOV A , M
XRA E

JM DELTA
GAMA: CMC
DELTA: POP B

Acestui program ii corespunde codul obiect:

0420 53

0421 C5

0422 AF

0423 oA

0424 8E

0425 1D

0426 CA 2F 04
0429 02

042A 03

042B 23

042C C3 23 04
042F 5F

0430 oA

0431 AE

0432 7B

0433 02

0434 37

0435 FA 3F 04
0438 7E

0439 AB

0440 37

043B FA 3F 04
043F C1

0440 5A

0441 C9

0000

Textul obiect generat are 31 baiti. Se vor scrie frecventele de aparitie
a elementelor din acest text.

Tabelul nr. 23.3 Frecventele de aparitie a elementelor textului

Element Frecventa
0 8
1 2
2 4
3 9
4 4
5 4
6 -
7 4
8 1
9 1
A 6
B 1
C 3
D 1
E 4
F 6

Impréstierea

devine:

cifrelor hexazecimale, reduce masiv
efectuarii unor prelucrari directe pe textul obiect.

Se procedeaza la efectuarea modificarilor:

a) se incepe contorizarea de la zero si se memoreaza 0420 si textul

0000
0001
0002
0003

0004
0005
0006
0009
oooa
000B
000C
000F
0010
0011
0012
0013
0014
0015
0018
0019
001Aa
001B
001F

53
C5
AF
OA

8E
1D
ca
02
03
23
C3
5F
(07:1

7B
02
37
FA
TE

37
FA
Cl

00 OF
00 03
00 1F
00 1F

posibilitatea

0020 5a
0021 cC9

Cea mai mica valoare din prima cifra hexazecimala a partii de
instructiune, este 0 si cea mai mare este F.

Tabelul nr. 23.4 Frecventele de aparitie a elementelor textului

Element Frecventa
0 5
1 1
2 -
3 2
4 -
5 2
6 -
7 2
8 1
9 -
A 2
B -
C 5
D -
E -
F 2

Din 15 simboluri lipsesc 7. Construim pe 2 baiti masca elementelor
absente:

o 1 2 3 4 5 6 7 8 9 A B C D E F

Se analizeaza frecventa de aparitie a cifrelor hexazecimale pe al II-
lea bait al instructiunii.

Tabelul nr. 23.5 Frecventele de aparitie a cifrelor hexazecimale
pe baitul II al instructiunii

Element Frecventa

OCoNOTUPA~,WNREO
= 1 N1 T AN

MmMmOO >
NWKR 1 NO

Se construieste pe 2 baiti masca elementelor absente:

o 1 2 3 4 5 6 7 8 9 A B C D E F

Se observa ca pentru un text de lungime redusa, elementele
repetitive nu se identifica si deci compactarea are efecte reduse, uneori nule
sau chiar pagubitoare.

Limbajele de asamblare moderne, au in definire operatii de tip RR
(registru-registru) si intrucat numarul registrelor este redus, sunt asociate
coduri diferite pentru combinatia de cod operatie R1, R2 ceea ce reprezinta
o compactare la nivel de limbaj. Tot astfel, in cazul instructiunilor memorate
pe trei baiti, deplasarea operandului este reprezentatd pe un singur bait,
prin recalcularea ei.

In cazul unor texte mult mai lungi, dacda resursele sunt folosite
convenabil si programatorii stabilesc reguli precise de realizare a unor
anumite prelucrari, compactarea este realizabila.

Astfel, in toate subprogramele, secventa de preluare a parametrilor
este standardizata si deci este pusa in corespondenta cu un cod si inlocuita
Cu acesta.

Aplicand principiile de analiza ale textului, compactarea se realizeaza
in principal prin tratarea elementelor repetitive si in programele scrise in
limbajul de asamblare sau generate de compilatoare, acestea nu au o
pondere importanta.

23.8 Compactarea datelor numerice

Reprezentarea matricelor rare, este un exemplu de compactare a
datelor. In cazul seriilor de date, problema compactarii este importanta
daca seriile au variatii mici sau daca seriile au o lungime foarte mare.

