26. UTILIZAREA STRUCTURILOR DE DATE IN
TESTAREA SOFTWARE

26.1 Generatoare de date de test (GDT)

Diversitatii tipurilor de programe le corespunde o diversitate a
generatoarelor de date de test. Generatoare date de test sunt programe
care au un rol important in automatizarea testarii software.

Daca software lucreaza cu fisiere generatorul date de test creeaza un
fisier. Daca software lucreaza cu matrice, GDT genereaza matricele.

Fiecarui sistem de programe i se asociaza o structura de tip graf
(arbore), nodurile corespunzand punctelor de test ale structurilor de control.

Astfel secventei:

it (a>b)
if (c>d)
e=1;
else
e=2;
else
it (x<y)
e=3;

ii va corespunde structura de graf din figura 26.1.

a=h

wy c>d

e=4 g=3 e=2 a="1

Figura 26.1 Structura arborescenta asociata secventei

In programe apar instructiuni de atribuire si de control. Astfel
programul:

void main()

int a=1,b=2,c;

c=a+tb;

printf(“c=%d”,c);
ks

contine numai expresii de atribuire si apelarea functiei de afisare.
Flexibilitatea este limitata, valoarea care se afiseaza fiind aceeasi, indiferent
de numarul rularilor.

In acest caz nu se va vorbi de date de intrare, deci nici de date de
test.

Testarea programului este simplificata fintrucat se urmareste
comportamentul acestuia pas cu pas numai pentru valorile impuse.

In cazul in care programul (modulul) are valori instructiuni de
intrare/iesire sau parametri care modifica nivelele variabilelor efective ale
sale, testarea presupune definirea de seturi de date de test (baterii).

In structura arborescenta asociatda unui program se identifica
urmatoarele tipuri de noduri:

- un nod radacina, corespunzator primei secvente (instructiuni) din

modulul (programul) apelator;

- noduri intermediare, corespunzatoare instructiunilor
(secventelor/modulelor) care sunt urmate si de alte instructiuni
(secvente/module);

- noduri terminale (frunze), ce corespund instructiunilor
(secventelor/modulelor) care incheie o prelucrare.

Nodul din graful corespunzator programului se asociaza unei
instructiuni, unei secvente de instructiuni sau unor functii, depinzand de
gradul de detaliere cu care se doreste a fi abordat un program.

Bateria de date de test este alcatuita dintr-un set de date care
asigura executia instructiunilor care formeaza drumul de la nodul radacina
pana la un nod frunza.

26.2 Generator de fisiere de test

Aplicatiile complexe presupun lucrul cu fisiere. Fisierele sunt formate
din articole a cdror structura contine campuri.

In multe situatii, proiectarea de fisiere are la baza date din evidentele
contabile ale societatilor comerciale. Forma concretda de prezentare a
valorilor efective este tabelul (raportul).

Studiul rapoartelor permite stabilirea proprietatilor, a domeniilor de
variatie a valorilor fiecarui camp dintr-un articol.

Programul genereaza fisiere cu date de test aleatoare. Mai intai este
citit numele extern al fisierului.

Structura articolelor fisierului generat se introduce de la tastatura.
Campurile articolelor sunt de urmatoarele tipuri:

- alfabetic;

- alfanumeric;

- Intreg (de tip int).

Campurilor alfabetice si alfanumerice li se precizeaza lungimea.
Pentru aceste tipuri se genereaza datele in modurile urmatoare:

- aleator;

- aleator dintr-o lista de valori specificate;

Pentru datele de tip intreg, exista si o a treia posibilitate de generare,
intre o limita inferioara si o limita superioara.

In final se citeste numarul de articole de generat.

Programul parcurge urmatorii pasi:

a)

b)
c)
d)
e)

introducere nume extern de fisier (FMAT.DAT) ca sir de caractere
de maximum 127 elemente;
definire numar, tipuri si domenii ale cdmpurilor;
generare siruri alfabetice;

generare siruri alfanumerice;

generare valori intregi cuprinse intre limitele specificate;

f) inscrierea articolelor in fisier;
g) inchiderea fisierului.

