28. STRUCTURI DE DATE SI ACCES IN BAZE DE
DATE

28.1 Stocarea datelor

O baza de date utilizeaza mai multe dispozitive de stocare a datelor.
Aceste dispozitive, numite si memorii, se deosebesc prin capacitatea lor de
pastrare, viteza lor, modul de accesare a datelor (secvential sau direct) si,
in sfarsit, prin persistenta lor. Memoriile volatile isi pierd continutul cand
sistemul este intrerupt de la sursa de alimentare. Memoriile nevolatile, cum
sunt discurile sau benzile magnetice isi pastreaza continutul chiar si cand
sunt decuplate de la sursa de curent electric.

Dispozitive de stocare a datelor

In general, cu cadt o memorie e mai rapidd cu atdt ea este mai
scumpa si, prin urmare, cu atat capacitatea ei de stocare este mai redusa.
Memoriile utilizate de un sistemm de gestiune a bazelor de date (SGBD)
constituie o ierarhie, figura 28.1, care porneste de la cea mai mica, dar mai
eficace, la memoria mai voluminoasa, dar mai lenta:

- memoria cache este utilizata de procesor pentru stocarea datelor

si instructiunilor;

- memoria principald constituie spatiul de lucru al masinii; datele
sau programele sunt incarcate in memoria principala, unde este
posibila tratarea lor de catre procesor;

— discurile magnetice constituie principalul periferic de tip memorie;
ele oferd o capacitate mare de stocare si permit un acces relativ
eficient la citire si scriere;

- benzile magnetice sunt dispozitive ieftine, dar viteza joasa de
lucru face ca sa fie folosite pentru fisiere de salvare.

Procesor

Memorie cache J

Memorie primara
(volatild)

[Memorie principala J

Memorie secundaré{ [Disc]

Memorie ter'giaré{ [Banda magnetica]

Figura 28.1 Ierarhia de memorii

Memoria primara, care consta din memoria cache si memoria
principald, asigura un acces foarte rapid la date. Actualmente, costul unui
volum de memorie principala este de 100 ori mai mare decat acelasi volum
de memorie pe disc, iar banda magnetica este si mai ieftind. Dispozitivele
de stocare lenta, cum sunt discurile, joaca un rol important in bazele de
date, deoarece volumul de date este, de obicei, foarte mare.

Exista si alt rationament de pastrare a datelor in memoria secundara
sau tertiard. In sistemele cu 32 de octeti adresare, numai 2% octeti pot fi
referiti direct in memoria principala, or volumul de date este mult mai mare.

O baza de date este aproape intotdeauna pastrata pe disc si din
considerente de persistenta. Cu toate acestea, datele recuperate sunt
plasate in memoria principala pentru a fi prelucrate. Pornind de la aceasta
realitate, unde un mic fragment din baza de date poate sta in memoria
centrala, SGBD-ul trebuie, deci, sa efectueze, in permanenta, transferuri de
date intre memoria principalda si memoria secundara. Costul acestor
transferuri influenteaza direct performanta sistemului.

Functionarea discului magnetic

Un disc este o suprafata circularda, magnetizata, capabila sa
inregistreze date. Suprafata magnetizata poate fi situata pe o singura parte
(daca discul are o singura fata) sau pe doua parti ale discului (daca discul
are fata dubld).

Discurile sunt divizate in sectoare, un sector constituind cea mai mica
suprafata de adresare. Cu alte cuvinte, se pot citi sau scrie zone noi care
incep pe un sector si acopera un numar intreg de sectoare. Marimea unui
sector este, de obicei, de 512 octet,i.

Dispozitivul. In mod obisnuit, bazele de date sunt stocate pe disc si
datele sunt transferate de pe disc in memoria principald in masura
necesitatilor. Pentru a limita costul dispozitivului si mari capacitatea de
stocare, mai multe discuri sunt montate pe o axa si formeaza un pachet de
discuri. In lucru, axa si discurile sunt antrenate intr-o miscare de rotatie cu
o viteza mare, figura 28.2.

Cea mai mica unitate de date stocatd pe un disc este un bit care
poate avea valoarea 0 sau 1. Bitii sunt grupati cate 8 pentru a forma octeti,
iar o multime de octeti formeaza, pe suprafata unui disc, o cununa circulara
numita pistd. Multimea tuturor pistelor cu acelasi diametru se numeste
cilindru.

Exista o multime de capete de lectura/scriere situate la sfarsit pe un
brat. Capetele se misca in grup, astfel cad acestea pot fi pozitionate asupra
tuturor pistelor ce constituie un cilindru. Prin urmare, toate datele unui
cilindru pot fi accesate fara a se produce vreo miscare a bratului, care este
o operatie mai lenta. Notiunea de cilindru corespunde, deci, tuturor datelor
disponibile fara a avea nevoie de o deplasare a capetelor de lectura.

Capul de lectura nu este antrenat in miscarea de rotatie. El se
deplaseaza pe un plan fixat care ii permite de a se apropia sau de a se
indeparta de axa de rotatie a discului si de a accesa o pista.

Sunt tot atatea capete de lectura cate discuri sunt (de doua ori mai
mult, daca discurile sunt cu fete duble) si toate capetele sunt pozitionate
respectiv pe planul lor de deplasare. In orice moment, pistele accesibile
sunt cele de pe un cilindru, ceea ce constituie o constrangere de care
trebuie sa se tina cont cand se doreste optimizarea amplasarii datelor.

In fine, ultimul element al dispozitivului este controlorul care serveste
drept interfata intre pachetul de discuri si sistem. Controlorul primeste, de
la sistem, cererile de citire sau scriere si le transforma in miscari
corespunzatoare ale bratului cu capete de lectura.

<4— Controlor
Date

; —— ¥
Cap de citire / <+ Rotatie
Deplasare

Figura 28.2 Un disc magnetic

Fiecare pista este divizata in arce numite sectoare, marimea carora
este o caracteristica a discului. Sectoarele sunt diviziuni fizice si, de aceea,
au dimensiuni fixe. Ele sunt numerotate astfel incat sectoarele consecutive
au numere consecutive. Numarul minim de octeti cititi de capul de lectura
este definit de marimea sectorului, in general, de 512 octeti.

Fiecare pista este, deci, divizata in blocuri (sau pagini), care
constituie unitatea de schimb dintre disc si memoria principala. Blocul este
o diviziune logica si, prin urmare, dimensiunea lui este o0 marime variabila.
Dimensiunea unui bloc poate fi setata cand discul se initializeaza. Atunci se
fixeaza unitatea de intrare/iesire (adica blocul) mai mare (sau egala) decat
a unui sector. Lungimea unui bloc este, de obicei, egala cu un multiplu al
lungimii unui sector. Astfel, se obtin blocuri a caror lungime (tipica) este de
512 octeti (un sector), 1024 de octeti (2 sectoare) sau 4096 de octeti (8
sectoare).

Toate lecturile sau toate scrierile pe disc se efectueaza prin blocuri.
Astfel, chiar daca o lectura nu se refera decat la 4 octeti, intreg blocul este
transmis in memoria centrald. Aceasta caracteristica este fundamentala
pentru organizarea datelor pe disc. Unul din obiectivele SGBD-ului este de a
face totul, incat, atunci cand este necesara citirea unui bloc de 4096 de
octeti pentru a accesa un numar de 4 octeti (4092 de octeti constituind
restul blocului), aceasta sa se petreaca intr-un timp scurt, adica blocul,
deja, trebuie sa se gaseasca incarcat in memoria centrald. Aceasta
motivatie sta la baza mecanismului de regrupare, in special, la baza
structurilor de date indexate si dispersate.

Accesul la date. Un disc este o memorie cu acces direct. Spre
deosebire de o banda magnetica, de exemplu, este posibil de accesat o
unitate de date situata in orice loc pe disc, fara a avea de parcurs secvential
tot suportul. Accesul direct se bazeaza pe o adresa datd fiecdrui bloc in
momentul initializarii discului de catre sistemul de exploatare. In general,
aceasta adresa este compusa din trei elemente:

— numarul discului in pachet sau numarul suprafetei, daca discurile

sunt cu suprafata dubl3a;

— numarul pistei;

— numarul blocului pe pista.

Citirea unui bloc, data fiind adresa lui, se petrece in trei etape:

- pozitionarea capului de lectura pe pista care contine blocul;

— rotirea discului si asteptarea pana in momentul cand blocul va

trece sub capul de lectura - capetele sunt fixate, discul se
roteste;

— transferul blocului.

Astfel, exista trei factori care afecteaza direct viteza cu care datele
sunt transferate intre disc si memoria principala:

— timpul de cautare;
— timpul de rotatie sau asteptare;
— timpul de transfer.

Timpul de cautare (sau pozitionare) este timpul necesar pentru a
misca bratul cu capetele de lectura/scriere din pozitia curenta, pana in
pozitia cilindrului adresat. Timpul de rotatie sau al starii latente) (este
timpul necesar discului pentru a se invarti pana ce capul va fi situat
deasupra sectorului de scriere sau citire. Timpul de transfer este timpul
necesar pentru citirea sau scrierea datelor. Acest timp depinde de numarul
de octeti transferati. Timpul de transfer este neglijabil pentru un bloc, dar
poate deveni important cand trebuie citite mii de blocuri. Mecanismul scrierii
este asemanator celui de citire, dar poate sa consume putin mai mult timp,
in cazul cand controlorul verifica daca scrierea se efectueaza corect.

Optimizarea accesului la date

Acum cand se cunoaste cum functioneaza un disc, este destul de
evident ca, pentru acelasi volum de date, timpul de lectura poate varia
considerabil, in functie de factori precum amplasarea datelor pe disc,
ordinea instructiunilor de lectura/scriere sau prezenta datelor intr-o
memorie cache.

Toate tehnicile care permit reducerea timpului consumat pentru
accesul la disc sunt intensiv utilizate de SGBD-uri, a caror performanta, in
mare parte, este conditionatd de eficienta acestor accesdri. in aceastd
sectiune, vor fi descrise principalele tehnici de optimizare, realizate intr-o
arhitectura simpla, constituita dintr-un singur disc si un singur procesor.

Regruparea datelor. Din cele relatate mai sus, reiese ca timpul de
executare a operatiilor asupra datelor in baza de date este afectat
semnificativ de faptul cum sunt stocate datele pe disc. Timpul de transfer al
blocurilor, din sau spre disc, de obicei, domina timpul consumat de
operatiile bazei de date. Pentru a minimiza acest timp, este necesar de a
alege o strategie de amplasare a datelor pe disc, tinand cont atat de
geometria discului, cat si de mecanica discului.

De exemplu, fie SGBD-ul trebuie sa citeasca 5 secvente de caractere
a cate 1000 octeti fiecare. Daca un bloc are lungimea egala cu 4096 octeti,
doua blocuri sunt suficiente pentru a pastra aceste secvente de caractere.
In figura 28.3, sunt prezentate doud tipuri de organizare a unui disc. In
primul tip, fiecare secventa este plasata intr-un bloc aparte si blocurile sunt
repartizate in mod aleatoriu pe pistele discului. In cel de-al doilea tip de
organizare, secventele sunt stocate in doua blocuri consecutive pe aceeasi
pista a discului.

a) b)

Figura 28.3 a) - organizare rea; b) - organizare buna

Performantele obtinute reprezinta un raport de 1 la 5. Timpul minimal
se obtine, apeland la gruparea datelor. Gruparea se bazeaza pe plasarea in
acelasi bloc a datelor care au sanse mari de a fi citite impreuna. Criteriile
folosite la determinarea grupurilor de date constituie bazele structurilor de
date in memoria secundara.

In general, castigul obtinut la transferarea a doud date este cu atat
mai impunator cu cat datele sunt mai ,apropiate” pe disc. Aceasta
,apropiere” are mai multe valente.

Evident, apropierea maximal posibila este obtinuta cand doua unitati
de date se gasesc in acelasi bloc - ele vor fi citite impreuna. Doua blocuri
sunt foarte “apropiate”, daca sunt stocate consecutiv pe o pista. Cu viteza
discului, doua blocuri vor fi citite sau scrise, daca se gasesc pe aceeasi
pistd, sub acelasi cap activ de citire. Toate datele de pe o pista (pe discurile
proiectate azi) se citesc si se scriu intr-o revolutie a discului, fara a se
deplasa capul de citire.

Dupa ce o pista este citita sau scrisa, alt cap al discului devine activ si
altd pista a aceluiasi cilindru este cititda sau scrisa. Acest proces continua
pana cand toate pistele de pe cilindrul curent sunt citite sau scrise, si apoi
bratul in intregime se deplaseaza (inainte sau inapoi) spre cilindrul adiacent.
Astfel arata notiunea “apropierea” blocurilor care intr-un sens exprima
notiunile de bloc “urmator” si “precedent”.

Prin urmare, in descresterea ordinii, doua unitati de date pe disc
trebuie sa fie In acelasi bloc, pe aceeasi pista, pe acelasi cilindru sau pe
cilindri adiacenti.

Exploatarea notiunii de “apropiere” si aranjare a datelor astfel ca ele
sa fie scrise sau citite secvential este foarte importanta pentru reducerea
timpului consumat la accesarea discului. Ea permite /lecturi secventiale care,
dupa cum reiese din exemplul anterior, sunt mult mai performante decét
lecturile aleatorii, deoarece ele evita deplasarea capului de lectura si
minimizeaza timpul de cautare si stare latenta.

SGBD-urile de azi optimizeaza distanta dintre date in momentul
stocarii lor pe disc. De exemplu, o relatie este stocata pe aceeasi pista sau,
in caz ca ea ocupa, pe mai multe piste, pe pistele aceluiasi cilindru, pentru a
putea realiza o parcurgere secventiala eficienta.

Pentru ca SGBD-ul sa poata efectua aceste optimizari,
administratorul, cand defineste schema fizica a bazei de date, trebuie sa
rezerve un spatiu important pe disc, pe care el (SGBD-ul) il va gestiona.
Daca SGBD-ul se multumeste de a cere sistemului de exploatare spatiu pe
disc atunci cand are nevoie, stocarea fizica obtinuta poate fi extrem de
fragmentata.

Reordonarea accesului la date. Bazele de date sunt sisteme ce
lucreaza in regim de multiutilizator. Astfel, chiar daca teoretic se admite ca
un fisier este stocat continuu pe aceeasi pista, citirea secventialda a acestui
fisier poate fi segmentata de interogarile formulate de alti utilizatori care
acceseaza baza de date in mod concurential. Si atunci, eficienta organizarii
optimale a datelor pe disc, bineinteles, scade. Apare, deci, problema ridicarii
eficientei accesului la date in situatia satisfacerii simultane a mai multor
utilizatori, cererile carora trebuie administrate concomitent.

De exemplu, dacd un utilizator U, cere lectura fisierului 7, in timp ce

utilizatorul U, cere lectura figierului F,, sistemul, probabil, va alterna

lectura blocurilor din aceste fisiere. Chiar si in cazul cand ambele fisiere vor
fi stocate secvential, deplasarea capului de citire va minimiza intru catva
avantajele acestei organizari.

SGBD-ul poate reduce acest dezavantaj prin conservarea temporara a
operatiilor de citire/scriere intr-o zona tampon (cache) si reorganizarea
(secventiala) ordinii de acces.

Astfel, fie mai multi utilizatori formuleaza instructiuni de lectura si
scriere asupra fisierelor stocate in baza de date. Evident ca multe din aceste
cereri se pot suprapune cand trec prin controlor. Pentru a evita accesul
aleatoriu care survine in urma acestei suprapuneri, cererile de acces sunt
stocate temporar intr-un tampon. Sistemul le triaza, atunci, pe piste, apoi
pe blocuri in cadrul fiecarei piste si apoi transmite lista ordonata
controlorului de disc.

O metoda de sistematizare a acestei strategii este asa-zisul
».ascensor”. Adica se presupune ca capul de lectura se deplaseaza de la
marginea suprafetei discului spre axa de rotatie, apoi revine de la axa spre
bord. Deplasarea se efectueaza pista dupa pista si, la fiecare pista, sistemul
transmite controlorului cererea de citire/scriere corespunzatoare pistei
curente.