Fie seria de date X avand termenii:

11120 11130 11131 11136
11170 11135 11131 11109
11121 11122 11120 11104

Cei 12 termeni ai seriei de date, daca sunt reprezentati binar, ocupa
fiecare cate 2 baiti, deci in total 24 baiti. Observam ca termenul minim al
seriei este 11104, iar termenul maxim este 11170.

D = Xmax - Xm/n = 66 (23.52)

iar:

D _ 60 _4405
Xmin 11108

(23.53)

ceea ce arata ca datele se afla intr-un interval foarte ingust in raport cu
marimea lor.
Consideram X, = 11104. Se calculeaza o noua serie x":

X," = Xij — Xmin (2354)
al carei termeni sunt:

16 26 27 32 66 51
27 5 17 18 16 0

Numerele acestea se reprezinta pe 7 biti. Deci, pentru cei 12 termeni
sunt necesari 84 de biti, iar pentru 11104 sunt necesari 2 biti.

84+2%8 100
= 2272 24100 = = 100 = 52%
24*8 192 ’ (23.55)

Compactarea la nivel de biti, se dovedeste cu efecte mai importante
daca se combina cu alte procedee de compactare.

111 111 111 112 112 112
113 113 111 112 112 112

Elementul minim este 111, iar elementul maxim este 113. in
reprezentare binara a intregilor, pentru fiecare termen este necesar un bait.
Seria aceasta necesita 12 baiti.

Observam ca exista elementele repetitive 111, 112 si 113, care vor fi
puse in corespondenta cu caracterele a, b, c, respectiv 00, 01, 10. Pentru
cele trei numere sunt necesari 7 biti.

34741242 45
_3*I+12%2 100 = 224100 = 46%
1248 96 ° (23.56)

23.9 Programe care efectueaza compactarea

Un program P de lungime L, se zice ca este compactat de programul
X, daca forma obtinuta P’, are o lungime L' cu peste 20% mai mica decat
lungimea L.

Programul X executd complet compactarea, daca Iincercand
compactarea programului P’, se obtine un program P" de lungime L" si daca
L' = L" si P" este identic cu P'.

Programul Y realizeaza decompactarea programului P', daca dupa
executarea sa se obtine programul P’ ' ' de lungime L' ' ', asa fel incat L' ' '
= L si P'' " este identic cu P'.

Programele de compactare sunt specializate sa aiba ca intrare, fie
texte sursa, fie texte obiect, fie componente executabile. Exista si programe
generale care efectueaza compactarea si decompactarea. Exemple de astfel
de programe sunt PKZIP . EXE, PKUNZIP . EXE, ARJ . EXE, PKARC . EXE.
Fiecare dintre acestea folosesc algoritmi specifici de compactare, in functie
de tipul fisierelor supuse comprimarii.

Formatul general al unei etichete de fisier arhivat, il descriem prin
structura urmatoare in C:

struct fisier compactat

{
int metoda compactare[1l0];
char nume fisier[8];
char extensie fisier[3];
unsigned char atribut fisier;
short int data;
short int timp;
short int cluster_start;
long int lungime fisier initial;
long int lungime fis compactat;
int suma_control;

};

Se asociaza fiecarei metode de compactare folosita un anumit cod, ca
de exemplu:

- 0, daca fisierul a fost memorat in forma sa initiala, compactarea

nefiind eficienta;

- 1, daca fisierul a fost comprimat printr-un algoritm nerepetitiv;

- 2, daca fisierul a fost comprimat in mai multe etape.

Aceste probleme sunt inzestrate cu functii specifice gestionarii de
fisiere arhivate, respectiv adaugare, stergere, modificare, protectie.

Unul dintre algoritmii utilizati de aceste programe de compactare este
cel al lui Huffman. Acest algoritm are drept scop de a minimiza numarul de
biti necesar pentru reprezentarea oricarui simbol dintr-un alfabet. Astfel, se
atribuie simbolurilor cu o frecventa de utilizare mare, coduri mai scurte, iar
simbolurilor mai rar folosite, coduri mai lungi. In acest mod, media lungimii
codului, este mai redusa.