De

exemplu,

pentru gestiunea stocurilor

de materiale de

la

intreprinderea X se considera fisierul PTEST.DAT ale carui articole au

structura:

struct Pers

{

char nume[30];

int virsta;
int vech;
int copii;

3

char sex[1];

Conditiile pentru crearea articolelor sunt:
varsta cuprinsa intre 16 si 62;
vechimea intre 0 si 46;

copii intre 0 si 10;
sex 'M' sau 'F';

Pentru crearea fisierului "PTEST.DAT" avand de 50 de articole este
purtat urmatorul dialog intre utilizator si program:

Nume fisier: pmat.dat
Numarul de campuri :5
Numar articole de generat: 50

Tipul cimpului 1
O-intreg
1-alfabetic
2-alfanumeric
-->1

Lungime: 30
Generare
0-aleator

1-din lista de valori

-->0

Tipul cimpului 2
O-intreg
1-alfabetic
2-alfanumeric
-->0

Generare
0-aleator

1-in interval

2-din lista de valori

-->1

Limita inferioara:16

Generare

0-aleator

1-in interval

2-din lista de valori
-->1

Limita inferioara:0
Limita superioara:46

Tipul cimpului 4
O-intreg
1-alfabetic
2-alfanumeric
-->0

Generare

0-aleator

1-in interval

2-din lista de valori
-->1

Limita inferioara: O

Limita superioara: 10

Tipul cimpului 5
O-intreg
1-alfabetic
2-alfanumeric

-->1

Lungime: 1

Limita superioara: 62 Generare

0-aleator
Tipul cimpului 3 1-din lista de valori
0-intreg ->1
1-alfabetic Numar elemente: 2
2-alfanumeric Element 1: M
-->0 Element 2: F

In continuare este prezentat codul sursid al programului care

genereaza fisiere de test, programul fiind scris in limbajul C++.

{
}

{

#include <string.h>
#include <limits.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <iostream>

using namespace std;

int random(int Lli, int Is)

return (li+(rand()/(float)RAND_ MAX)*Is);

/* defineste structura unui cimp care urmeaza sa aiba valori generate
aleator */
class Cimp

int tip;//0-intreg, l-alfabetic, 2-alfanumeric
int mod;//0 - aleator, 1 - lista
struct InfoAlf

{
int Ig;
int ne;//numarul de elemente din lista de valori
char **lv;

¥

//informatii despre cimpurile intregi

struct Infolnt

{
int Li,lIs;
int ne;
int *lv;
}:

//informatii despre un cimp din articol

struct Infolnt *intreg;
struct InfoAlf *alfa;

void SetTip(int _tip)

tip=_tip;
switch(tip)
{

case 0O:
{
//intreg
intreg=new Infolnt();
alfa=NULL;

break;

}
case 1:
case 2:
{
intreg=NULL;
alfa=new InfoAIT();
break;
}
}
}
void SetMod(int _mod)
{
mod=_mod;
}
CimpQ
{
}
Cimp(int _tip,int _mod):tip(_tip),mod(_mod)
{
switch(tip)
case 0O:
{
//intreg
intreg=new Infolnt();
alfa=NULL;
break;
}
case 1:
case 2:
{
intreg=NULL;
alfa=new InfoAIT();
break;
3
}
3
~CimpQ
{
//eliberare memorie
switch(tip)
case O:

if(intreg->nel!=-1)
delete [] intreg->lv;
delete intreg;
break;
case 1:
case 2:
if(alfa->nel=-1)

for(int j=0;j<alfa->ne;j++)
delete [] alfa->Iv[j];

delete [] alfa->lv;

}
delete alfa;
break;
}
}
void SetintregRnd(int _l1i=0,int _Is=INT_MAX-1)
{
//limita inf=0 limita sup=intregul maixim
intreg->li=_li;
intreg->lIs=_lIs;
intreg->ne=-1;
}
void SetintregRndLV(int _ne, int Iv[])
{
//citesc numarul si elem din lista de val posibile
intreg->ne=_ne;
//aloc pentru numarul de elemente
intreg->lv=new int[_ne];
for(int j=0;j<intreg->ne;j++)
{
intreg->1v[jl=1Vv[j];
}
}
void SetAlfaRnd(int _1g)
{
alfa->I1g=_1Ig;
alfa->ne=-1;
}
void SetAlfaRndLV(int _Ig,int _ne,char **1v)
{
alfa->ne=_ne;
alfa->I1g=_Ig;
//aloc pentru numarul de elemente
alfa->lv=new char*[_ne];
for(int j=0;j<alfa->ne;j++)
//aloc pentru lungimea fiecarul element;
alfa->1lv[j]=new char[alfa->1g+1];
strncpy(alfa->1v[j],1v[j].alfa->1Qg);
}
}
friend class GenTest;
};
class GenTest
{