Acest algoritm reduce la maximum timpul de deplasare a capului,
deoarece cautarea se realizeaza sistematic pe pistele adiacente. El este, in
particular, eficient pentru sistemele cu multe cereri, fiecare antrendnd mai
multe blocuri de date. Dar, bineinteles ca pot fi si unele efecte nedorite in
cazul unor cereri mari consumatoare de date. Procesele care cer blocuri de
pe pista 1, cand capul, deja, trece pe pista 2, trebuie sa astepte un timp
considerabil pentru a vedea cererea data satisfacuta.

Utilizarea memoriei tampon. Utilizarea memoriei tampon sau a
buferului pentru optimizarea accesului la date este pe larg practicata in
toate SGBD-urile. O memorie tampon este o multime de blocuri in memoria
principald, care sunt copii ale unor blocuri de pe disc. Cand sistemul cere
accesul la un bloc, mai intéi se inspecteaza memoria tampon. Daca blocul se
gaseste in bufer, este evitata o citire a dispozitivului secundar de stocare a
datelor. Daca nu, se efectueaza lectura si se stocheaza blocurile in memoria
tampon.

Ideea este, deci, de a pastra in memoria principala o copie a unei
parti cat se poate de mare a bazei de date, chiar daca o parte din blocurile
plasate in memoria tampon nu este utila la moment. O latura importanta a
administrarii unei baze de date o constituie specificarea unei parti de
memorie principala in calitate de memorie tampon disponibild, fin
permanenta, SGBD-ului. In plus, aceastd memorie este utila si prin faptul ca

se poate conserva o parte semnificativa a bazei, castigand, astfel, in
performanta.

Daca in memoria tampon ramane loc neutilizat, se poate recurge la
lecturi in avans. Tehnica lecturii in avans este utilizata frecvent de SGBD-uri
pentru a efectua operatia de jonctiune a doua relatii. Aceasta tehnica se
foloseste pe larg si in lucrul cu fisierele indexate.

28.2 Concepte generale de organizare a fisierelor

O baza de date este conceputa ca o multime de fisiere stocate pe un
suport persistent. Inainte de a vorbi despre conceptele fundamentale ale
structurilor de fisiere in baze de date, trebuie mentionat, pentru a elimina
confuzia, cd aceste doua concepte (fisier si fisier in baza de date) sunt doua
notiuni distincte. In primul rand, fisierele administrate de un SGBD sunt un
pic mai structurate. Dar, de fapt, exista trei particularitati esentiale care
caracterizeaza fisierele din baze de date. Aceste particularitati sunt:

— viziuni diferite ale acelorasi date;
— independenta date-prelucrare;
- redundanta (gestionabild) datelor.

De aceea, fara exceptie, SGBD-rile au propriile lor module de
gestiune a fisierelor si a memoriei cache.

Campuri si inregistrari

Cand se construiesc structuri de fisiere, datelor li se da un aspect
organizational si de persistenta in acelasi timp, adica o aplicatie creeaza, in
memoria centralda, date si le salveaza intr-un fisier si cel putin o alta
aplicatie poate citi si rescrie aceste date in memorie, recuperandu-le din
fisier. Astfel, obiectivul este organizarea datelor intr-o structura
comprehensibila de catre fiintele umane. Or, pentru un sistem de operare,
fisierul este o succesiune de octeti repartizati in unu sau mai multe blocuri.

Prin urmare, se disting nivelul logic si nivelul fizic de concepere a
fisierului:

— structura logica este forma fisierului in care este vazuta si
manipulatd de aplicatii; cum datele sunt organizate in aplicatii (in
general, organizate in acord cu obiectele pe care aplicatia le
manipuleazad); de exemplu, un fisier poate fi vazut ca o colectie
de entitati ordonate de o cheie sau o structura ierarhica construita
din entitati principale si entitati subordonate;

- structura fizica este o viziune care reflectda reprezentarea si
organizarea datelor in mediul de stocare (sectoare, blocuri,...);
este forma in care datele sunt stocate, organizate pe dispozitiv,
tinand cont de unitatea de baza pe care dispozitivul o poate
manipula (o comanda de citire sau de scriere o manipuleaza in
intregime).

La nivel fizic, fisierele sunt constituite din inregistrari (records) care
reprezintda, din punct de vedere fizic, entitatile de lucru ale SGBD-ului.
Conform modelului logic al SGBD-ului, aceste entitati pot fi tupluri intr-o
relatie sau obiecte. In cele ce urmeaza, este tratat primul caz, adica este
considerat modelul relational de date.

Cémpuri cu lungime fixa si lungime variabild. Un tuplu al unei relatii
este constituit dintr-o lista de componente (atribute), fiecare avand un tip.
Acestui tuplu 1i corespunde, la nivel fizic, o inregistrare, constituita din
campuri (field). Fiecare tip de atribut determina lungimea campului necesar
pentru stocarea unei instante a campului.

Lungimea unui tuplu este egala cu suma lungimilor campurilor care
reprezintd atributele sale. In practicd, lucrurile sunt ceva mai complicate.
Campurile (si, deci, inregistrarile) pot fi de lungimi variabile. Daca lungimea
unei inregistrari de marime variabila creste pe parcursul actualizarii, trebuie
sa se gaseasca un spatiu liber. De asemenea, apare si problema
reprezentarii valorii NULL.

Tipurile de date pot fi divizate in doua categorii: tipuri care pot fi
reprezentate printr-un camp de lungime fixa si tipuri care au lungime
variabila. De exemplu, standardul SQL2 propune, printre altele, doua tipuri
de date pentru secvente de caractere: CHAR si VARCHAR.

Tipul CHAR indica o secventa de lungime fixa. Astfel, CHAR(5)
defineste un camp stocat pe 5 octeti. Atunci apare intrebarea: cum se
reprezinta valoarea Joc™ Exista doua solutii:

— ultimele doua caractere se completeaza cu spatii;

— ultimele doua caractere se completeaza cu un caracter

conventional.

Conventia adoptata influenteaza compararea, fiindca, intr-un caz, se
stocheaza ‘Joc’ (cu 2 spatii), iar in alt caz - Joc’ fara caractere de
terminatie. Daca se utilizeaza tipul CHAR, este important sa se studieze
conventia adoptata de SGBD-ul concret.

Tipul VARCHAR(n) permite stocarea secventelor de lungime variabila.
Exista (cel putin) doua posibilitati:

— campul este de lungimea n+1, primul octet contine un intreg care
indica lungimea exacta a secventei; daca se stocheaza ‘Joc’ intr-
un VARCHAR(10), se obtine atunci ‘3Joc’, unde primul octet
pastreaza un 3 in forma binara, urmat de trei octeti cu caracterele
'J’, ‘o’ si ‘c’, iar urmatorii 7 octeti raman neutilizati;

— campul are lungimea I+1, unde I<n, aici nu sunt octetii neutilizati,
ceea ce permite economisirea spatiului.

De notat ca reprezentarea unui intreg de un octet limiteaza lungimea
maximala a unui VARCHAR cu 255. O varianta care poate depasi aceasta
limita constda in finlocuirea octetului initial care indica lungimea cu un
caracter de terminare a secventei (fie un C).

Antetul inregistrarii. La fel cum se prefixeaza un camp de lungime
variabild cu lungimea sa utila, in antetul inregistrarii se stocheaza unele
date complementare. Aceste date pot fi:

— lungimea inregistrarii, daca lungimea este variabila;

— un pointer spre schema relatiei, pentru a sti care este tipul

inregistrarii;

- data ultimei actualizari etc.

Acest antet, de asemenea, se poate utiliza pentru indicarea valorilor
NULL. Absenta valorii pentru unul dintre atribute este o problema delicata.
Daca nu se stocheaza nimic, exista riscul sa fie perturbatd decuparea unui
camp, in timp ce, daca se stocheaza o valoare conventionala, se pierde
spatiu. O solutie posibila este o masca de biti, cate unul pentru fiecare camp
al inregistrarii. Bitul ia valoarea 0, daca campul este NULL si 1 daca nu.
Aceasta masca poate fi stocata in antetul inregistrarii si, deci, nu este

necesar spatiu pentru valoarea NULL. Totul ramane in decodarea corecta a
secventei de octeti.

De exemplu, fie o schema relationald cu atributele ID de tipul
INTEGER, Nume_Prenume de tipul VARCHAR(50) si An_nastere de tipul
INTEGER si fie in aceasta relatie este inregistrarea (202315, ‘Odobescu,
Alexandru’, NULL), adica anul nasterii este necunoscut.

Identificatorul ID este stocat pe 4 octeti si numele si prenumele pe 8
octeti, dintre care un octet este rezervat pentru lungimea campului. Antetul
inregistrarii contine un pointer spre schema relatiei, lungimea sa totala (4+8), si o
masca de biti 110 care indica faptul ca al treilea camp are valoarea NULL. Figura
28.4 reprezinta aceasta inregistrare. De notat, ca citind antetul, se poate calcula
adresa inregistrarii urmatoare.

antet ID Nume, Prenume

|
[T12]110] 202315 | Odobescu, Alexandru |
J

pointer

Figura 28.4 O inregistrare cu antet
Blocuri

Unitatea de transfer de date intre fisierul memorat pe mediu si
memoria interna este blocul. Lungimea unui bloc este, de obicei, o putere a
lui 2 cuprinsa intre 2° si 2" octeti. Un bloc in sistemul Oracle, de exemplu,
ocupa 4096 sau 8092 octeti. Fiecarui bloc i se asociaza o adresa.

Structura blocului. Stocarea inregistrarilor intr-un fisier trebuie sa tina
cont de divizarea in blocuri a acestui fisier. In general, intr-un bloc se pot
plasa mai multe inregistrari, dar se evita ca o inregistrare sa se imparta
intre doua blocuri. Numarul maximal de inregistrari de lungimea L
memorate intr-un un bloc de lungimea B este |B/LJ, unde notatia [x]J
desemneaza cel mai mare intreg inferior lui x.

De exemplu, fie un fisier memoreaza o relatie a carei schema nu
contine atribute de lungime variabila, adica nu utilizeaza tipurile VARCHAR
sau BIT VARYING. Inregistrarile au, deci, o lungime egalda cu suma
lungimilor tuturor campurilor. Fie ca aceastd lungime este de aproximativ
84 octeti, iar lungimea blocului este de 4096 octeti. In afara de aceasta, fie
ca fiecare bloc contine un antet de 100 octeti pentru a stoca datele despre
spatiul liber disponibil in bloc, inlantuirea cu alte blocuri etc. Atunci, se pot
memora | (4096-100)/84]=47 inregistrari intr-un bloc. De notat c& in fiecare
bloc raman 3996-(47*84)=48 octeti neutilizati.

Transferul, in memorie, al inregistrarii 563 a acestui fisier este simplu
de efectuat: se determind in ce bloc se gaseste ea (fie [563/47/+1=12), se
incarca al 12-lea bloc in memoria centrala si din acest bloc se extrage
inregistrarea. Prima inregistrare a blocului este 11*47+1=518, iar ultima
inregistrare este 12*47=564. fnregistrarea 563 este, deci, penultima in
blocul cu numarul intern 46, figura 28.5.

blocurl \|‘ . | |

1nreglstra>\

Figura 28.5 Un fisier cu blocuri si inregistrari

antetul
blocului | | |

|
46

Calculul de mai sus arata cum se poate localiza fizic o inregistrare:
prin fisierul ei, apoi prin blocul ei, apoi prin pozitia ei in bloc. Daca fisierul e
nominalizat cu F,, adresa inregistrarii poate fi reprezentata prin 'F1.12.46".

Exista multe alte metode de adresari. Dezavantajul utilizarii adreselor
fizice, de exemplu, este ca nu se poate schimba locul unei inregistrari fara a
genera adresari invalide ale pointerilor asupra acestei inregistrari (de
exemplu, in indecsi).

Pentru a permite deplasarea inregistrarilor, se poate forma o adresa
logicad, ce ar identifica o inregistrare independent de locatia ei. Un tabel de
corespondenta permite administrarea asocierii intre adresa fizica si adresa
logica, figura 28.6. Acest mecanism face ca organizarea si reorganizarea
bazei de date sa fie o procedura flexibila. Acum e suficienta referirea unei
inregistrari prin adresa sa logicd, iar modificarea adresei fizice in tabel sa se
efectueze cand are loc o deplasare. In schimb, aceasta metoda necesita un
cost suplimentar pentru cd, sistematic, trebuie examinat tabelul de
corespondenta pentru a accesa datele.

12
s 1] | |
Adresi logica Adresa fizica 4\6
#395672 F1.12.46 |_| || | I
| A

Figura 28.6 O adresare indirecta

O solutie intermediara este imbinarea adresarilor logica si fizica.
Pentru a localiza o inregistrare se indica adresa fizica a blocului, apoi in
blocul propriu-zis se administreaza un tabel care da localizarea in bloc sau
eventual in alt bloc.

Fie, din nou, inregistrarea F1.12.46. Aici F1.12 indica blocul 12 al
fisierului F,. Se presupune ca 46 este identificatorul logic al inregistrarii
administrate in interiorul blocului. Figura 28.7 prezintd aceasta adresare in
doua niveluri: in blocul F1.12, inregistrarea 46 corespunde unei amplasari in
acelasi bloc, pe cand inregistrarea 57 este plasata in alt bloc.

Blocul E£7.12

Antet__ 16 [46 57
Spatiu liber, > T readresare
v
Inregistrari Y

Figura 28.7 O imbinare a adresarilor logica si fizica

Trebuie mentionat ca spatiul liber din bloc este situat intre antetul
blocului si inregistrari. El permite marirea simultana a acestor doua
elemente In cazul unei inserari, de exemplu, fara efectuarea reorganizarii
interne a blocului. Acest mod de identificare ofera multe avantaje si permite
reorganizarea suplimentara a spatiului intern al unui bloc.

Blocuri cu inregistrari de lungime variabila. O relatie care e definita pe
atribute de tipul VARCHAR sau BIT VARYING este reprezentata prin
inregistrari de lungime variabile. Cand o inregistrare este inserata intr-un
fisier, lungimea se calculeaza nu dupa tipul de atribute, ci dupa numarul
real de octeti necesari reprezentarii valorilor atributelor. Aceasta marime
trebuie stocata la inceputul inregistrarii curente, pentru ca SGBD-ul sa
poata determina inceputul inregistrarii urmatoare.

Se poate intampla ca Iinregistrarea este actualizata, adica este
modificgté valoarea unui atribut sau unui atribut initial i-a fost data valoarea
NULL. In acest caz, se poate intampla ca locul rezervat initial sa fie
insuficient pentru noile date si, deci, inregistrarea urmeaza sa fie memorata
in alt loc al aceluiasi fisier. Astfel, e necesara crearea unei legaturi intre
inregistrarea anterioara si curenta, memorata in alt bloc.

La locul deplasarii inregistrarii intregi, unele SGBD-uri aplica tehnica
de fragmentare a inregistrarii si de memorare in alt bloc a unui fragment,
organizand, bineinteles, o inlantuire la nivel de inregistrare. Deplasarea (sau
fragmentarea) inregistrarilor de lungime variabild, evident, influenteaza
eficienta de accesare a datelor. In afara de aceasta, inregistrarile de
lungime variabild sunt ceva mai complicat de administrat decat cele de
lungime fix3. In schimb, un fisier care contine finregistriri de lungime
variabila utilizeaza, frecvent, mai putin spatiu decat i se atribuie.

Chei

Daca fisierul stocat este organizat ca un grup de inregistrari
secventiale, trebuie sa fie forme de recuperare a unei inregistrari specifice,
executand un numar minimal de accesari. Astfel, inregistrarile trebuie sa fie
ordonate pentru acelasi criteriu de cautare. Pentru aceasta, fiecarei
inregistrari i se asociaza o cheie bazatd pe continutul sau pentru a fi
utilizata pentru identificarea univoca. In acest context, cheia este un
instrument conceptual important pentru mentinerea consistentei datelor si
pentru asigurarea procesului de restabilire. De exemplu, cheia in fisiere este
mai bine de folosit impreuna cu unele tehnici de cautare speciale (binara, pe
blocuri etc...), in baza valorii ei, pentru a verifica inregistrarile in mod
secvential.

O cheie primara reprezinta unul sau mai multe atribute, care, univoc,
identifica (una si numai una) o inregistrare.