Aceasta tehnica a utilizat-o si Samuel Morse cand a definit alfabetul
Morse.

In codul Huffman, frecventa de aparitie a caracterelor din textul
sursa, trebuie cunoscuta sau estimata. Apoi, se asociaza fiecarui simbol o
secventa de biti unica, care este definita utilizand un arbore binar.

Un cod Huffman este construit astfel:

- se ordoneaza descrescator, dupa frecventda sau probabilitatea de

aparitie, simbolurile din textul sursa;

- se considera fiecare simbol un nod in arbore, fiecarui nod fiindu-i
asociat o probabilitate (frecventa) de aparitie;

- se leaga doua noduri cu probabilitatea de aparitie cea mai mica,
intr-un nod a carui probabilitate este data de suma probabilitatilor
celor doua noduri acest proces se incheie in momentul in care
ramane un nod nelegat.

Rezultatul acestei operatii este un arbore binar, in care ramura
stanga a unui nod parinte are eticheta 0, iar ramura din dreapta, eticheta
1.

Sa presupunem ca textul nostru initial este format din 40 de
caractere, utilizand un alfabet din 8 simboluri; frecventele de aparitie ale
fiecarui simbol, sunt calculate ca raport intre numarul de aparitii a
simbolului respectiv si numarul total de caractere ale textului.

In tabelul de mai jos, presupunem numarul de aparitii ale simbolurilor
si In functie de acest numar calculam numarul total de biti pe care il ocupa
simbolul respectiv, in reprezentarea normala (8 biti/caracter).

Tabelul nr. 23.6 Varianta I de construire a codului Huffman

Simbol Nr. de aparitii Total nr. de biti Total nr. de biti
simbol pentru un simbol pentru un simbol
(reprez. normalad) (cod Huffman)
0 12 96 12
1 8 64 16
2 6 48 18
3 5 40 20
4 4 32 20
5 3 24 18
6 2 16 14
7 0 0 0
Total 40 320 118
30% 0 ° 0
0
20% 1 10
0 100 %
15% 2 110
0 70% 1
12% 3 1 1110
0 50 %
10% 4 B% 11110
8% 5 -0
0 3% 1 111110
5% 6
3% 1 1111110
0% 7 5% 1

1111111

Figura 23.1 Structura arborescenta a codurilor Huffman

Daca insa, cuplam nodurile in felul urmator:

30% 0

20% 1 |
0 100% 100
15%) 0
12% 3 |
0,
1 27% 0% 1 101
0,
3%
0 1110
10% 4
- o 11110
0,
5% 6 0 23% 1 111110
13% 1
0% 7

5% 1 111111

Figura 23.2 Structura arborescenta a codurilor Huffman dupa cuplarea
nodurilor

vom obtine:

Tabelul nr. 23.7 Varianta II de construire a codurilor Huffman

Simbol Nr. de Total nr. de biti Total nr. de biti
aparitii pentru un simbol pentru un simbol
simbol (reprez. normala) (cod Huffman)

0 12 96 12
1 8 64 24
2 6 48 18
3 5 40 15
4 4 32 16
5 3 24 15
6 2 16 12
7 0 0 0
Total 40 320 112

si se observa ca am obtinut un numar total de biti mai mic decat in prima
varianta, iar diferenta este cu atat mai mare, cu cat avem texte de lungime
mai mari.

Observam, ca pe langa faptul ca codul Huffman foloseste in medie,
un numar de biti mai mic decat codul ASCII pentru reprezentarea unui
caracter, mai are proprietatea ca secventa binara asociata fiecarui simbol,
nu este prefixul unui alt simbol si de aceea, secventele de biti sunt
concatenate fara sa se foloseasca nici o punctuatie de delimitare a acestora.

	Tabelul nr. 23.1 Situaţia materialelor