FILE * pf;

char NumeFisier[255];
int _nCimpuri;

int _nArticole;

Cimp *art;

public:
GenTest(char * nFisier,int nCimpuri,int nArticole)
{
srand((unsigned)time(NULL));
strcpy(NumeFisier,nFisier);
_pf=fopen(nFisier,"w+b™);
_nCimpuri=nCimpuri;
_nArticole=nArticole;
J7rinnnnnnnnnnnennnnnt
art=new Cimp[nCimpuri];
}
~GenTest()
{
iT(pfI=NULL)
fclose(_pf);
if(art!=NULL)
delete [] art;
}

static char Caractere[63];

void Genlntreg(int _idxCimp)
{
int num,i;
if(art[_idxCimp].intreg->ne==-1)
//gen nr aleat cuprins intre linf si Isup
num=random(art[_idxCimp].intreg-
>li,art[_idxCimp].intreg->Is);

else
{
i=random(O0,art[_idxCimp].intreg->ne);
num=art[_idxCimp].intreg->lv[i];
by
fwrite(&num,sizeof(int),1l, pf);
}
void GenAlfa(int _idxCimp)
{

int i,j,1,k;
char *car=new char[art[_idxCimp].alfa->1g+1];

26.3. Generatoare de matrice de test

Numeroase programe prelucreaza matrice si vectori intre care exista
anumite legaturi. Este preferabil ca matricele de intrare mai ales atunci
cand sunt de mari dimensiuni sa fie rezultatul unor procese de generare. De
exemplu, se considera un program destinat rezolvarii unor sisteme de
ecuatii liniare prin metoda Jacobi iterativa.

Pentru testarea acestui tip de program se iau in considerare doua
modalitati si anume:

- preluarea de exemple de sisteme liniare din cartile de analiza
matematica;
- generarea matricei A a sistemului, generarea vectorului de solutii

X; se efectueaza produsul A*X si se obtine vectorul B al

termenilor liberi.

Programul preia ca intrari din fisier matricea A, vectorul termenilor
liberi B, rezolva sistemul si compara solutia sa Xo cu valoarea vectorului X
generat.

Pentru situatii speciale, generatorul de matrice permite:

- generare de matrice simetrice pozitiv definite;

- generarea de matrice unitate;

- generarea matrice triangulare;

- generarea matrice care se bucurda de proprietatea conform
careia suma elementelor de pe o linie este egala cu o valoare
data (matricele markoviene sunt caz particular, suma
elementelor de pe linie este 1);

- generarea de matrice cu elemente maxime pe diagonala
principala;

- generarea de matrice in care se specifica liniile sau coloanele
identice.

Programul MATEST.CPP este un exemplu de generator de date de test
matriceale. Programul prezinta doar cateva din aceste posibilitati, permitand
si includerea altor tipuri de generari de matrice.

#include <iostream>
#include <time.h>

#define NMAX 20

using namespace std;

int random(int li, int Is)

{
return (li+(rand()/(float)RAND_MAX)*Is);
}
class GenMat
{
int a[NMAX][NMAX];
int n,li,ls;
public:
GenMat(int _n,int _Li,int _Is):nCn),liCI1D),IsCI1s){}
//Generaza o matrice cu elemente aleatoare cuprinse intre li si
Is
void GenMatRnd()
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]=random(li,lIs);
}

//Genereaza matricea unitate
void GenUnit()

{

for(int i=0;i<n;i++)
for(int j=0;j<n;j++)

if(i==j)
alilj]=1;
else
alil0i1=0;

3
¥
//Genereaza matricea simetrica
void GenSim(Q)

for(int 1=0;i<n;i++)
for(int j=i;j<n;j++)

if(i==j)
a[i][j]=random(li,lIs);
else

al[illJ1=ald1[i]=random(li,ls);
}

//Genereaza matricea triangulara
void GenTriang()