O cheie secundara nu identifica univoc o inregistrare si poate fi
utilizata pentru cautarea simultana a mai multor inregistrari cu aceeasi
valoare a cheii. Astfel, definitia cheilor secundare trebuie sa foloseasca unul
sau mai multe campuri cu o semnificatie pentru utilizator si a caror date
sunt, de obicei, folosite pentru cautarea datelor in fisier. Deci, este o cheie
de ordonare pentru recuperarea unei multimi de date, organizate diferit de
organizarea cheii primare.

Pe parcursul acestui capitol, se vor utiliza si alte notiuni legate de
cheie. Urmeaza o explicare a acestor concepte:

O cheie compusa este o cheie formata din mai multe atribute sau
campuri.

O cheie externa este o multime de atribute care constituie cheia
primara a altui fisier. Multimea de valori a cheii externe constituie o
submultime a multimii de valori ale cheii primare.

O cheie de acces este cheia utilizata pentru identificarea
(recuperarea) unei inregistrari. Aceasta reprezinta unul sau o multime de
atribute pentru cdutarea inregistrarilor in fisier.

Un argument de cautare este valoarea cheii de acces la inregistrare
intr-o operatie de cautare.

O cheie de ordonare reprezintda o multime de atribute folosite la
ordonarea inregistrarilor unui fisier.

O cheie a unei inregistrari este valoarea cheii primare pentru aceasta
inregistrare.

Accesul la datele stocate pe un suport periferic, spre deosebire de
aplicatiile care manipuleaza datele in memoria centrald, reprezintda una
dintre particularitatile esentiale ale SGBD-urilor. Aici apar probleme de
imbunatatire a performantei, deoarece timpul de citire a unei unitati de date
pe un disc este considerabil mai mare decat timpul de acces in memoria
principalda. Organizarea datelor pe un disc in fisiere, structurile de indexare
si algoritmii de cautare utilizati constituie aspecte foarte importante ale
SGBD-urilor. Un sistem performant trebuie sa utilizeze eficient tehnicile
disponibile in scopul micsorarii timpului de acces.

Organizarea fisierelor este o aranjare a unui tip de structura
construita astfel incadt sa furnizeze un mediu eficient pentru stocarea si
manipularea datelor in memoria secundara, economisind spatiul utilizat, si
marind viteza de acces (minimizand timpul total de accesare si transfer al
blocurilor de date) la inregistrarile din fisier. In organizarea fisierelor, se
tine cont de mai multi factori, cum sunt frecventa cu care se efectueaza
anumite operatii, cdmpurile implicate in operatiile de cautare (cheile de
cautare), dimensiunile inregistrarilor (fixe sau variabile).

Cele mai utilizate tipuri de organizare a fisierelor in bazele de date
sunt: secvential, indexat secvential, indexat si cu dispersie. Aceste tipuri de
organizare a fisierelor sunt descrise in continuare.

28.3 Fisiere secventiale

Prin natura lor, fisierele secventiale sunt asociate dispozitivelor cu
acces secvential, precum sunt, de exemplu, benzile magnetice. Ele se
caracterizeaza prin prelucrarea in lot, mari volume de date, costuri
minimale, spatiu redus de pastrare, utilizare in benzile magnetice. Uneori,
fisierele secventiale sunt stocate si pe dispozitive cu acces direct, in

particular, cand este necesara prelucrarea datelor, in mod secvential, cu o
viteza mai inalta.

Intr-un mediu multiutilizator, cum este baza de date, trebuie tinut
cont ca mai multi utilizatori pot partaja acelasi dispozitiv de stocare si
accesul la o noua inregistrare, de obicei, necesita o pozitionare noud a
capului de citire/scriere pe cilindrul care o contine. In afara de aceasta,
timpul de miscare a capului de citire depinde de schema memoriei
intermediare utilizate si de faptul daca sistemul realizeaza sau nu citirea
anticipata.

Utilizarea acestui tip de organizare se recomanda pentru fisierele
mici si in cazul cand nu sunt frecvent modificate. De exemplu, in fisierele
pentru salvare, exista putine includeri de date si, in general, ele sunt facute
in lot, periodic. Modificarile si suprimarile sunt putine sau absente.
Consultarile, evident, sporadice, pot fi facute rapid, iar parcurgerea
secventiala este cea dezirabila.

Fisiere secventiale ordonate

Fisierele secventiale ordonate reprezintd o structurd de fisiere
secventiale, unde inregistrarile sunt clasificate de valorile cdmpurilor care
formeaza cheia de sortare (de obicei, cheia primard) si stocate astfel incat
ordinea logica coincide cu ordinea fizica. Fisierele secventiale sunt stocate
pe disc in blocuri pe pozitii fizice continue pe pistele unuia si aceluiasi
cilindru si apoi pe pistele cilindrului adiacent. Deoarece inregistrarile in
fisierele secventiale sunt stocate in succesiune continud, accesarea
inregistrarii n a fisierului presupune ca cele (n-1) inregistrari (incepand cu
prima), de asemenea, sunt citite.

Dupa cum fisierele sunt unice si cheia de ordonare este unica (fiecare
instanta poate fi clasificata numai intr-un singur mod). In cazul cand
fisierele secventiale nu poseda chei de organizare (ceea ce, in bazele de
date, nu are loc), inregistrarile sunt aranjate in serie, fiindcd, in general,
fiecare inregistrare noua se plaseaza la sfarsitul fisierului. In aceasta
situatie, se adauga un camp suplimentar care contine ordinea sau numerele
de identificare conform carora fisierul este ordonat si acest camp poate fi
considerat cheie primara.

Organizarea secventiala este mai perfecta decat organizarea seriala a
fisierelor (heap file), dar ele pierd din flexibilitate, deoarece nu se adapteaza
usor la operatiile de modificare. Fisierele secventiale sunt utile pentru
clasificarea si accesarea volumelor mari de date si, din motive economice, in
general, sunt stocate pe benzi magnetice.

Fisierele sunt ordonate fizic si, pe parcursul perioadei de pastrare a
datelor, aceasta ordine (logica si fizica) trebuie mentinuta.

Fisierul secvential stocat pe banda magnetica poate fi deschis ca un
fisier de iesire sau de intrare. Dar, daca fisierul este stocat pe disc, poate fi
deschis pentru intrare, iesire si modificare. Daca se deschide un fisier
secvential, capul de citire intotdeauna este fixat pe prima inregistrare a
fisierului si de multe ori (pe banda, de exemplu) nu are cum sa se intoarca
la inregistrarea citita anterior. Pentru aceasta, fisierul trebuie sa fie inchis
pentru a fi rebobinata banda magnetica si apoi deschis.

De obicei, fisierul secvential este simplu de inchis, dar, pentru banda
magnetica, operatia respectiva presupune rebobinarea ei pana la inceputul
fisierului. Aceasta sarcina este o functie fizica realizata in mod automat.

Operatia de acces la un fisier secvential poate sa se produca sub doua
forme: cu cheia de acces diferita de cheia de ordonare si cu cheia de acces
egala cu cheia de ordonare.

Manipularea inregistrarilor in ordinea stocarii este eficienta, deoarece
ele sunt stocate fizic in ordinea in care sunt solicitate - secventa fizica este
egala cu cea logica. Accesul secvential (consta in obtinerea inregistrarii care
urmeaza dupa ultima accesatd, in secventa (de obicei, ascendentd) definita
de cheia de ordonare. In acest mod, daca se folosesc tehnicile de buferizare
si caracteristicile blocului, in majoritatea accesarilor, inregistrarea dezirabila
deja va fi in memorie, deoarece inregistrarea succesiva va fi in acelasi bloc
cu precedenta. Astfel, parcurgerea secventiala dupa cheia de ordonare este
simpla, intrucadt fisierul se parcurge de la inceput la sfarsit. Insa,
parcurgerea secventiala dupa alta cheie va necesita o ordonare prealabila
intr-un fisier auxiliar.

Avantajul principal al acestei organizari este facilitatea de realizare a
operatiei de parcurgere secventiala, in afara de simplitatea implementarii
celorlalte operatii. Cel mai mare dezavantaj este timpul de executare a
operatiilor de includere si excludere a finregistrarilor, pentru ca multe
inregistrari sunt deplasate pentru pastrarea ordinii fizice si logice.

Accesul aleatoriu, interogare, este caracterizat de identificarea
inregistrarii prin specificarea argumentului de cautare. Secventa de acces
nu este legata neapdrat de ordinea fizica a figierului, avand ca rezultat
inregistrari care nu sunt stocate in forma continua. In general, consultarea
aleatorie a unei singure inregistrari dupa cheia de ordonare se realizeaza
prin folosirea tehnicilor de cautare mai eficiente, precum cea binara. In
cautarea binara, numarul maximal de comparatii, pentru a atinge
inregistrarea cdutata, este (log,n)+1, unde n este numarul de inregistrari

ale fisierului.

Utilizarea principala a fisierelor secventiale este legata de prelucrarea
secventiala a datelor. Avantajul posibilitatii accesarii rapide a inregistrarilor
in forma continua devine un dezavantaj, daca fisierul este utilizat pentru
accesarea unei inregistrari care nu este una urmatoare sau daca atributul
de cautare nu este cheie de ordonare. Parcurgerea va fi lenta, creand
impresia ca fisierul nu este ordonat, necesitand o cautare exhaustiva si
citind, in medie, jumatate de fisier pentru a gasi inregistrarea specificata.
Astfel, in general, procesarea unui fisier secvential se face conform modului
de organizare a acestuia, adica, predomina procesarea secventiala.

Prin urmare, daca cheia de acces este diferita de cea de cautare,
atunci fisierul este unul serial in care se realizeaza o cautare secventiala,
pornind de la prima inregistrare, pana cand se localizeaza cea cu valoarea
cheii de acces egala cu argumentul de cautare sau se atinge extremitatea
fisierului, adica inregistrarea cautata nu se gaseste in fisier. Cand cheia de
acces este egala cu cheia de ordonare exista doua alternative:

— pentru dispozitive cu acces secvential fisierele sunt citite
secvential pana cand exista inregistrari pentru examinare si cheia
de cdutare este mai mica decat valoarea atributului cheie sau
pana cand inregistrarea cautata este gasita;

— pentru dispozitive cu acces direct sunt utilizate tehnici mai
eficiente, precum cautarea binara, prin blocuri sau interpolare.

Consultarea cu cheia de acces diferita de cheia de ordonare.
Consultarea cu cheia de acces diferita de cheia de ordonare are loc ca in
fisierele neordonate. Cautarea este facuta prin lectura exhaustiva pana cand

se localizeaza inregistrarea cautata sau se termina fisierul. Aici NMC =
(n+1)/2, unde NMC este numarul mediu de comparatii, iar n - numarul de
inregistrari in fisier. Algoritmul poate fi urmatorul:

1. Se merge la pozitia initiald a fisierului.
2. Pana cand nu este atins sfarsitul fisierului:
a) daca inregistrarea curenta = Inregistrarea doritd, terminare cu
succes;
b) avansare cu o inregistrare.
3. Terminare cu esec.

Consultarea cu cheia de acces egala cu cheia de ordonare.
Consultarea cu cheia de acces egala cu cheia de ordonare (sau cu partea ei
initiald) a fisierului stocat pe un dispozitiv cu acces secvential se face cu o
cautare secventiala. Singurul avantaj este ca, daca inregistrarea curenta are
valoarea cheii mai mare decat a celei cautate, ea nu exista si cautarea este
intrerupta. Daca, insd, dispozitivul permite accesul direct, se poate realiza o
cautare mai eficienta, cum ar fi cautarea binara si atunci NMC= (log, n)+1

Algoritmul de cautare binara este urmatorul:

1. Definirea P; (pozitia primei inregistrari a fisierului) si Pr (pozitia ultimei
Inregistrari a fisierului).

2. Pana cand (P; < Py) se face:
a) calcularea P, (pozitia medie) = (P; + Pr)/2;
b) se trece la pozitia P,,;
c) daca inregistrarea curenta Pn,=Iinregistrarea cautata, terminare cu

succes;

d) daca inregistrarea curenta P, >inregistrarea curenta, P; = P, + 1;
e) dacda inregistrarea curenta P, <inregistrarea curenta, Pr = Py, - 1;

3. Terminare cu esec.

Inserarea inregistrarilor. Inserarea unei inregistrari in timp real are
un cost nalt, deoarece trebuie efectuata reordonarea fisierului dupa cheia
de ordonare. Pentru aceasta, se determina pozitia adecvata a inregistrarii
noi (conform cheii primare), se deplaseaza toate inregistrarile care poseda
cheia mai mare decat a celei incluse, se insereaza inregistrarea noua.
Algoritmul de inserare a inregistrarii

1. Se merge la sférsitul fisierului.

2. Pana cédnd argumentul de cautare nu este mai mare decéat valoarea
respectiva a inregistrarii curente si nu s-a ajuns la inceputul
fisierului:

a) se deplaseaza inregistrarea cu o pozitie (pozitia noud=pozitia
anterioara+1);
b) se trece la inregistrarea vecina (se micsoreaza cu o pozitie).
3. Seinsereaza inregistrarea noua in fisier.

O alternativa pentru inserarea unei inregistrari poate fi urmatorul
algoritm: se creeaza un fisier auxiliar si se copiaza fisierul original, plasand
inregistrarea noua in pozitia corecta, se suprima fisierul original si se
renumeste fisierul auxiliar cu numele fisierului original.

Tnsé, pentru fisierele mari, stocate pe suport extern, aceste procese
au un cost prohibitiv. De obicei, se utilizeaza un fisier auxiliar care contine
inregistrarile noi, ordonate in acelasi mod (dupa aceeasi cheie) ca si fisierul
principal de date. Dar utilizarea fisierului auxiliar influenteaza procesul de
realizare a tuturor operatiilor care trebuie efectuate asupra ambelor figiere
si nu numai asupra unuia. Toate accesarile inregistrarilor, care sunt
realizate pentru toate operatiile, trebuie sa fie executate in doua fisiere.

Suprimarea inregistrarilor. Suprimarea sau eliminarea Iinregistrarii
trebuie facuta la nivel fizic, cu reorganizarea fisierului in timpul executarii
operatiei. Suprimarea presupune urmatoarele activitati:

1. Se merge la inceputul fisierului.

2. Se localizeaza inregistrarea care trebuie exclusa.

3. Se trece, una dupa alta, fiecare inregistrare de dupa inregistrarea ce
urmeaza a fi suprimata si se micsoreaza pozitia ei cu 1.

O alternativa, de asemenea, poate fi utilizarea unui fisier auxiliar. In
acest caz, se trece la inceputul fisierului, se copiaza inregistrarile de pana la
cea care trebuie suprimata, se ignora inregistrarea care trebuie exclusa, se
copiaza inregistrarile ramase in fisierul auxiliar, se substituie fisierul initial
cu cel auxiliar.

Excluderea fizica, deci, necesita un cost prohibitiv pentru prelucrare
in timp real, deoarece trebuie deplasate toate inregistrarile care urmeaza
dupa cea suprimata. Prelucrarea poate fi facuta in lot, daca operatiile pot fi
realizate mai tarziu, adica comenzile de excludere pot fi colectate intr-un
fisier de tranzactii pentru realizarea lor ulterioara. De multe ori, aceasta
procedura nu poate fi acceptata. Mai frecventa este procedura care
presupune includerea in inregistrare a unui cdmp aditional, in care se indica
excluderea. Astfel, pentru a elimina o inregistrare se modifica doar valoarea
acestui cdamp (modificarea inregistrarii), prin care se arata ca ea a fost
eliminata. Cu aceasta procedura, este evitata necesitatea deplasarii altor
inregistrari pentru completarea spatiilor eliberate in urma eliminarii.

Modificarea inregistrarilor. Modificarea unei inregistrari presupune
modificarea valorilor unor campuri ale Iinregistrarii. Pentru aceasta,
inregistrarea este localizata, cititd, campurile ei sunt modificate si apoi ea
este scrisa. In general, sunt actualizate numai atributele care nu fac parte
din cheie. Dar, daca inregistrarea are lungimea variabila si modificarea
mareste lungimea ei, inregistrarea nu poate fi inscrisa in pozitia initial3a,
deoarece lipseste spatiul necesar. Atunci, de obicei, ea este exclusa si apoi
inclusa, dar, deja, actualizata.

Daca se modifica vreun atribut al cheii de ordonare, schimbarea
valorii lui implica schimbarea pozitiei inregistrarii. In acest caz, operatia
este, in general, implementata prin excluderea inregistrarii vechi, urmata de
includerea in pozitia respectiva a variantei modificate. Insa, in majoritatea
aplicatiilor, nu este permisa modificarea cheii. In alte aplicatii poate fi folosit
un fisier de tranzactii. Daca este utilizata banda magnetica, operatia de
rescriere poate fi executata doar mai tarziu, intrucat nu poate fi rescrisa o
inregistrare care este citita.

Lectura exhaustivd a inregistrarilor. Lectura exhaustiva a
inregistrarilor este o operatie eficienta, deoarece consta in citirea fiecarei
inregistrari din fisier. Cea mai adecvata organizare pentru acest tip de
operatii este cea secventiala.

In general, daca numarul de operatii de actualizare a fisierului este
foarte mare, se poate utiliza una din optiuni: un fisier auxiliar aditional cu
actualizari care vor fi facute mai tarziu (procesul batch); inserarea la
sfarsitul fisierului si reorganizarea (ordonarea) ulterioara a lui.

Fisiere secventiale ordonate la nivel logic de pointeri

Tehnicile descrise anterior ofera avantaje in cazul prelucrarii
secventiale si in cazul cdutarii inregistrarilor cu metode mai rapide de
cautare. Insa dezavantajul lor este timpul cheltuit in operatiile de
actualizare (includere, excludere si modificare a atributelor utilizate in
ordonarea fisierului). Aceasta se datoreaza faptului ca fisierele trebuie
reorganizate 1n toate operatiile de includere/excludere, deplasand
inregistrarile pentru a mentine ordinea fizica egala cu cea logica. Prin
urmare, deoarece au un cost finalt, pentru includerea, modificarea si
excluderea inregistrarilor, trebuie propuse tehnici mai eficiente.

Fisierul secvential cu pointeri a fost elaborat pentru a mari eficienta
sistemelor cu multe inserari si suprimari, cum sunt, de exemplu, bazele de
date. Structura unui fisier cu pointeri este similara unei liste inlantuite. In
acest caz, nu este necesar a avea o ordine fizica a fisierului egala cu ordinea
logicd. Aceasta tehnica, desi are dezavantajul ca este mai lenta in
parcurgerea secventiala a inregistrarilor, poate fi necesara la citirea si
recitirea unor sectoare care sunt plasate in diferite locuri ale fisierului
(necontinuu). .

Acest tip de fisiere poseda unele structuri aditionale, figura 28.8. In
primul rand, exista un atribut care indica ordinea logica, adica adresa
urmatoarei inregistrari din figier, in secventa structurii logice conform cheii
de clasificare. In al doilea rand, exista atributul inregistrarilor suprimate,
care indica faptul ca inregistrarea este activa sau deja a fost eliminata. Alta
structura este inregistrarea zero sau antetul. Inregistrarea zero poseda
atributul Inceput, care arata adresa primei inregistrari in fisier, figura28.8,
inregistrarea aflata pe adresa 2. Astfel, structura reprezinta o lista care
indica inregistrarile in uz si ordinea lor in fisier, si un camp Exclusa pentru
inregistrarile sterse.

fnceput
0 | 2 | Antet
Nume ver Exclusa Pointer
1 Donica vee 3
2 Amihalachioaei ver 5
3 Gutu .. * 4
4 | Munteanu 6
5 Petrescu ver * 1
6 Rotaru *

Figura 28.8 Un fisier secvential cu pointeri

Exista si implementarea cu doua liste, figura 28.9. Desi, prin
adaugarea unui pointer in inregistrare structura se complica, aceasta forma
de organizare permite utilizarea spatiului inregistrarilor eliminate pentru
inserarea inregistrarilor noi. Or, cautarea spatiului disponibil, al unei
inregistrari suprimate, intr-un fisier cu multe inregistrari este lenta,
deoarece necesita multe accesari. In afara de pointerul de pastrare a
secventei logice a inregistrarilor este utilizat un alt pointer pentru pastrarea
listei inregistrarilor excluse. Astfel, poate fi utilizat spatiul eliberat, inserand,
mult mai rapid, inregistrari noi. Nu se cunoaste doar pozitia primei
inregistrari si nici prima inregistrare care a fost eliminata. Adica, este
necesara adaugarea la figier a unui antet pentru pdstrarea acestor
informatii. In structura cu doua liste, una indica inregistrarile in uz si
ordinea lor in fisier, iar alta - inregistrarile suprimate al caror spatiu poate fi
utilizat pentru inserare.

Inceput Exclusa
Nume
Donica
= Amihalachioaei
<
Munteanu
<
Rotaru

»

Figura 28.9 Un fisier secvential cu doua structuri de pointeri

In structura cu doi pointeri, in procesul de consultare, se identifics
prima inregistrare cu adresa indicatd de atributul inceput al antetului. Dat
fiind faptul ca fisierul nu este ordonat fizic, in aceasta structura, nu este
posibila realizarea cautarii binare. Apoi, se parcurge fisierul, folosind
adresele indicate in atributul Pointer al secventei de inregistrari pana ce
campul cerut va fi localizat. Algoritmul de consultare:

1. Se trece la pozitia primei inregistrari indicata in antet.
2. Pana cand inregistrarea curenta <= inregistrarea dezirabila:
a) daca inregistrarea curenta = inregistrarea dezirabila, terminare cu
succes;
b) daca pointerul secventei >0, se trece la urmatoarea inregistrare
indicata de pointer;
c) altfel terminare cu esec.
3. Terminare cu esec.

Dupa cum se poate observa, sfarsitul cautarii (sfarsitul fisierului) este
atins cand pointerul secventei de inregistrari nu indica spre alta inregistrare
(nu poseda vreo valoare sau adresa).

Pentru a include o inregistrare, nu mai e nevoie de reorganizarea
fisierului, deoarece ordinea fizica, in acest caz, poate fi diferita de ordinea
logica (care este determinata de pointeri). Este suficienta inserarea
inregistrarii in primul loc liber. Primul loc liber poate fi o inregistrare
suprimata si pentru a sti ca exista o astfel de inregistrare, este destul de

verificat atributul Exclusd in antetul fisierului. In cazul in care nu existd
inregistrari excluse, un spatiu nou este creat la sfarsitul fisierului. Dupa
selectarea locului de inserare se parcurge fisierul pentru identificarea
inregistrarilor precedenta si urmatoare ale inregistrarii curente. Acestea
trebuie sa aiba valorile pointerilor actualizate, pentru ca inregistrarea noua
sa ocupe pozitia logica intermediara.

Algoritmul este urmatorul:

1. Localizarea unei inregistrari vide (suprimate) sau crearea unui spatiu
pentru inregistrarea noud la sfarsitul fisierului.

Inserarea inregistrarii in locul identificat sau creat.

Daca inregistrarea a fost inserata in locul uneia eliminate, se exclude
din lista inregistrarilor suprimate.

Identificarea inregistrarilor precedente si urmatoare;

Daca exista inregistrarea precedenta se actualizeaza pointerul ei
pentru ca sa arate spre inregistrarea inserata.

In caz contrar, pointerul antetului este cel ce trebuie actualizat.

Daca exista inregistrarea urmatoare, pointerul inregistrarii inserate se
actualizeaza pentru a o indica.

kWD

N

Pentru a exclude o finregistrare, se identificda inregistrarea care
precede inregistrarea in cauza si se actualizeaza pointerul ei. Deoarece
inregistrarea precedenta trebuie sa dea continuitate logica fisierului,
pointerul ei se modifica pentru a indica inregistrarea ce urmeaza dupa
inregistrarea exclusa. Astfel, valoarea pointerului finregistrarii suprimate
devine valoare a pointerului inregistrarii anterioare.

Algoritmul consta din patru pasi:

1. Localizarea inregistrarii ce trebuie suprimata, utilizdnd lista secventei
de inregistrari (pointerul).

2. Identificarea inregistrarii precedente si inregistrarii urmatoare;

3. Actualizarea pointerului inregistrarii precedente, atribuindu-i valoarea
pointerului inregistrarii ce trebuie suprimata;

4. Adaugarea inregistrarii excluse in lista inregistrarilor excluse.

Modificarea unei inregistrari poate fi realizata prin eliminarea
inregistrarii ce trebuie modificata si inserarea inregistrarii cu valorile deja
modificate (metoda mai laborioasa, dar mai facila si practica).

Fisiere secventiale cu spatiu de tranzactii

Fisierele secventiale pot fi dotate cu un fisier auxiliar, numit fisier de
tranzactii. Deplasarea inregistrarilor este o operatie costisitoare. Pentru a
evita deplasarea inregistrarilor (rearanjarea) in fisierul principal in timpul
executarii operatiilor, o alta forma de implementare a fisierului secvential
presupune utilizarea a doua structuri:

— fisierul principal (master) cu date.

- fisierul de modificari sau fisierul de tranzactii (overflow) este un
fisier auxiliar, In care sunt temporar inregistrate modificarile
curente ale datelor, care vor fi utilizate pentru actualizarea
continutului fisierului principal. In acest mod, nu au loc deplasari
de Iinregistrari in fisierul principal in timpul de executare a

operatiilor. Fisierul de tranzactii poate fi chiar unul virtual, adica,
inregistrarile pot fi plasate la sfarsitul fisierului principal.

Astfel, pentru a micsora costul inalt de pastrare a ordinii fizice, se
utilizeaza doua structuri, plus o listda de pointeri a secventei de inregistrari
pentru mentinerea ordinii logice, adica se separa grupul de inregistrari care
sunt fizic ordonate de operatiile nou-realizate.

Fisiere secventiale cu toate operatiile in fisierul de tranzactii. Aceasta
varianta de fisiere secventiale presupune ca toate modificarile sunt facute in
fisierul de tranzactii. Fisierul principal este actualizat numai in cazul
reorgapizérii, folosind datele din fisierul de tranzactii.

In fiecare inregistrare din fisierul de tranzactii, trebuie sa fie un camp
auxiliar, unde se indica tipul operatiei ce a fost realizata (I - inserarea, E -
eliminarea si M - modificarea). Toate operatiile (consultarea, inserarea,
eliminarea, modificarea) trebuie sa inceapa cu cautarea inregistrarii in
fisierul de tranzactii si examinarea etichetei acestui céamp. Daca
inregistrarea nu este gasita, atunci este cautata in fisierul principal. Trebuie
mentionat ca fisierul de tranzactii este, de asemenea, un fisier secvential si,
deci, se supune acelorasi reguli (inregistrari ordonate de cheia de
ordonare).

Inserarea trebuie sa fie precedata de o consultare. Daca cheia este
gasita in fisierul de tranzactii cu eticheta I sau M, sau daca cheia este
intalnita in fisierul principal, atunci trebuie sa fie actionat procesul de tratare
a erorii (nu poate fi facuta o inserare cu o cheie deja existenta). Daca cheia
e gasita in fisierul de tranzactii si are eticheta E, se insereaza o inregistrare
noua in fisierul de tranzactie, care este stocata in ordinea cheii de ordonare.
Astfel, pot fi necesare deplasari de inregistrari. Cu toate acestea, deoarece
fisierul de tranzactii este mic, executarea operatiei de deplasare este
usoara. Eticheta I trebuie plasata in inregistrarea noud, indicand ca este
una inserata.

Utilizarea fisierului de tranzactii schimba modul de consultare a
inregistrarilor. Astfel, o consultare a unei singure inregistrari dupa cheia de
ordonare, incepe de la fisierul de tranzactii, deoarece acesta contine
ultimele modificari. Trebuie, de asemenea, sa fie examinata eticheta
operatiei (I, E sau M). Eticheta E indica faptul ca cheia nu mai exista, iar
celelalte etichete indica faptul ca consultarea va fi facuta asupra inregistrarii
in fisierul de tranzactii. Insa, o consultare cu o cheie diferita de cea de
organizare are un cost inalt, deoarece fisierul de tranzactii trebuie analizat
(cu examinarea etichetelor) in intregime si apoi fisierul principal, la fel, in
mod exhaustiv.

Operatia de parcurgere secventialda dupa cheia de ordonare este
facuta in paralel in ambele fisiere si urmeaza aceleasi rationamente ca ale
operatiei de reorganizare, cu intercalare. Daca este necesara parcurgerea
secventiala a inregistrarilor in alta ordine, atunci operatia trebuie facuta cu
algoritmi de ordonare, tinand cont de existenta inregistrarilor duplicate in
ambele fisiere.

Modificarile campurilor care nu fac parte din cheia de ordonare
trebuie facute in fisierul de tranzactii. Mai intéi, inregistrarea trebuie cautata
(operatia de consultare). Daca ea nu este gasita in nici unul din fisiere, este
actionata o procedura de eroare. Daca ea este gasita numai in fisierul
principal, o inregistrare noua va fi inseratda in fisierul de tranzactii, cu
aceleasi cdmpuri ca ale inregistrarii initiale, dar cu modificarile necesare si
cu eticheta M. Daca ea este gasita in fisierul de tranzactii, se verifica

eticheta ei. Daca este E, ea deja a fost exclusa si operatia este intrerupta.
Daca eticheta este I, se modifica direct aceasta inregistrare cu eticheta I in
fisierul de tranzactii, fara a modifica eticheta. Modificarile (daca se permit)
in campurile care fac parte din cheia de ordonare sunt realizate in doua
operatii: una de eliminare a inregistrarii originale si una de inserare a
inregistrarii modificate.

Operatia de suprimare se efectueaza dupa urmatoarele reguli. Mai
intdi, se cauta inregistrarea (operatia de consultare). Daca nu sete gasita,
exista o greseala. Daca exista numai in fisierul principal, o inregistrare este
adaugata in fisierul de tranzactii (in ordinea cheii) cu eticheta de excludere.
Daca, deja, exista in fisierul de tranzactii, eticheta ei va indica urmatoarele
procese. Daca eticheta este E, exista o eroare (inregistrarea a fost, deja,
eliminatd). Daca este M, se schimba aceasta eticheta cu E, iar daca este I,
aceasta Iinregistrare trebuie eliminata fizic din fisierul de tranzactii cu
deplasari succesive de pozitii (aceasta operatie nu va putea fi desfacuta).

Periodic, operatiile Tinregistrate in fisierul de tranzactii trebuie
actualizate in fisierul principal. De aceea, eticheta fiecarei inregistrari din
fisierul de tranzactii este analizata si operatiile respective sunt facute in
fisierul principal.

Deoarece aceasta actiune provoaca deplasari in fisierul principal, o
alternativa este crearea unui figier suplimentar, in care se copiaza figierul
principal si in acesta sunt aplicate modificarile. In finalul operatiei de
reorganizare, fisierul de tranzactii devine vid, fisierul principal este suprimat
si fisierul auxiliar este redenumit cu numele fisierului principal. Deoarece
operatia de reorganizare are un cost inalt, ea trebuie sa fie facuta off-line,
adica atunci cand inregistrarile nu sunt actualizate. Periodicitatea depinde
de disponibilitatea de timp pentru realizarea acestei operatii si de numarul
de inregistrari in fisierul de tranzactii (se activeaza operatia de reorganizare,
daca volumul de tranzactii atinge o anumita limita, dupa care eficienta
generala de pastrare a datelor de SGBD scade).

Avantajul utilizarii acestui tip de organizare apare in cazul in care
sunt efectuate putine modificari on-line si cand este posibila intreruperea lor
pentru realizarea operatiei de reorganizare. Alt avantaj il constituie
parcurgerea secventiald, in mod aproape optimal, deoarece inregistrarile se
gasesc, din punct de vedere fizic, continuu. Cu toate acestea, exista
tendinta de a analiza fisierul principal si cel tranzactional impreuna.

Un mare dezavantaj al acestui tip de organizare il constituie faptul ca
consultarile pot fi facute, in mod eficient, numai dupa cheia de organizare.
Daca sunt necesare consultari sau parcurgeri pe mai multe chei, aceasta
organizare nu este recomandata.

Fisiere secventiale cu unele operatii in fisierul principal. Pentru a
reduce cresterea figierului de tranzactii, operatiile care nu cer deplasari de
inregistrari sunt realizate direct in fisierul principal. In acest mod, se
diminueaza viteza de crestere a fisierului de tranzactii si, prin urmare,
micsorAeazé perioada de aplicare a operatiilor de reorganizare.