{
int i,j;
for(i=0;i<n;i++)
for(J=0;j<n;j++)
iIT((i+j)>=n)
ali1l3]1=0;
else
a[i][j]=random(li,lIs);
¥
by

//Genereaza matrice cu elementele maxime pe diagonala
void GenMaxDiag()

{
int jum=Is-11)/2;
for(int 1=0;i<n;i++)
for(int j=0;j<n;j++)
if(i==j)
alillj1=jum+random(li, Is—jum);
else
a[i][j]=random(li,jum);
}
}

//Adiseaza matricea generata la consola/scriere in fisier
void scrieA(FILE *f=stdout)

i f(f1=stdout)

f=Fopen(“'matr._txt"”,"wt'");

if(lfr)

{
printf("'Eroare la creare fisier '\n");
return;

for(int i=0;i<n;i++)
{
for(int j=0;j<n-1;j++)
fprintf(F,"%d ",a[i1l01);
fprintf(F,"%d\n",a[i1Li1);

}
if(fl=stdout)

fclose(T);
}
}:
void main()
{

int opt,n,li,lIs;

srand((unsigned)time(NULL));

do

{
cout<<"Tipul de matrice:"<<endl;
cout<<"l. Unitate''<<endl;
cout<<"2. Simetrica"<<endl;
cout<<"3. Triangulara'<<endl;
cout<<"4. Maxim pe diagonala'<<endl;
cout<<"5. Elemente aleatoare'<<endl;
cout<<"-->";
cin>>opt;

}
while(opt<l&&opt>5);

cout<<(“Numarul de linii/coloane: ");

cin>>n;
cout<<(Limita inferioara: ");
cin>>li;
cout<<('Limita superioara: ');
cin>>lIs;

GenMat gm(n,li,lIs);
switch(opt)

case 1l:gm.GenUnit();break;
case 2:gm.GenSim();break;
case 3:gm.GenTriang();break;
case 4:gm.GenMaxDiag();break;
case 5:gm.GenMatRnd();break;

gm.scrieAQ);
cin.get();

Programul genereaza matrice patratice si include urmatoarele tipuri
de matrice: matrice unitate, matrice simetrica, matrice triangulara, matrice
cu valorile maxime pe diagonala si matrice cu elemente generate aleator.

26.4 Fisiere date de test livrate

La elaborarea de specificatii pentru dezvoltarea de software apare
necesitatea crearii unui cadru complet. Unul dintre elementele esentiale il
reprezinta datele de test livrate. Aceste sunt fisiere ce contin o multitudine
de baterii de date de test.

Din specificatii rezulta care sunt iesirile software-ului corect si modul
de intoarcere a rezultatelor proprii obtinute prin tratarea datelor de test.

Se considera problema P careia i se asociaza datele de test livrate
sub forma copiilor fisierului F, achizitionate de n producatori de software.
Rezultatele standard ale bateriilor de test din fisierul F se constituie sub
forma de exemple de verificare in fisierul R.

Software-ul obtinut de la cei n producatori pentru a participa la
licitatie este dat in forma de variante Vi, Vs, .., V.. Producatorii de software
obtin pe baza intrarilor din fisierul F rezultate pe care le stocheaza in
fisierele ry, ra, .., In.

Depunerea spre receptie a software-ului in variantele Vi, V,, .., Vi
este precedata de analiza calitativa si cantitativa a continutului fisierelor ry,
r,, .., . Numai In cazul incadrarii intre limitele precizate a calitatii
rezultatelor se accepta preluarea variantelor Vi, V,, .., V, si deci participarea
efectiva la licitatie cu produse program existente.

Fisierele livrate cu date de test genereaza un proces continuu de
testare, intrucat nu este exclusa existenta de inconsistente chiar in fisierul
R, figura 26.2.

Problema Producatori . Fisiere
F de software Varianta rezultat

Fizier F [
date test

Modificari R Warianta selectata vV,
Figura 26.2 Proces iterativ de generare si selectie software

In contextul analizei, proiectdrii si programarii orientate obiect cu atat
mai mult se impune dezvoltarea sub forma de variante prin referire de
membri ai claselor, stiut fiind faptul ca se elaboreaza din start software
pentru un numar foarte mare de utilizatori.