In afara de aceasta, pentru a inviora consultarea cand se fac operatii
asupra fisierului de tranzactii, el, de asemenea, ar trebui sa fie mentinut
ordonat, marind, astfel, costul operatiilor. De aceea, acest proces nu este
acceptat si inserarile se realizeaza la sfarsitul fisierului.

Se poate observa ca ordinea fizicd si ordinea logica sunt pastrate in
fisierul principal. In fisierul de tranzactii, inregistrarile nu sunt ordonate,
intrucat inregistrarile sunt inserate la sfarsit. De aceea, pentru a mentine

aceeasi ordine in care a fost ordonat, este necesara adaugarea unui pointer
pentru fiecare inregistrare cu o adresa de deplasare (offset). Aceasta adresa
indica urmatoarea inregistrare care va fi folosita, daca e necesar, pentru a
intocmi lista, mentinand, astfel, secventa logica a datelor dupa cheia de
ordonare.

O data cu adaugarea unui camp pentru fiecare inregistrare, ocupat de
pointer, exista dezavantajul ca procesul de parcurgere secventiala se
realizeaza mai lent, deoarece poate fi necesara citirea si recitirea
sectoarelor care se gasesc in diferite locuri ale fisierului (necontinuu), fapt
ce consuma mai mult timp de cautare si de stare latenta, in afara de
supraincarcarea cu spatiul ocupat de pointeri.

Inserarea unei inregistrari este facuta in fisierul de tranzactii sau,
daca este virtual, la sfarsitul fisierului principal in zona de tranzactii (de
parca nu ar exista cheia de clasificare). Secventa logica este pastrata de
lista definita de pointerul care trebuie actualizat la fiecare operatie realizata.
Mai tarziu, fisierul este reorganizat.

In cazul operatiei de modificare, dacd nici cheia primard si nici
lungimea finregistrarii nu sunt schimbate, inregistrarea este actualizata in
aceeasi pozitie. In caz contrar, ea este eliminata si cea noua este inserata in
fisierul de tranzactii. Aceasta operatie trebuie sa actualizeze lista secventei
logice a datelor.

In cazul operatiei de eliminare, fisierul principal poate fi reorganizat
(operatia necesitand mult timp). Atunci este necesara redefinirea listei
secventei logice, care ar include toate inregistrarile care nu au fost
eliminate.

O alta metoda este adaugarea unui camp auxiliar pentru pastrarea
unui indicator al inregistrarilor excluse, folosit la restructurarea ulterioara a
fisierului.

Reorganizarea fisierelor. Fisierul de tranzactii, de obicei, este folosit
doar pentru stocarea operatiilor de actualizare a fisierului secvential si in
operatia de reorganizare care este aplicatd numai in cazul cand fisierul
principal se reorganizeaza, deoarece acumularea tranzactiilor, poate
diminua eficienta executarii lor. Asadar, in general, cand fisierul de
tranzactii atinge o limita determinata sau se doreste elaborarea unui raport,
sau efectuarea unei consultari are loc reorganizarea fisierului secvential. Or,
in prelucrarea normald, este putin obisnuita utilizarea fisierului de tranzactii
ca o prelungire a fisierului secvential.

Procesul de reorganizare a unui fisier secvential S presupune
aplicarea unui algoritm, cum este cel de triere prin fuziune. Pentru aceasta,
fisierul de tranzactii T trebuie sa fie ordonat dupa acelasi criteriu (cheie) ca
si fisierul S. Din fisierele (de tranzactii T si principal S) ordonate dupa
acelasi criteriu se poate construi un fisier secvential nou A. Printr-o tratare
secventiala a fisierelor, cu o lectura exhaustiva a Iui S, se copiaza fisierul
principal initial, inregistrare cu inregistrare, in fisierul principal actualizat A
si, pentru fiecare inregistrare copiata, se intercaleaza cu Iinregistrarile
fisierului de tranzactii 7, daca exista, facand comparatiile necesare si
producand copia actualizata a fisierului principal.

Algoritmul este urmatorul:

1. Se citeste o inregistrare a fisierului principal S (dacad nu este marcata ca
fiind suprimata).

2. Se citeste o inregistrare a fisierului de tranzactii T (dacd nu este
marcata ca fiind suprimata).

3. Se compara aceste doua inregistrari. Cea cu valoare mai mica a cheii de
ordonare este copiata in fisierul principal actualizat A.

4. In fisierul care contine inregistrarea scrisd in fisierul principal actualizat
A, pointerul inregistrarii avanseaza (se localizeaza urmdatoarea
inregistrare).

5. Se citeste o inregistrare noua a acestui fisier (daca nu este marcata ca
fiind suprimata).

6. Se compard aceste doua inregistrari, scriind-o pe cea mai mica i
repetdnd procesul padna cand se atinge sfarsitul unui fisier din cele doua.

7. Se inscriu inregistrarile nesuprimate ale fisierului, care inca nu a fost
parcurs pana la sfarsit, in fisierul principal actualizat A.

In acest proces, se observa ci:

— inregistrarile suprimate nu sunt copiate (sunt eliminate efectiv);

— inregistrarile fisierului principal S, care nu figureaza in fisierul de
tranzactii T, sunt copiate in fisierul actualizat A;

— inregistrarile fisierului de tranzactii T sunt prelucrate in lot si
plasate in fisierul actualizat A cu pastrarea secventei ordonate
dupa cheie.

In consecintd, fisierul de tranzactii devine vid, iar finregistririle

fisierului principal actualizat A sunt ordonate astfel incat secventa logica
este egala cu secventa fizica.

Cautarea secventiala cu blocuri de inregistrari

Partea ce mai scumpa (lentd) a operatiei de accesare a memoriei
secundare este cdutarea pentru obtinerea pozitiei corecte a unei inregistrari
pe disc. Asadar, se cere minimizarea numarului de accesari, pentru ca
transferarea datelor, odata initiata, este relativ rapida, desi este mult mai
lenta decat transferarea datelor in memoria principala.

Evident, cautarea (seek) si citirea unei inregistrari si apoi cautarea si
citirea altei inregistrari au un cost mai mare decat cdutarea si citirea
concomitenta a doua inregistrari. Prin urmare, se poate imbunatati cautarea
secventiala, daca, in loc de Iinregistrari, se recupereaza blocuri de
inregistrari si aceste blocuri se prelucreaza in memoria principala. Astfel,
gruparea inregistrarilor in blocuri este o tehnica utilizata pentru
imbunatatirea cautarii. In general, dimensiunea blocului este definita in
functie de caracteristicile fizice ale dispozitivului de stocare si ale datelor ce
trebuie memorate.

Bineinteles, fiecare accesare a unui bloc de inregistrari va lua ceva
mai mult timp decat o accesare a unei inregistrari, dar beneficiul va fi
considerabil datorita reducerii timpului de cautare si timpului de rotatie.
Astfel, formarea blocurilor de inregistrari:

- mareste eficienta cautarii prin diminuarea numarului de accesari;

- profita de diferenta dintre costul de accesare n memoria

principalad si costul de accesare a discului;

- economiseste timpul, deoarece reduce timpii de cautare si durata

starii latente;

— nu modificd numarul de comparatii in memoria principala, dar,

probabil, mareste cantitatea de date transferate intre disc si

memoria principala (este citit un bloc intreg, in timp ce
inregistrarea cautata este una in bloc, iar restul nu sunt
necesare).

Astfel, se poate concluziona ca deosebirea dintre accesul la memoria
principala si disc este ceea ce ghideaza proiectarea structurilor de fisiere si,
prin urmare, cautarea secventiala este mai eficienta:

— in fisierele cu putine inregistrari;

- in fisierele cu putine cautari (de exemplu, pastrate pe benzi

magnetice);

- In cautarea inregistrarilor dupa chei secundare, ale caror valori au

mai multe duplicate.

28.4 Indecsi

Indecsii sunt structuri de acces care se utilizeaza pentru accelerarea
accesului la inregistrari si a raspunde anumitor criterii de cautare. Unele
tipuri de indecsi, numite si cadi de acces secundare, nu afecteaza amplasarea
fizica a inregistrarilor pe disc, fapt ce ofera cai alternative de acces pentru
gasirea inregistrarilor, in mod eficient, in cdmpurile indexate. Exista si alte
tipuri de indecsi care se pot construi numai asupra fisierelor care au o
anumita organizare.

Astfel, exista tipuri de indecsi care se utilizeaza asupra fisierelor
ordonate (indecsi cu un singur nivel) si structuri sub forma de arbore
(indecsi multinivel, B-arbori si B*-arbori). In afarda de aceasta, se pot
construi indecsi, folosind functii de dispersie si alte structuri de date.

Utilizarea tehnicilor de indexare poate fi o alternativa a ordonarii,
daca este necesara organizarea unui fisier, pentru a fi cautat cu ajutorul
cheilor.

In general, indecsii amelioreazd executarea accesului la date. In cazul
fisierelor, permit localizarea rapida a inregistrarilor, cu avantajul ca fisierul
de date nu trebuie sa fie reorganizat, daca sunt inserate noi inregistrari in
acesta. Este de ajuns sa fie reorganizati indecsii. Indecsii, de asemenea,
permit, in afara de ameliorarea timpului de acces pentru cautarea dupa o
cheie, sustinerea mai multor viziuni asupra inregistrarilor dintr-un fisier de
date, gratie structurilor de indecsi secundari. Ba mai mult, cu ajutorul
indecsilor, pot fi imbinate mai multe viziuni particulare.

Indexul poate exista independent de organizarea fisierului de date,
ceea ce permite crearea mai multor indecsi, daca se doreste optimizarea
accesului la date al mai multor tipuri de interogari. In schimb, crearea fara
discernamant a unui numar mare de indecsi poate fi costisitoare pentru
SGBD-ul care trebuie sa-i administreze. Pentru fiecare operatie de
actualizare a relatiei, repercusiunile acestei actualizari se extind asupra
tuturor indecsilor. O alegere judicioasa a indecsilor, intr-un numar optim,
este, deci, unul din factorii esentiali ai performantei unui sistem.

Concepte preliminare
Indexul este un fisier. Fisierul index este o structura auxiliara asociata

fisierului de date, proiectat pentru a oferi forme mai eficiente de acces si
localizare a datelor specificate. Adica, fiind dat un argument de cautare,

scopul indexului este accelerarea procesului de identificare a adresei
inregistrarii necesare in fisierul de date.

Pot exista unul sau mai multe fisiere index, ale caror inregistrari
leaga valorile cheii cu pozitiile lor in fisierul de date. Adica o inregistrare a
fisierului index este constituita din doua campuri, cheia inregistrarii din
fisierul de date si adresa respectiva pe disc, <cheie, adresa>.

Astfel, un index este intotdeauna specificat de o cheie de acces, iar in
calitate de cheie de acces poate fi luata orice submultime de atribute ale
schemei relationale, daca aceasta submultime este definita in calitate de
index. Exista doua tipuri principale de indecsi:

- indexul ordonat, care se bazeaza pe valorile ordonate ale cheilor.
Inregistrarile fisierului sunt stocate conform unui criteriu de
ordonare;

— indexul hash sau index cu dispersie, care se bazeaza pe
distribuirea uniforma a valorilor determinate de o functie, numita
functie de dispersie (hash function).

Exista diverse tehnici atat pentru indecsii ordonati, cat si pentru
indecsii cu dispersie. Nici una din ele nu e mai buna, dar fiecare tehnica este
mai adecvata pentru anumite aplicatii ale bazei de date. Factorii care
determina selectarea tipului de index sunt:

— tipul de acces, care este admis in mod eficient; tipurile de acces
pot cauta inregistrari dupa o valoare determinata a unui atribut
dat sau inregistrari ale caror atribute iau valori dintr-un interval
de valori;

— timpul de acces - timpul consumat pentru gasirea unei
inregistrari de date, sau a unei multimi de inregistrari, utilizand
tehnica respectiva;

— timpul de inserare - timpul consumat pentru includerea unui nou
articol de date; acest factor cuprinde timpul cheltuit pentru
gasirea locului corect, pentru includerea articolului si, de
asemenea, timpul cheltuit pentru actualizarea structurii indexului;

— timpul de suprimare - timpul consumat pentru eliminare, inclusiv
timpul afectat gasirii inregistrarii si actualizarii structurii indexului.

— spatiul de memorie - spatiul aditional ocupat de fisierul index;
daca marimea spatiului aditional este rezonabila, in general,
spatiul sacrificat se recupereaza prin obtinerea unei executari mai
bune a operatiilor.

Un fisier index este mai usor de lucrat decat un fisier de date,
deoarece inregistrarile indexului sunt de lungime fixa (faciliteaza navigarea
cu tehnici mai eficiente de Acéutare, cum este cea binard) si este mult mai
mic decat fisierul de date. Inregistrarile de lungime fixa ale fisierului index
impun si o limita a lungimii cheii primare, fapt care, uneori, poate crea
probleme in practica. Inregistrarile indexului pot contine si alte campuri
(lungimea inregistrarii, de exemplu), in afara celor doua.

De obicei, pentru unul si acelasi fisier de date pot exista mai multe
fisiere index. Aplicand notiunea de cheie de cautare, daca sunt mai multi
indecsi pentru un fisier de date, exista mai multe chei de cautare in acest
fisier.

Utilizarea indecsilor are urmatoarele avantaje:

- fisierul de date poate fi de tip serial (inregistrarile sunt inserate la

sfarsitul fisierului, in ordinea de intrare);

- adaugarea inregistrarilor este mult mai rapida, daca indexul poate

fi pastrat in memoria principal3;

- inindex, se poate localiza rapid o cheie, utilizdnd cautarea binara;

- pornind de la cheie si adresa, pentru recuperarea unei inregistrari

este necesara o singura accesare a fisierului de date.

Astfel, daca inregistrarile unui fisier sunt de lungime variabila, este
dificila utilizarea metodelor de ordonare si aplicarea cautarii binare. Aici o
alternativa poate fi construirea unui index. Structura indexului, in acest caz,
poate fi foarte simpla: indexul este un fisier cu inregistrari de lungime fixa,
in care fiecare are doua campuri, un cadmp pentru cheie si altul pentru
pozitia initiald a inregistrarii in fisierul de date. Fiecarui camp cheie al
fisierului de date fi corespunde un camp cheie in index. Indexul este
ordonat, in timp ce fisierul de date nu este. Fisierul de date poate fi
organizat in ordinea intrarii inregistrarilor.

Daca indexul nu incape in memoria primard, accesarea si mentinerea
lui trebuie facuta in memoria secundara. In acest caz, utilizarea indecsilor
simpli este problematica, deoarece:

— cautarea binara poate necesita multe accesari ale discului;

- deplasarea inregistrarilor, dupa operatiile de inserare si eliminare,

_ devine inevitabila pentru mentinerea indexului.

In acest context, daca viteza de acces este caracteristica dezirabila
principald, indexul poate fi organizat, utilizand tehnici cu functii de
dispersie. Daca nu, B-arborele poate fi o structura acceptabild atunci cand
se cer accesari dupa cheie sau accesari secventiale eficiente.

Indecsi ordonati

Indexul ordonat pastreaza ordinea cheilor de cautare si oricarei chei Ti
asociaza adresele inregistrarilor care o contin. Indexul ordonat poate fi
primar sau secundar.

Indecsi primari. Indexul ordonat este un index primar, daca fisierul de
date si indexul au acelasi criteriu de ordonare, adica, daca fisierul este
ordonat de un camp cheie, indexul care se defineste pe acest camp este un
index primar. Deseori, termenul index primar este utilizat pentru
desemnarea uni index al cheii primare (a unei relatii din baza de date), dar
aceasta forma nu este un standard si poate fi evitata.

Daca toate fisierele sunt ordonate secvential dupa o singura cheie de
cautare, aceste fisiere cu un index primar pe cheia de cautare sunt numite
fisiere indexat secventiale. Fisierele indexat secventiale reprezinta una din
cele mai vechi scheme de index utilizate in bazele de date. Ele sunt
proiectate pentru aplicatiile care necesita atat prelucrarea secventialda a
fisierelor, cat si accesul aleatoriu la inregistrari individuale.

Un fisier index primar poate fi:

un index dens, daca pentru orice valoare a cheii de cautare din
fisierul de date exista o inregistrare in fisierul index (sau intrare
index) respectiva. Evident, inregistrarea index contine valoarea
cheii de cdutare si un pointer spre prima inregistrare de date cu
aceasta valoare a cheii de cdutare.