Schimbarea conceptiei privind dezvoltarea de software pentru calcul
salarii, gestiune mijloace fixe, gestiune materiale, comenzi, contracte si
evidenta contabila permite o altfel de abordare.

Dezvoltarea de software directionat spre utilizare generalda impune
licitatii pe produse existente pentru a obtine efecte pozitive in mod real.
Inseamna deci, ca se creeaza premisele achizitionarii foarte avantajoase a
unui anumit produs si trecerea la utilizarea sa.

In primul rand se obtine propagarea la nivelul utilizatorilor a tuturor
efectelor pozitive pe care le are incorporate varianta de produs program
selectata.

In al doilea rand dispare paralelismul abordarii permanente a unei
aceeasi probleme de catre mai multe case producatoare de software.

In al treilea rénd se obtine un nivel de omogenitate a iesirilor
informationale la toti utilizatorii de programe care rezolvd o aceeasi
problema, ceea ce permite continuarea de aplicatii integrate pe diferite
nivele.

In al patrulea rand producatorii de software se elibereaza de
problematici comune, putand sa-si canalizeze eforturile in alte zone ale
procesului de informatizare.

Toate acestea sunt posibile numai prin planificarea fazei de testare
software care garanteaza robustetea si fiabilitatea acestuia, premise ale
utilizarii de software independent de producator.

26.5 Testarea programelor cu structuri statice

Testarea produselor program reprezinta una dintre etapele careia
dezvoltatorii de software trebuie sa-i acorde maxima importanta, intrucéat
comportamentul la utilizatori este influentat de existenta sau inexistenta
erorilor. Cu cat numarul de utilizatori este mai mare si in procesul de
testare nu au fost identificate si corectate erori, cu atat efectele negative de
antrenare multipla sunt mai ample.

Produsele program construite cu structuri statice caracterizeaza acea
conceptie conform careia dimensiunile problemelor de rezolvat se estimeaza
cu suficienta precizie, iar raportul dintre zonele de memorie alocate si cele
strict utilizate se gestioneaza, asigurandu-se un grad de folosire cel putin
satisfacator.

Testarea programelor care includ structuri de date alocate static
prezinta particularitati specifice, accentul punandu-se fie pe incadrarea
campurilor referite in alocarile existente, fie pe stabilirea gradului de
apartenenta a operanzilor la domenii specificate.

Structurile de date statice sunt: masive unidimensionale, masive
bidimensionale, masive multidimensionale, articole, masive de articole si
fisiere cu moduri de organizare si tipuri de acces carora le corespund functii
sau instructiuni de limbaj.

Programele care includ masive unidimensionale contin secvente
pentru:

- initializarea din fisiere sau de la tastatura a elementelor

masivelor;

- traversarea masivelor in vederea efectuarii de calcule element cu

element;

- initializarea prin atribuire a elementelor din masive;

- afisarea continutului elementelor.

Testarea vizeaza stabilirea concordantei intre specificatile de
program si prelucrdrile efectiv realizate de secventele programelor. In cazul
in care programele aloca zone de memorie corespunzatoare unor dimensiuni
considerate maxime ale problemelor, programatorii trebuie sa verifice daca
numarul efectiv al componentelor referite din masive corespunde definirii
initiale. In secventa:

public static int PMAX=20;

Produs produse[];

int n=0;
ﬁublic boolean AdaugaProdus(Produs p)
{

produse[n] = p;

n++;

se observa ca dupa un numar de 20 de apeluri se ajunge la referirea unei
zone de memorie adiacenta masivului produse[]. De aceea este necesara
existenta unui test pentru a evita depasirea limitelor masivului.

Testarea are rolul de a evidentia prezenta sau absenta secventelor de
validare a incadrarii expresiilor indiciale in limite impuse de definirea
masivelor unidimensionale.

In cazul in care initializarea masivului unidimensional ia in
considerare n componente, iar referirea vizeaza m componente si m>n,
rezulta ca la evaluarea expresiilor se utilizeaza si cdmpuri neinitializate. De
exemplu secventa:

#define N 10

int x[N]={1,2,3,4,5,6,7}, n=5, m=7, y[N];
Ffor(int 1=0;i<n;i++)

y[i]=i*i*i+3;
Ffor(i=0;i<m;i++)

x[i]+=y[i];

conduce la obtinerea de rezultate incorecte in legdtura cu componentele
x[5] si x[6]. In cazul in care in program exista definite teste de validare a
apartenentei expresiilor de referire la valori care corespund componentelor
initializate corect, testele vor determina aparitia de mesaje specifice
tentativei de iesire din aceste intervale.

Programele care contin definiri de masive bidimensionale trebuie sa
includa o serie de expresii care sa stabileasca concordanta dintre aceste
masive si masivele unidimensionale. De exemplu se considera expresia
matriceala

b=(A'A)"'B (26.1)
unde:
e A - masiv bidimensional avand m linii si n coloane;
e A’ - transpusa masivului bidimensional A;

e B - masiv unidimensional avand n elemente.

Daca masivul A este initializat pe m linii si n coloane, iar masivul B
este initializat pe k elemente, trebuie validata existenta egalitatii lui n cu k.

Testarea programelor care manipuleaza elemente ale masivelor
bidimensionale trebuie sa scoata in evidenta concordanta dintre modul in
care sunt initializate blocuri si modul in care acestea sunt intrebuintate.

Definirea diferita de initializare conduce la rezultate incorecte afectate
de regulile de referire, diferite de la o etapa la alta.

Lucrul cu articole ca tipuri de date heomogene impune construirea de
expresii de referire care sa ofere o flexibilitate suficient de mare pentru
structurile instabile in care se adauga campuri, se insereaza campuri, se
interschimba campuri, se elimina campuri, se modifica tipul sau lungimea
campurilor existente.

Testarea programelor care utilizeaza structuri de tip articol are rolul
de a scoate in evidenta concordanta dintre tipul campului si continutul
acestuia.

In cazul structurilor statice testarea continutului operanzilor prezinta
importanta, intrucat numai apartenenta la domeniul specific aplicatiei
garanteaza calitatea si completitudinea rezultatelor.

In cazul masivelor de articole este important ca expresiile de referire
sa asigure traversarea completa a componentelor initializate in contextul
existent in specificatiile de programare. Costul testarii programelor care
utilizeaza structuri statice variaza in functie de tipul structurilor, tinand cont
de faptul ca in cazul fisierelor problemele care pot sa apara sunt mai
numeroase, decat de exemplu in cazul masivelor unidimensionale.

26.6 Particularitati ale testarii programelor cu structuri
dinamice

Structurile dinamice, liste simple, liste dublu inlantuite, arbori binari,
grafuri etc. sunt rezultatul necesitatii cresterii gradului de utilizare a zonelor
de memorie definite si referite. Daca in cazul unui masiv unidimensional cu
maxim N componente sunt referite primele n componente, n<N, in cazul
unei liste simplu Tnlantuita cu m componente, toate cele m componente fac
obiectul referirii in program.

Spre deosebire de structurile statice, structurile dinamice folosesc
variabile pointer, al caror continut sunt deplasari (adrese relative). Testele
programelor care contin structuri dinamice au dublu rol. Pe de o parte
vizeaza continutul campurilor aferente informatiilor utile scopului pentru
care a fost elaborat programul si pe de alta parte, vizeaza continutul
variabilelor pointer care trebuie sa fie NULL sau o deplasare care sa permita
referirea elementului urmator, referirea elementului precedent sau a unuia
descendent, in functie de tipul structurii dinamice.

In cazul in care legaturile nu sunt corect realizate, functiile de
traversare conduc la referiri partiale si la intreruperi necontrolate ale
executiei.

Exista situatii in care, printr-o gestionare defectuoasa a variabilelor
pointer se pierd adresele capetelor de lista sau adresa radacinii arborelui.
Pentru evitarea unor incidente, in faza de testare a produsului program
informatiile utile trebuie sa fie preluate din fisiere, pana la stabilizarea
mecanismelor de construire si actualizare a structurilor dinamice.

In limbajul Java, spre deosebire de C++, nu existd variabile de tip
pointer si eliberarea memoriei alocate se face automat de catre o
componenta specializata, ceea ce conduce la posibilitati reduse de aparitie a
erorilor din aceste cauze, testarea concentrandu-se asupra altor aspecte.