— un index rar, daca inregistrarile fisierului de date sunt grupate

dupa un criteriu si pentru fiecare grup (organizat in bloc) exista o
inregistrare index asociata. Astfel, fiecare inregistrare index are o
valoare a campului cheie egalda cu valoarea cheii primei

inregistrari de date a blocului respectiv si un pointer spre acest
bloc.

Pentru inserarea datelor in pozitia corecta in fisierul de date este
necesara, in afara de deplasarea inregistrarilor pentru a deschide spatiu
pentru cea noua, modificarea unor inregistrari ancora (prima inregistrare a
blocului). Ca si in indecsii densi, fiecare inregistrare a indexului rar contine o
valoare a cheii de cautare si un pointer spre prima inregistrare de date cu
aceasta valoare a cheii.

Pentru un fisier index rar, localizarea unei inregistrari dupa un
argument de cdutare se face in doua etape: in prima este consultat indexul
si determinat blocul in care trebuie sa se gaseasca inregistrarea si in a doua
- blocul selectat este cautat si localizata in el inregistrarea dorita. Adica,
pentru localizarea unei inregistrari, se obtine intrarea indexului cu cea mai
mare valoare a cheii, mai mica sau egala cu valoarea cheii cautate. Adresa
din acea finregistrare permite accesul la blocul care poate contine
inregistrarea cautata. Apoi, in blocul respectiv, se face o cdautare secventiala
sau prin alta metoda.

Deoarece in indexul dens exista o inregistrare care indica direct
inregistrarea cautata in fisierul de date, se poate crede ca recuperarea unei
inregistrari cu un index dens este mai eficienta decat a uneia cu un index
rar. Insa, indecsii densi sunt prea mari si ocupa mai mult spatiu, fapt ce
complica sarcina de actualizare (inserare si suprimare) a lui. In afara de
aceasta, indecsii rari exploreaza bine caracteristicile fizice ale dispozitivelor
secundare. Astfel, fiecare bloc definit de indexul rar poate fi incarcat in
memoria principalda dintr-o singura accesare si manipulat in memoria
principald, consumand un timp nesemnificativ. Prin urmare, cand trebuie sa
faca o alegere, proiectantul trebuie sa gaseasca un compromis intre timpul
de acces si spatiul suplimentar, pentru a lua o decizie mai buna, care este
influentata direct de aplicatia in cauza.

Indecsi secundari. Indexul asociat cheii de ordonare a fisierului de
date este numit, in afara de index primar, si index cluster. Alti indecsi, ale
caror chei de cautare specifica o ordine diferita de ordinea secventiala, se
numesc indecsi secundari. In ambele cazuri, intrarile indexului sunt
ordonate de valoarea de acces, avand ca obiectiv cresterea eficientei
cautarii.

Astfel, daca un fisier nu este ordonat, orice index care se defineste
asupra lui este un index secundar. De asemenea, un index secundar este
indexul definit pe un cdmp diferit de campul de ordonare al fisierului.

Indexul secundar poate fi dens sau rar, avand aceleasi specificatii ca
si indexul primar. Indexul secundar, ca si indexul primar, este un fisier
ordonat cu doua campuri: campul de indexare (orice camp al fisierului de
date diferit de cel de ordonare) si un pointer spre un bloc sau spre o
inregistrare. Daca indexul secundar este definit pe un cdmp cheie (cheie
secundara), exista cate o inregistrare index pentru fiecare cheie a fisierului,
adica indexul secundar este un index dens.

Cu introducerea indecsilor secundari, a disparut necesitatea de
pointeri aditionali in inregistrari si necesitatea de parcurgere secventiala in
ordinea cheii secundare. Insa utilizarea acestei structuri il impune pe
administratorul bazei de date sa analizeze multimea potentiala de interogari
pentru a selecta cdmpurile asupra carora se vor defini indecsii secundari.

Indecsi multinivel. Pentru fisierele cu multe inregistrari, indexul este,
totusi, destul de mare si nu poate fi incarcat in memoria principala. De
aceea sunt utilizati indecsi cu multe niveluri, adica indecsi cu niveluri rare.

Un index multinivel este format pentru un fisier index, care se
numeste primul nivel sau nivel-baza al indexului multinivel. Primul nivel
este un fisier ordonat cu o valoare distincta a campului de indexare in
fiecare intrare. De aceea, asupra primului nivel se poate crea un index
primar. Acest index constituie al doilea nivel al indexului multinivel.
Deoarece al doilea nivel este un index primar, in el exista cate o intrare in
fiecare bloc al primului nivel. Procesul poate continua si asupra acestui
nivel, daca este necesar. Atunci al treilea nivel va fi un index primar pentru
nivelul doi.

Aceasta schema multinivel se poate utiliza asupra oricarui tip de
index, fie primar, fie secundar, cu conditia ca, intotdeauna, primul nivel sa
ia valori distincte in campul de indexare si intrarile sa fie de lungime fixa.
Astfel, daca fiecare bloc se presupune ca are r intrari, adica fiecare bloc
reduce numarul de intrari de la nivelul anterior de r ori, atunci un index
multinivel cu / intrari, la primul nivel, va avea aproximativ n niveluri, unde

n=[log,i|.
Indecsi cu dispersie

Se pot crea structuri de acces similare indecsilor, dar bazate pe
dispersii. Astfel, intrarile indexului (K,Pr) se pot organiza ca un fisier
dispersat, care isi va schimba dimensiunea, folosind dispersia dinamica,
extensibila sau liniara. Algoritmul aplica functia de dispersie asupra cheii K.
Indata ce este prezentata o intrare (o cheie), pointerul Pr se utilizeaza
pentru localizarea inregistrarii in fisierul de date.

Functia de dispersie asociata poate fi utilizata atat pentru organizarea
fisierelor, cat si pentru crearea structurii indexului.

28.5 Fisiere indexat secventiale

Fisierele indexat secventiale sunt un tip de organizare a fisierelor in
care inregistrarile sunt identificate de un index, numit cheie de acces si
fiecare cheie reprezinta valoarea cu care sunt identificate alte date ale
inregistrarii in fisier. Aceasta cheie de acces trebuie sa fie unica pentru
fiecare inregistrare, adica nu sunt admise doud inregistrari cu aceeasi
valoare a cheii. In afara de aceasta, toate fisierele (inclusiv indexul) sunt
ordonate secvential dupa cheia de acces, care, de fapt, este cheia primara a
fisierului cu date.

Structuri ale fisierelor indexat secventiale

Intrucat volumul datelor dintr-un fisier secvential poate fi foarte mare
si numarul de accesari (cu o executare joasa) inalt, se utilizeaza alte tehnici
pentru manipularea eficienta a inregistrarilor. Astfel, se foloseste o structura
de acces, asociata la fisier, care ofera o mai mare eficienta in localizarea
inregistrarii prezentate de argumentul de cautare, decat metodele aplicate
in fisierele secventiale.

Un fisier indexat secvential este constituit dintr-un fisier secvential si
un index (structura de acces). Structura lui constituie trei spatii de lucru:
spatiul pentru date (fisier principal), spatiul rezervat inregistrarilor
excedentare (fisier de tranzactii) si spatiul pentru index (fisier index).
Fisierul index poate fi organizat in niveluri, de la indexul principal
(radacina), pana la nivelul de acces la inregistrare.

Astfel, pentru accelerarea cautarii inregistrarilor, fisierul indexat
secvential utilizeaza fisierul de date si fisierul index. Fisierul principal (de
date) este de tip secvential, cu inregistrari grupate in blocuri si ordonate de
o cheie de ordonare. Fisierul index este format din perechi <cheie, adresa>.
Adresa indica inregistrari sau blocuri in fisierul principal sau indica blocuri de
inregistrari in propriul fisier index (formand un arbore). Adica, pot fi mai
multe niveluri de indecsi, ei fiind stocati in acelasi fisier fizic sau in fisiere
diferite. Cand se prelucreaza blocurile, perechea <cheie, adresa> (fie bloc
de date sau bloc de index) care arata spre urmatorul nivel contine cheia ce
corespunde inregistrarii cu valoarea cea mai mare (varianta mai comuna) in
bloc.

Avantajul utilizarii structurilor in blocuri consta in faptul ca blocurile
sunt citite si incarcate in memoria centrala in intregime. Dimensiunea
blocului trebuie determinata, tinandu-se cont de caracteristicile
dispozitivelor fizice de lecturda si scriere si limitele sistemului utilizat
(responsabil de operatiile de lectura si scriere pe dispozitivele fizice).

O strategie buna este rezervarea in fiecare bloc al fisierului a unui
spatiu liber pentru inregistrarile noi ce vor fi incluse. Astfel, la prima
incarcare a fisierului de date si la fiecare reorganizare a fisierului
(rearanjare), este ocupata numai o parte din fiecare bloc. Pentru a evita
umplerea rapida a blocurilor, spatiul liber este rezervat, tinandu-se cont de
statisticile de includeri de inregistrari, iar reorganizarea este o procedura ce
trebuie facuta periodic.

O alternativa mai potrivita este utilizarea unui singur spatiu pentru
inregistrarile excedentare, deoarece nici o data nu se poate prezice cand vor
fi completate unele blocuri. Si daca aceasta problema apare, ceva trebuie
intreprins pentru a include o inregistrare noua, care nu poate fi plasata
imediat in pozitia adecvata in fisier (aceasta operatie necesita reorganizarea
fisierului care se executata in momente speciale).

Pentru acumularea inregistrarilor excedentare, una din cele mai bune
optiuni este crearea unui fisier de tranzactii (overflow). Acest fisier are
aceeasi structura ca si figierul de date, cu inregistrari suplimentate cu un
camp care permite inlantuirea inregistrarilor. Inregistrarile excedentare sunt
incluse in fisierul de tranzactii (prima pozitie vida) si formeaza o lista
inlantuita (crescator dupa cheia de ordonare).

Fisierul de tranzactii poate fi utilizat in diverse moduri. O varianta
este folosirea unei liste de inregistrari excedentare pentru fiecare bloc al
fisierului de date, figura 28.10. De aceea, in fisierul principal exista cate un
pointer asociat fiecarui bloc. El indica o inregistrare in fisierul de tranzactii,
care este prima in lista de inregistrari excedentare ale blocului. Aceasta lista
poate fi formata din cheile mai mari decat cea mai mare din bloc (si mai
mici decat cea mai mica a blocului urmator), sau, din chei mai mici decat
cea mai mica din bloc (si mai mari decat cea mai mare a blocului anterior).
Aici trebuie tinut cont ca cea mai mare cheie a blocului nu poate fi exclusa
fizic, deoarece este utilizata in nivelul intern al indecsilor.

Aceasta varianta necesita reorganizarea inregistrarilor intre blocul din
fisierul de date si lista de inregistrari excedentare, pastrand, dupa inserari si
suprimari, ordinea cheii in bloc si in lista (deplasand inregistrarile respective
din bloc spre lista sau din lista spre bloc). Avantajul acestei structuri este o
mai buna utilizare a spatiului in blocuri, deoarece spatiul din fisier ocupat de
inregistrarile excluse (logic) poate fi ocupat de alte inregistrari numai dupa
reorganizare.

Index Offset
(1312 | 1 | 1032 [1]
SN
Index extern \ 1312 7 105
1402 [10 |
2524 |13]
16 107
Index intern
Inregistriri excedentare
Cod Offset 102
100 [2743 [. [104]
101 1071 103
102 | 1314 | .. | *]]
103 | 1082 | ... | *]
104 | 2800 | ... | *]
1os | 1060 | ... | 101 | 108
106 2682 100
107 | 1242 | .| *]
108 2530 * 106

Figura 28.10 Inregistrdri excedentare asociate cu blocuri

Exista si alternativa cand listele cu inregistrari excedentare se
asociaza cu Iinregistrarile din fisierul principal si nu cu blocurile, figura
28.11. Astfel, fiecare inregistrare are cate un pointer nul sau care indica
spre lista respectivd de Iinregistrari excedentare. Aceasta lista este
constituita din inregistrari cu chei mai mici decat a inregistrarii asociate si
mai mari decat a inregistrdrii anterioare. in aceastd structurd, elimindrile de
inregistrari in blocuri vor fi facute numai la nivel logic (cu includerea unei
etichete).

4 (1234 14|
Index extern \ 1312 7

1402 | 10)
2524 | 13]
16

Index intern
Inregistrari excedentare

Cod Offset
100 2743 | 104 |
101 1071 103
102 | 1314 | ... | *]
103 1082 | ... _|._ 107 |
104 2800 *
1os | 1060) ... | 101] 0
1061 2682 | ... | _. . 16 3 2567 | ... |.___]
W07 1242 | .) . 1712605 | ..o | ..]
108 2530 106 18 2656 100

Figura 28.11 Inregistrdri excedentare asociate cu inregistréri

Avantajele organizarii indexat secventiale sunt cele ale organizarii
directe si organizarii secventiale. Adica, un avantaj al acestei organizari este
posibilitatea de a imbina consultarea rapida a unei inregistrari (prin index)
cu parcurgerea facila secventialda a tuturor inregistrarilor (dupa cheia de
ordonare).

Cu toate acestea, structura nu este adecvata pentru consultarea dupa
mai multe chei (in afara de cea de ordonare) si pentru sistemele in care
operatiile de actualizare sunt facute 24 ore pe zi, in toate zilele. In
sistemele, unde sunt multe inserari (cu multe liste de inregistrari
excedentare), are loc degradarea generald a executarii operatiilor din cauza
deplasarilor de inregistrari intre blocuri si liste in momentul inserarilor sau
eliminarilor (prima alternativa), sau din cauza consultarilor exhaustive in
listele cu inregistrari excedentare (alternativa a doua).

Astfel, indexul trebuie actualizat incontinuu, pe masurda ce
inregistrarile sunt adaugate sau eliminate. In afara de aceasta, in raport cu
organizarea directa, sunt necesare etape suplimentare pentru localizarea
inregistrarilor - indexul trebuie sa fie utilizat pentru orice accesare.

Fisierele indexat secventiale si dispozitivele de stocare

Metoda indexat secventiala presupune ca inregistrarile sunt stocate
pe dispozitive cu acces direct, iar pentru operatiile de acces direct exista
indecsi care permit cautarea adresei unei inregistrari individuale. In cazul in
care se solicita accesul aleatoriu, folosind diverse chei de acces, trebuie
construit un index pentru fiecare din ele. In general, indecsii au o structura
ierarhica (pe niveluri), pentru o localizare rapida a pistei care contine
inregistrarea cautata.

Pentru a profita de caracteristicile dispozitivelor secundare de stocare
a datelor si a face mai eficient procesul de cautare, este indicat sa se
construiasca indecsi structurati, in mai multe niveluri, in acord cu nivelurile
de organizare fizicd a acestor dispozitive. Numarul de niveluri este

proportional cu numarul de intrari (numarul de indecsi). Acesti indecsi pot fi
implementati, de exemplu, in forma de B-arbori, datorita flexibilitatii mari a
acestei structuri in ceea ce priveste operatiile de inserare si eliminare in
fisierul index si eficientei de cautare pe care o ofera.

Astfel, fisierul index se construieste structurat in acord cu nivelurile
fizice ale modului de stocare pe discurile magnetice. Nivelurile fizice sunt
discul, cilindrul, pista si sectorul. Indexul de cilindru contine pentru fiecare
cilindru ocupat de fisier, o intrare ce indica cea mai mare valoare stocata a
cheii de ordonare. Cu fiecare cilindru este legat un index de pista, care
indica, pentru fiecare pista a cilindrului, cea mai mare valoare a cheii care o
contine. Indexul de pista al unui cilindru este stocat pe cilindru. Indexul de
nivel mai inalt, asupra indexului de cilindru, este numit index principal si
contine, pentru fiecare disc (sau grup de cilindri) ocupat de fisier, valoarea
cea mai mare a cheii stocate.

Indexul principal si de cilindri, cand este posibil, se pdastreaza in
memoria principald, astfel ca, in procesul de cautare, cilindrul, unde se
gaseste inregistrarea cautatd, sa fie identificat, fara accesarea discului.
Dupa obtinerea cilindrului, acesta este accesat pentru lectura indexului lui
de piste, care permite localizarea pistei, unde se gaseste inregistrarea. Pista
selectatd este, atunci, cititd si in ea este localizata (de o metoda de cautare)
inregistrarea solicitata. In acest proces, numai un cilindru este accesat. E
important de mentionat ca indexul de pista nu precizeaza (nu are nevoie)
continutul pentru fiecare inregistrare sau adresa a pistei, intrucat el este
determinat de secventa in care apare la intrarea in index. Acelasi lucru se
intampla si cu indexul cilindrilor.