Daca se lucreaza cu componente adiacente trebuie gestionat
comportamentul programului in raport cu primul element, respectiv cu
ultimul element. Secventa C++ care include expresii de forma:

pcl->next->next

sau:

pcl->prev->prev

trebuie sa verifice daca este atinsa una dintre limite. Absenta unui astfel de
test genereaza tentative de referire a unor componente care nu apartin
structurii de date creata prin programul scris in cadrul aplicatiei.

Structurile dinamice presupun referirea functiilor de alocare a
memoriei malloc(), calloc(), operatorul new, precum si functia de eliberare
a memoriei free() sau operatorul de eliberare a memorie delete. Oricarei
alocari trebuie sa-i corespunda intr-un alt moment al executiei o eliberare
de memorie. In cazul in care se inregistreaza dezechilibre, fie are loc
umplerea stivei, fie are loc golirea prematura a acesteia. Testarea trebuie sa
vizeze simetria dintre procesele de alocare si procesele de eliberare a
memoriei.

Sunt numeroase situatiile in care nivelurile de indirectare sunt mai
mari decat unu, ceea ce impune stabilizarea aritmeticilor de pointeri pentru
a realiza concordanta intre modul in care sunt definite si initializate pe toate
nivelurile aceste variabile si, respectiv, evaluarile expresiilor de referire.

Bibliotecile de functii create pentru manipularea elementelor
constitutive ale structurilor dinamice sau functiile membre ale claselor
asociate acestor structuri, fie in forma directa, fie in forma recursiva,
trebuie sa asigure obtinerea de adrese sau de pozitii ale elementelor. Dupa
fiecare functie trebuie realizate teste care determina eliminarea fluxurilor de
prelucrare generatoare de incidente, atunci cand referirile de variabile
pointer nu mai apartin domeniului specific unui segment de memorie.

Testarea programelor cu structuri dinamice implica un efort de
testare mai mare decat in cazul structurilor statice, avand in vedere faptul
ca algoritmii utilizati in manipularea structurilor de date dinamice sunt mai
complecsi, si de aceea, si costul asociat testarii acestor programe este mai
ridicat.

26.7 Procese de testare pentru programele cu structuri
agregate

Structurile de date agregate sunt vectorii de structura, vectorii de
pointeri spre structuri, spre functii sau alte modalitati de concatenare a
structurilor neomogene. Testarea structurilor de date agregate vizeaza, pe
de o parte, verificarea daca agregarea corespunde cerintelor enuntate in
problema si, pe de alta parte, vizeaza testarea continutului cdmpurilor

referite pentru a vedea daca exista concordanta intre modul de initializare si
modul de utilizare.

Numeroase programe contin structuri de date statice si structuri de
date dinamice agregate. De exemplu pentru construirea unui graf se iau in
considerare informatiile de descriere a nodurilor sub forma unui masiv de
articole ca structura statica, de care se conexeaza liste care descriu arcele
incidente spre exterior fiecarui nod in parte.

Exista situatii in care structurile arborescente oarecare au asociate
noduri alocate dinamic si legaturi intre noduri, construite in acelasi fel.
Fiecare nod contine un camp care indica numarul de pointeri initializati cu
adresele descendentilor si un vector de pointeri ca structura statica in care
se stocheaza adrese de descendenti.

Testele care se efectueaza pentru structurile dinamice agregate au
rolul de a stabili ca legaturile dintre noduri sunt cele existente in realitate si
mai ales ca proprietatile structurii redau proprietati existente intre
elementele din realitate care fac obiectul reflectarii in plan informatic.

Agregarea de tip omogen care conduce la obtinerea vectorilor de
vectori, listelor de liste, articolelor de articole, fisierelor de fisiere au
corespondent in planul testarii includerea de structuri repetitive imbricate,
in numar egal cu numarul gradului de agregare.