Chiar daca nu se manipuleaza direct structura disc/cilindri/piste este
importanta structurarea indexului in niveluri, in primul rand, pentru ca
nivelurile externe (care nu sunt direct legate cu fisierul de date) antreneaza
putine intrari, ceea ce permite sa fie stocate in memoria principala, astfel
devenind eficienta cautarea in indexul primar (numai un bloc), fapt ce, la
randul sau, eficientizeaza cautarea fisierului de date (numai un bloc).

Operatii cu fisiere indexat secventiale

Accesul aleatoriu la inregistrari este realizat, folosind indexul.
Argumentul de cautare defineste calea in index, care duce spre adresa
inregistrarii solicitate. Adresa obtinuta de index poate fi adresa inregistrarii
sau adresa blocului care o contine. In ultimul caz, pentru localizarea
inregistrarii, este necesara efectuarea unei cautari in blocul respectiv care,
la randul sdau, poate cere accesarea spatiului rezervat inregistrarilor
excedentare.

Fisierele indexat secventiale trebuie, de exemplu, sa fie reorganizate
cand inregistrarile excluse logic nu sunt refolosite de algoritmul de includere
a inregistrarilor. In acest caz, spatiul eliberat de inregistrarile excluse
trebuie sa fie ocupat dupa reorganizarea fisierului, care presupune si o
reorganizare completa a fisierului index, deoarece pozitiile fizice ale unor
inregistrari vor fi modificate.

Deschiderea si inchiderea fisierelor. Deschiderea unui fisier indexat
secvential implica identificarea fisierului de date, cheilor de acces pentru
care exista indecsi si care sunt fisierele index, fara a cunoaste modul cum
sunt structurate acestea, cate niveluri are fisierul index asociat. De multe
ori, indecsii pot fi creati numai cand se utilizeaza fisierul (adica indexul nu e

stocat pe disc). Prin urmare, intotdeauna cand un fisier este deschis, trebuie
sa se creeze in memorie structurile respective de acces.

Inchiderea fisierului este, de obicei, o sarcind simpld si depinde de
faptul cum se lucreaza cu el. Daca indecsii sunt manipulati numai in
memoria principald, fisierul de date se poate inchide fara nici o operatie
aditionala. Cu toate ca manipularea indecsilor are loc in memoria primara,
deseori (cazul cand aceasta structurd este modificata), este necesara
salvarea fisierului index pe disc, or generarea fisierelor index poate fi o
sarcina foarte retarda. In acest caz, este important sa se cunoasca care
indecsi sunt temporari si care indecsi sunt permanenti. De asemenea,
trebuie prelucrat spatiul de inregistrari excedentare, pentru ca se
recomanda ca fisierul inchis sa aiba spatiul de tranzactii liber. Prin urmare,
mai intai se face reorganizarea fisierului, apoi se inchide.

Consultarea inregistrarilor. Cautarea unei inregistrari dupa cheia de
ordonare este facuta mai intai in fisierul index (pornind de la nivelul extern).
Se cauta cheia imediat mai mare sau egala cu cea solicitata. Cu adresa
obtinutd se cautd in nivelul urmator al indexului, citind un bloc de
inregistrari din index. In acest bloc, se cauta cea mai mare cheie. Se repeta
cautarea pana nu mai exista niveluri de indecsi si adresa obtinuta
corespunde unui bloc de inregistrari in spatiul de date al fisierului principal.
Apoi se citeste acest bloc, cautand cheia ceruta. Daca este gasita, trebuie sa
se analizeze eticheta de eliminare (daca eticheta exista, atunci cheia nu mai
existd). Daca cheia nu se intalneste in acest bloc, se verifica daca se afla in
lista de inregistrari excedentare, fie in bloc sau inregistrare. Daca este, se ia
adresa indicata (corespunzatoare unei pozitii in figierul de tranzactii) si se
parcurge lista in cautarea cheii cerute. In general, in fisierul de tranzactii nu
se lucreaza cu etichete de eliminare, deoarece aici elimindrile sunt, de
obicei, fizice.

Consultarea unei inregistrari dupa cheia care nu e de ordonare
necesita o cautare exhaustiva a tuturor inregistrarilor atat in blocuri, cat si
in listele de tranzactii.

Inserarea inregistrarilor. Pentru inserarea unei inregistrari, initial se
cauta in fisierul index si se determina in ce bloc de date inregistrarea
trebuie sa fie inclusa. Indatda dupa determinarea pozitiei, inregistrarea este
inclusa in spatiul de inregistrari excedentare si se actualizeaza legaturile,
daca spatiul de tranzactii exista pentru fiecare inregistrare.

Daca spatiile de inregistrari excedentare sunt rezervate blocurilor,
inregistrarea este inserata in blocul selectat in spatiul rezervat pentru date.
In cazul cand acesta este plin sau nu exista spatiu pentru inserarea
inregistrarii respective, astfel ca inregistrarile acestui fisier sa pastreze
ordinea secventiala, este inserata in spatiul de tranzactii al blocului, daca
cheia sa este mai mare decat cheia ultimei inregistrari a blocului principal si
se actualizeaza legaturile.

In caz contrar, ultima inregistrare a blocului principal este trecutd in
spatiul de tranzactii si inregistrarea noua este inserata in pozitia sa corecta
din blocul principal (pot fi deplasari inauntru blocului). Poate exista un camp
similar, In acest spatiu, care ar indica urmatoarea adresa in spatiul de date
sau de tranzactie.

In unele implement&ri inserdrile pot fi realizate in blocuri, in spatiile
eliberate de inregistrdrile care au fost excluse sau in spatiile rezervate
pentru aceasta la sfarsit. In acest caz, spatiile pentru inregistrarile
excedentare pot sa nu fie folosite. Aici, sistemul localizeaza in index blocul

unde va fi stocata inregistrarea. Dupa aceasta operatie, se gaseste, in
fisierul de date, blocul dezirabil si se include inregistrarea in pozitia corecta,
adica in pozitie ordonata.

Inregistrarea este scrisa pe prima adresa libera din fisier si sunt
actualizate pozitiile relative ale acestei adrese (cheia inregistrdrii, adresa
inregistrarii), apoi e scrisa in index (indecsi). Inregistrarea noua poate fi
stocatd pe orice adresd vidd din spatiul alocat pentru fisier. In continuare,
trebuie inclusa o intrare in fisierul index primar (ce se refera la cheia
primard) si in fiecare din celelalte fisiere index care exista. Inserarile in
fisierele index atrag dupa sine restructurarea lor pentru ca inregistrarea sa
fie scrisa in pozitia adecvata in fisierul index.

Excluderea inregistrarilor. Ca si in alte organizari analizate anterior, in
fisierele indexat secventiale se pot realiza atat excluderi fizice, cat si logice.
Excluderea fizica presupune eliberarea spatiului in fisierul de date (poate
dura mult timp), precum si eliminarea inregistrarii din fisierul de index.

O solutie mai buna, in majoritatea cazurilor, este excluderea logica.
In acest caz, se poate opta pentru mai multe variante. Este posibild
includerea unui camp in fisierul de date care ar indica daca inregistrarea a
fost exclusa. Astfel, nu e necesara modificarea indexului, insa devine
obligatorie verificarea acestui camp la fiecare accesare a inregistrarii.

Alta optiune este utilizarea in index a unui indicator de excludere
asociat cheii primare. In acest mod, la accesarea fisierului index deja se va
putea verifica daca inregistrarea a fost exclusa. In afara de aceasta,
inregistrarea ar putea fi detectata de algoritmul de inserare, care ar localiza
usor spatiile eliberate pentru inserari.

Daca fisierul poseda mai multe structuri index (asupra diferitelor chei
de acces), sarcina de excludere a inregistrarilor se poate complica. In orice
caz, pentru orice structura index, inregistrarea exclusa nu trebuie luata in
seama.

Modificarea inregistrarilor. Pentru modificarea inregistrarilor, mai
intai, se localizeaza inregistrarea ca intr-o consultare (prin structura index),
folosind un argument de cautare in calitate de cheie de acces. In
continuare, se modifica campurile respective si se inscrie inregistrarea.

Pot fi intalnite doua situatii. Daca nu se modifica cdmpul cheii de
ordonare si lungimea inregistrarii este mai mica, inregistrarea poate fi scrisa
in locul in care se gaseste. Daca modificarea datelor inregistrarii cere
modificarea pozitiei ei in fisier, adica are loc modificarea unui camp al cheii
de ordonare sau a lungimii ei, atunci inregistrarea se exclude din fisierul
initial si se insereaza, in calitate de finregistrare noua, in fisierul de
tranzactii.

Astfel, sistemul de operare localizeaza in index adresa blocului unde
poate fi stocatda cheia cdautata. Daca blocul este gasit in fisierul de date,
inregistrarea este cautata secvential. Modificarea unei inregistrari este
facuta cu o nouad inscriere a inregistrarii actualizate, in cazul cand nu se
modifica dimensiunea ei, pe aceeasi adresa. Iar in cazul cand lungimea este
modificata, inregistrarea veche este exclusa, iar cea noua este inserata pe
alta adresa, unde inregistrarea noua poate fi scrisa.

Modificarea unei inregistrari poate provoca modificarea indecsilor,
deoarece aceasta poate modifica valoarea campurilor pentru care exista
indecsi. Acest fapt implica eliminarea intrarilor anterioare in fisierul de index
si In includerea unei intrari noi, ce va implica o reorganizare a indexului. De

obicei, nu se admite modificarea cheii specificate pe campurile cheii
primare.

Lectura exhaustiva a inregistrarilor. Lectura exhaustiva este realizata
fara utilizarea indexului. Se citeste fiecare inregistrare din fisierul principal si
continua aceasta lectura, folosind lista de pointeri ce leaga fisierul principal
de cel de tranzactii, in mod analogic, ca in fisierul secvential.

Ins&, din cauza accesérii spatiului de inregistrari excedentare, aceast
operatie este mai putin eficienta, in comparatie cu operatia respectiva in
fisierul secvential. Ordinea fizica si logica a inregistrarilor nu este aceeasi.
Deci, pentru a realiza eficient lectura exhaustiva a fisierului, este necesara
definirea unui index asupra acestui fisier care ar determina ordinea logica
de parcurgere a inregistrarilor. Daca exista cel putin un index exhaustiv
asupra fisierului, aceasta operatie poate fi efectuata prin accesul serial la
fisierul index, urmata de accesari directe ale fisierului de date.

Reorganizarea fisierelor. Reorganizarea presupune o lectura
exhaustiva si transferarea tuturor inregistrarilor intr-un fisier nou de date.
De fapt, toate inregistrarile sunt transferate in fisierul principal si spatiul de
tranzactii este eliberat. In continuare, se genereaza indexul nou.

Reorganizarea unui fisier indexat secvential devine intotdeauna
necesara, daca: spatiul de tranzactii devine foarte mare, diminuand, astfel,
eficienta executarii accesarilor de fisiere. In afara de aceasta, are loc
eliminarea inregistrarilor excluse logic (daca aceste sectoare nu au fost
folosite de algoritmul de inserare a inregistrarilor). Daca trebuie, se
restructureaza fisierele index pentru imbunatatirea accesului la inregistrari.

Astfel, reorganizarea fisierelor consta in lectura tuturor inregistrarilor
si scrierea lor in alt fisier de date. Totodata, se elibereaza spatiile ocupate
de inregistrarile excluse si se genereaza o structura noua de indecsi.

Operatia de reorganizare trebuie facuta periodic cand sistemul nu
este utilizat (cel putin cand nu sunt facute inserari, modificari si suprimari),
deoarece reorganizarea necesita o analiza exhaustiva a inregistrarilor in
doua fisiere (principal si de tranzactii) si crearea unui fisier auxiliar cu
aceeasi structura, ca a fisierului principal.

28.6 Fisiere indexate

In fisierele indexate, inregistrarile sunt identificate de un index, numit
cheie de acces, sau cheie a inregistrarii, sau cheie principald. Fiecare cheie
reprezinta valoarea cu care celelalte date din inregistrare sunt identificate in
fisier. Aceasta cheie de acces trebuie sa fie unica pentru fiecare inregistrare,
adicd, nu existd doud inregistrari cu aceeasi valoare a cheii. Inregistrérile
sunt accesate intotdeauna de unu sau mai multi indecsi, care nu au nici o
legatura cu ordinea de stocare fizica a inregistrarilor.

Pastrarea si respectarea ordinii fizice a inregistrarilor (pentru un
acces serial eficient) in fisierele indexat secventiale provoaca mai multe
probleme, in principal, probleme care tin de inserarea inregistrarilor noi. Pe
masura ce necesitatea de accesari seriale scade, in raport cu numarul de
accesari aleatorii, pastrarea secventei fizice a fisierului afecteaza negativ
eficienta accesarii bazei de date, adicd organizarea fisierelor devine
contraproductiva.

Prin urmare, devine mai convenabild utilizarea unui fisier indexat, in
care inregistrarile sunt accesate intotdeauna prin unu sau mai multi indecsi,

fara a tine cont de ordinea fizica a inregistrarilor. Indecsii pot fi structurati
ca In organizarea indexat secventiald, ceea ce face mai eficienta cautarea
inregistrarii.

Structuri si operatii in fisierele indexate

Fisierele indexate, ca si fisierele indexat secventiale, utilizeaza
structuri auxiliare (indecsi) pentru accelerarea accesului la inregistrarile cu
date. Spre deosebire de precedentele organizari, in fisierele indexate exista
posibilitatea de utilizare a mai multor indecsi (respectiv, mai multor chei) si
lipseste restrictia ca inregistrarile in fisierul principal trebuie sa fie ordonate
de o cheie. Ultima caracteristica exclude utilizarea spatiilor de tranzactii.

Astfel, fisierul cu organizare indexatda este constituit din doua
componente:

— indexul, care contine cheile de acces si adresele fiecarei
inregistrari din fisierul de date; toate accesarile de inregistrari
sunt facute prin aceastda componenta, care este pastrata
intotdeauna ordonat, dupa cheia de acces;

- fisierul de date, care stocheaza celelalte campuri ale tuturor
inregistrarilor fisierului, independente de orice ordonare sau
secventa.

Ca si fisierele indexat secventiale, fisierele indexate sustin doua

metode de acces: secvential si aleatoriu.

Modul secvential de acces reprezinta o lectura secventiald a indexului
unui fisier indexat. Pentru fiecare intrare in index, este obtinuta adresa
inregistrarii din index in fisierul de date si cu aceasta adresa se citeste
inregistrarea. In recuperarea secventiald a unui fisier, datele sunt citite
intotdeauna ordonate dupa cheie.

Modul aleatoriu de acces se caracterizeaza prin inexistenta unei
secvente logice pentru recuperarea inregistrarilor, adica, dupa citirea ultimei
inregistrari, poate fi citita a cincea sau prima, sau oricare alta - aceasta
secventa este determinata de programul aplicatie. In procesul de lectura,
sistemul localizeaza valoarea cheii dezirabile in index, identificand adresa
inregistrarii corespunzatoare in fisierul de date, si asigura accesul, cu
aceasta adresa, pentru recuperarea inregistrarii.

Consultarea fisierelor indexate poate fi realizata, folosind mai multe
chei. Daca exista un index pentru o cheie, cautarea este facuta, pornind de
la indexul in chestiune (prelucrarea ca in organizarea indexat secventiala)
pana se obtine adresa unei inregistrari in fisierul de date. Nu este nevoie de
multe liste (nu mai sunt accesari). Insd, dacd excluderile inregistrérilor sunt
logice, este necesara examinarea existentei etichetelor de excludere. Daca
nu exista vreun index pentru cheia cerutd, se realizeaza cautarea
exhaustiva a cheii in fisierul de date (analiza tuturor inregistrarilor pana ce
se intalneste cea cautata).