Secventa de program:

#include <stdio.h>

struct dlista

{

struct dlista *dprev;

int info;

struct dlista *dnext;

}:

struct lista

{
struct dlista * plista;
struct lista *next;

¥

void main()

struct dlista x11,x12,x13, x21,x22,x23,%x24, x31,x32,x33,x34;
struct lista *py, yl, y2, y3;

py=&y1;

yl.next=&y2;
y2 _next=&y3;
y3.next=NULL;

yl.plista=&x11;x11.dnext=&x12;x12.dnext=&x13; x13.dnext=NULL;
y2_plista=8&x21;x21.dnext=&x22;x22 .dnext=&x23;x23.dnext=&x24;
X24 _dnext=NULL;
y3.plista=&x31;x31.dnext=&%x32;x32.dnext=&x33;x33.dnext=&x34;
X34 .dnext=NULL;

whi le(py!=NULL)
{

whi le(py->plistal=NULL)

6y—>p|iSta:py—>pliSta—>dnext;
py=py->next;

}
}

prezinta interes deosebit stabilirea modului n care comutativitatea
operatiilor de agregare implica comutativitate in expresiile de referire.
Testarea acestei structuri prezinta o serie de dificultati, avand in vedere atéat
gradul de agregare, cat si utilizarea variabilelor de tip pointer.

In cazul in care cercetarile evidentiaza astfel de proprietati, in
procesul de testare se reflecta prin modul de combinare a valorilor existenta
capacitatii de traversare a structurilor arborescente asociate prelucrarilor in
care operatorii sunt componente referite prin intermediul variabilelor
pointer.

Costul testarii programelor care contin structuri de date agregate este
mai mare decat in cazul programelor care utilizeaza structuri de date
statice. Numarul de cazuri de test este mai mare avand in vedere
complexitatea ridicata a programelor si numarul crescut de posibilitati de
eroare.

Testarea tipologiilor de proceduri urmeaza necesitatii definirii de
constructii software inzestrate cu proprietatea de coeziune maxima. Fiecare
procedura este ortogonala celorlalte componente din produsul software care
se realizeaza. Inseamna ca fiecare procedura realizeaza un anumit tip de
prelucrare bine definit, care nu se regaseste sub nici o forma in alte
proceduri.

Acest tip de structuri omogene de proceduri, omogenitatea fiind
specifica secventelor care se includ in procedura, creeaza un nou mod de
abordare a activitatii de programare, caracterizat prin controlul redundantei
si orientarea acesteia spre niveluri scazute.

Specializarea echipelor pe tipologii de proceduri conduce la cresterea
asistare a acestui proces.

Cand se elaboreaza un produs program complex format din module
neomogene in raport cu tipurile de date utilizate se urmareste folosirea
diferentiatd a tehnicilor de testare pornind de la tipurile de date
preponderente. Se impune utilizarea la nivelul modulelor de structuri de
date de aceeasi categorie si se obtine drept consecinta definirea de date de
test specifice, exclusiv lucrului cu matrice sau exclusiv lucrului cu liste sau
exclusiv lucrului cu structuri arborescente. Deci, vor exista module care
utilizeaza masive unidimensionale, module care opereaza cu masive
bidimensionale, module care utilizeaza fisiere, module care lucreaza cu liste
simple, module care lucreaza cu liste dublu inlantuite, module destinate
lucrului cu arbori si module destinate lucrului cu grafuri, fara a se face
combinatii intre structuri. Este numai o aparenta faramitarea produsului
program intr-un numar foarte mare de module, cu cresterea numarului de
niveluri, pentru ca in realitate prin cresterea omogenitatii modulelor creste
eficacitatea procesului de testare si, implicit, calitatea produsului program in
ansamblu.

Pentru fiecare tip de structura se definesc un set de obiective ale
testarii si proceduri de testare care trebuie urmate. Rezultatul testarii
trebuie sa impuna modificari in textele sursa care amelioreaza prelucrarile si
la reluarea procesului de testare nu se mai obtin aceleasi erori.

Stiindu-se ca structurile de control sunt concepute diferentiat pentru
implementarea operatorilor pe structuri de date, o combinare adecvata a
testarii orientate pe structuri de control cu testarea orientata pe structuri de
date va avea efecte deosebite, chiar in conditiile in care complexitatea pe
ansamblu a produsului program final este deosebit de ridicata. Mai mult,
sunt create in acest fel conditii de testare pe trei categorii specializate de
structuri de control si pe un numar K de structuri de date, ceea ce conduce
la existenta unui numar de 3K tipologii combinate de date de test. Oricare
ar fi modulul, va exista printre cele 3K tipologii de date de test exemplul
care sa permita evidentierea erorilor, prin teste mecanice, inca de la
inceput. Etapa de testare trece din planul artei dezvoltarii de software in
planul proceselor coerente, previzibile.