Inserarile sunt facute intotdeauna in fisierul de date, in orice spatiu
liber, deoarece inregistrarile in acest fisier nu trebuie sa respecte o anumita
ordine. Pentru a putea reexploata spatiile inregistrarilor suprimate, se
construieste o lista de spatii libere. Insa, fiecare inserare implica si
actualizarea imediata (on-line) a indecsilor, fapt ce poate influenta negativ
executarea acestei operatii.

Modificarile sunt facute direct in fisierul de date si ele, de asemenea,
provoaca actualizarea indecsilor (numai in care se indica campurile
modificate).

Excluderea inregistrarilor poate fi fizica, cu actualizarea on-line a
indexului, sau logica, cu utilizarea etichetelor. Ultima varianta implica,
ulterior, stergeri fizice cu scopul reutilizarii spatiului eliberat.

Parcurgerea secventiala este putin ineficienta, dar nu influenteaza
executarea sistemului in general. Ordinea inregistrarilor depinde de cheia
aleasa si este dictata de informatiile din index (nivelul cel mai intern contine
ordinea inregistrarilor). Problema este ca fiecare pereche <cheie, adresa>,
in ultimul nivel directioneaza accesul la fisierul de date (deoarece
inregistrarile sunt dispersate fara ordine si nu sunt utilizate blocuri de
inregistrari continue). Pentru parcurgerea secventiala, este de ajuns
analizarea directa a ultimului nivel al indexului (nu este necesara navigarea,
pornind de la nivelurile externe). Parcurgerea secventiala dupa o cheie care
nu este index necesita un fisier auxiliar si tehnici de ordonare.

Un mare avantaj al fisierelor indexate este posibilitatea de consultare
dupa mai multe chei, ceea ce deosebeste aceasta organizare de celelalte.
Consultarile aleatorii (pentru o singura inregistrare), de asemenea, sunt
facute rapid. Acum operatia de parcurgere secventiald, cu toate ca nu poate
fi facuta in mod optimal, nu este foarte lenta ca operatia respectiva in
organizarea indexat secventiald, intrucdt nu trebuie sa se parcurga liste
inlantuite.

Un dezavantaj este necesitatea de actualizare on-/ine a indecsilor,
ceea ce poate influenta executarea operatiilor, dar, pe de alta parte,
permite aplicarea lor in sistemele cu utilizare neintreruptd, cum sunt bazele
de date. Insd, o data cu implementarea indecsilor eficienti si moderni
(precum se va vedea in continuare), se poate solutiona aceasta problema.
Alt dezavantaj este ca organizarea indexata cere mult spatiu pentru
stocarea tuturor indecsilor. Cu toate acestea, fisierele indexate sunt larg
utilizate in majoritatea SGBD-urilor.

Fisiere inversate

Nu toate cautarile in bazele de date se fac dupa cheia primara. Daca
un atribut sau un grup de atribut apare des in cereri, atunci, pentru acest
atribut sau grup de atribute, se construieste un index secundar, ce permite
accesul rapid la inregistrarile corespunzatoare valorilor date.

Un fisier cu un index secundar, corespunzator unui atribut sau grup
de atribute X, se spune cd este fisier inversat in raport cu X. In indexul
secundar, inregistrarile sunt indicate fie prin pointeri la ele, fie prin valorile
cheilor primare corespunzatoare lor.

Referirea la inregistrari prin pointeri (lista inversatda) are avantajul
accesului mai rapid la date, dar produce constrangeri din cauza fixarii
inregistrarilor in locul unde au fost introduse, la nivel de bloc sau la nivel de
inregistrari. Referirea prin cheia principala asociata are dezavantajul unui
acces lent, dar nu mai fixeaza inregistrarile.

De exemplu, o lista inversata dupa campul Departament al unui fisier
de functionari ai unei intreprinderi va contine toate valorile acestui camp, si
fiecareia din aceste valori ii va fi asociata o lista cu adrese sau pointeri ale
inregistrarilor functionarilor care contin valoarea specificata in campul

Departament. Astfel, lungimea fiecarei liste va fi numarul de functionari
care lucreaza in departamentul respectiv.

De fiecare datda cand o Iinregistrare este inclusa, exclusa sau
modificata, fisierul inversat, de asemenea, trebuie sa fie modificat. O
alternativa, precum s-a mentionat, este stocarea nu a adresei, ci a cheii
primare a fiecarei inregistrari. In acest mod, se evita actualizarea indexului
cand are loc reorganizarea fizicd a fisierului (ordinea inregistrérilor). Ins3,
aceasta optiune franeaza executarea consultarilor, o data ce nu se cunoaste
adresa, este necesara localizarea ei in alt mod (sau de alt index, sau
secvential).

O problema ce diminueaza calitatile necesare pentru viabilitatea
fisierelor inversate apare cand valorile campului pe care e definit indexul
secundar nu poseda repetari de valori. Alta problema ce trebuie sa fie
considerata este ca listele, in general, nu au lungime fixa (numarul de
inregistrari pentru fiecare valoare se poate schimba cu utilizarea
sistemului).

Indecsi Bitmap

Un index bitmap este o varianta a indexului secundar care asociaza
fiecarei valori a atributului indexat o secventa de biti, in loc de o lista de
adrese sau chei. Fiecare bit identifica o inregistrare concreta a fisierului.
Daca inregistrarea in campul atributului indexat are valoarea specificata,
atunci bitul respectiv contine valoarea 1. Un bit cu valoarea 0 semnifica
faptul ca inregistrarea nu contine valoarea specificata in campul indexat.

Lungimea secventei de biti este numarul maximal de inregistrari in
fisier. Daca fisierul creste mult sau are loc reorganizarea fizica a
inregistrarilor, indexul bitmap trebuie sa fie refacut.

Daca se cauta inregistrarile cu valoarea v a atributului indexat, este
suficient sa fie examinat bitmap-ul asociat valorii v, cautati toti bitii cu 1 si
sa fie accesate inregistrarile respective. Un index bitmap este foarte
eficient, daca numarul de valori posibile ale atributului indexat este mic.

Unul din avantajele indecsilor bitmap este ca nu ocupa mult spatiu.
Un index bitmap este foarte mic in dimensiuni, in raport cu un B-arbore
construit pe acelasi atribut. Este foarte util in aplicatii de tipul
inmagazinarilor de date care contin volume mari si clasifica informatiile
conform unor atribute definite pe domenii mici de valori. Unele interogari
pot fi executate foarte eficient, uneori fara a apela la fisierul de date.

O data ce o inregistrare este inclusa, exclusa sau modificata (in
campul respectiv), bitmap-ul, de asemenea, trebuie modificat. Acest tip de
index poate fi folosit eficient si pentru campurile atributelor multivaloare.

Arborii binari

Arborii, in general, formeaza o clasa de indecsi destul de eficienti si
mult utilizati, astazi, in bazele de date. Fiecare nod trebuie sa posede o
cheie si pointeri (vizi sau indreptati spre nodurile fii).

Un arbore important este arborele binar. In el, fiecare nod poate avea
cel mult doi fii. In calitate de index arborele binar poate fi organizat precum
urmeaza. Dat fiind faptul ca fiecare nod poseda o cheie, nodul fiu din stanga
trebuie sa contind o cheie mai mica decat a nodului parinte, in timp ce

nodul fiu din dreapta trebuie sa contind o cheie mai mare (si asa succesiv
pana la frunze).

Daca se cauta o inregistrare, localizarea ei se face, analizand nodurile
fii. Astfel, pentru gasirea unei chei, se parcurge arborele de la radacina,
mergand spre stanga, daca cheia cautata este mai mica decat cheia nodului
curent, sau spre dreapta daca cheia cautata este mai mare (pana se
intalneste cheia cautata sau pana cand nu mai sunt noduri fii).

Inserarea cheii in arbore este facuta dupa o anumita frunza (in
calitate de nod fiu al unui nod frunza), in locul respectiv, aplicand aceleasi
proceduri ca in procesul de cautare (explicate anterior). Excluderea, insa, a
unei chei presupune substituirea ei cu alta (mai mica sau mai mare decat
urmatoarea, care se gaseste in nodul frunza respectiv). Modificarea valorii
cheii indexului este realizata in arbore de o excludere a cheii vechi si o
includere a cheii noi.

Sunt doua solutii de stocare a adreselor inregistrarilor:

— adresa se plaseaza in fiecare nod al arborelui, formand perechea

<cheie, adresa>;

— adresa se pastreaza numai in nodurile frunze, adica unele chei

sunt repetate si in calitate de noduri frunze.

Solutia cand fiecarei chei ii este asociata o adresa permite accesarea
inregistrarii in momentul in care s-a gasit cheia ei in arbore si, prin urmare,
nu este necesara parcurgerea arborelui pana la nodurile frunze. A doua
varianta, cand adresele sunt asociate numai nodurilor frunze, faciliteaza
consultarea secventiala a inregistrarilor (dupa cheia indexului), deoarece
nodurile frunze pot fi inlantuite, formand o lista.

Arborele binar este putin folosit in calitate de index in SGBD-uri,
deoarece dupa o serie de operatii de actualizare poate deveni nebalansat.
Chiar daca cheia unui nod radacind are o valoare intermediara, arborele
poate avea unele ramuri mai lungi sau mai adanci decat altele, fapt ce
poate genera un dezechilibru in executarea operatiilor. Evident ca acest
lucru poate fi depasit, daca se va recurge permanent la reorganizarea
arborelui. Dar aceasta operatie este laborioasa si sunt antrenate in ea toate
nodurile arborelui. Cu atadt mai mult ca baza de date este un sistem care
este interogat incontinuu si nu exista rdagaz pentru a face astfel de
restructurari.

B-arbori

B-arborele este un tip de index in forma de arbore, care intotdeauna
este balansat. Cautarea inregistrarilor este similara pentru orice cheie,
indiferent de localizarea ei in arbore (fie in nodul radacina, sau in nodul
intermediar sau frunza).

Fiecarui B-arbore i se asociaza un numar numit ordinul arborelui, care
determina numdrul maximal si numarul minimal de noduri frunze pe care le
poate contine. In afara de aceasta, un B-arbore (de ordinul m) trebuie sa
respecte urmatoarele reguli:

— fiecare nod poseda m sau mai putini subarbori;

- fiecare nod, cu exceptia radacinii, poseda m/2 (ia o valoare

intreagad) sau mai multi subarbori;

— nodul radacina poseda, cel putin, doi subarbori nevizi, cu exceptia

cand este un nod frunza;

— orice nod frunza se gaseste la aceeasi distanta de nodul radacina

si toti subarborii lor sunt vizi;

— intr-un nod cu k subarbori se stocheaza k-1 inregistrari;

- orice nod de derivare (care nu este frunza) poseda exclusiv

subarbori nevizi.

Consultarea dupa cheie este facuta ca in orice arbore: se parcurge
subarborele stang, daca cheia cautata este mai mica decat cheia analizata
(mentionam ca un nod poate avea mai mult de o cheie) sau se parcurge
subarborele drept, daca cheia este mai mare. Acest proces continua pana se
intdlneste cheia cautata sau se intdlneste subarborele vid).

Pentru a insera o cheie intr-un B-arbore, se verifica dacd argumentul
de cautare nu coincide cu o cheie deja existenta. Adica, mai intai, se face
consultarea arborelui.

Includerea unei chei este facuta intr-un nod frunza, daca acesta are
spatiu suficient (nodul se gaseste in limitele date de ordinul arborelui). Daca
nu este spatiu suficient pentru inserarea cheii, trebuie sa se produca
divizarea nodului (splitt) si formarea a doua noduri noi. Cheia valorii
intermediare trebuie sa urce, adica trebuie sa fie inclusa in nodul parinte, cu
corectiile corespunzatoare in pointerii precedent si urmator, din aceasta
cheie, In nodul parinte (acum pointerii devin indicatori spre nodurile create).
Nodul nou din stdnga va contine cheile mai mici decat cea intermediara si
nodul din dreapta, cheile mai mari.

Daca in nodul parinte nu este spatiu pentru includerea cheii
intermediare, care “urca”, nodul parinte trebuie divizat (aceeasi procedura).
Acest proces poate provoca divizari succesive, pana la crearea unei noi
radacini (din inexistenta unui nod parinte, cheia care urca formeaza un nou
nod radacina).

Excluderea unei chei este un proces mai complicat. Mai intai se
localizeaza cheia respectiva. Actiunile de mai departe depind de faptul daca
cheia se gaseste intr-un nod frunza sau nu.

Daca cheia se gaseste intr-un nod frunza, ea este exclusa. Ramane sa
se verifice daca nodul frunza se gaseste in interiorul limitelor admise. Daca
numarul de chei este mai mic de limita permisa de ordinul arborelui, nodul
afectat trebuie sa “solicite” o cheie de la nodul frate din stanga sau nodul
frate din dreapta (daca din unul din noduri poate fi extrasa o cheie, iar
nodul respectiv sa se incadreze in limitele admise). Cheia solicitata de la un
nod frate trebuie sa fie una de varf (cea mai mare in nodul frate din stdnga
sau cea mai mica in nodul frate din dreapta). Atunci, aceasta cheie se ridica
la nodul parinte, substituind-o pe cea care se gasea intre pointerii celor doi
frati afectati. Cheia substituita este coborata in nodul de unde a fost exclusa
cheia specificata (cheia coborata este pozitionata in ordinea respectiva).

Daca, insa, nici un nod frate nu poate “elibera” o cheie pentru nodul
din care s-a exclus cheia specificatd, se produce concatenarea (unsplitt)
intre nodul afectat si un nod frate. Atunci, cheia nodului parinte care se
gaseste intre identificatorii fratilor coboara pentru a fi cheie intermediara
intre cheile nodurilor frati.

Daca nodul parinte, dupa pierderea unei chei, contine mai putine chei
decat limita admisa, el trebuie, de asemenea, unit la unul din fratii sai,
aplicand aceeasi procedura de concatenare. Acest proces poate provoca o
concatenare in cascada, pana este eliminat nodul radacina (radacina noua
fiind nodul obtinut din concatenarea nodurilor fiu).

In cazul cand cheia ce trebuie exclusi se gdseste intr-un nod de
derivare, aceasta va trebui sa fie substituita de cheia imediat mai mare sau
mai mica. Or, pentru aceasta e destul de parcurs unul din subarbori pana la
nodul frunza mai apropiat. Daca nodul frunza, dupa pierderea cheii (pentru
substituirea celei excluse), contine mai putine chei decat limita admisa,
procedura de corectie este aceeasi ca si in cazul excluderii cheii din nodul
frunza.

Trebuie mentionat ca datele inregistrarilor (campurile) sunt pastrate
intr-un fisier separat. Asadar, fiecare nod are, in afara de pointeri spre
nodurile fii, un pointer spre inregistrarea respectiva de date.

O alternativa este pastrarea in noduri si a datelor inregistrarilor.
Avantajul acestei structuri este cda nu mai e nevoie de inca o accesare
pentru gasirea Iinregistrarilor. Pe de altd parte cresterea dimensiunii
nodurilor face ca operatiile de divizare si concatenare sa fie mai lente.

B*-arbori

Indecsii de tipul B+-arbore sunt asemanatori celor de tipul B-arbore,
cu deosebirea ca toate cheile din nodurile derivate sunt, de asemenea,
replicate si in nodurile frunze. Aceasta da posibilitatea ca nodurile frunze sa
fie inlantuite, formand o lista (fiecare nod are cate un pointer pentru
nodurile precedent si urmator). Aceasta lista faciliteaza operatia de
parcurgere secventiala a inregistrarilor (dupa cheia indexului).

Castigul in urma aplicarii B+-arborelui este cu atadt mai spectaculos,
cu cat numarul inregistrarilor creste. Se poate observa o crestere foarte
rapida (exponentiala) a numarului de inregistrari indexate in functie de
numarul nivelurilor indexului si invers, o crestere foarte mica (logaritmicd) a
numarului de niveluri in functie de numarul inregistrarilor. Intrucat costul
unei cautari dupa cheie este proportional cu numarul nivelurilor si nu cu
numarul Tinregistrarilor, indexarea permite micsorarea considerabilda a
timpului de cautare.

B-arborii ofera o mai mare flexibilitate de gasire a adresei in fisierul
de date, unde este stocata inregistrarea si asigura o mai mare eficienta, in
principal, in operatiile de inserare si eliminare a inregistrarilor. In plus, B+-
arborii nu exclud posibilitatea de parcurgere secventiala a datelor. Pentru
aceasta, este suficient sa se parcurga multimea de noduri frunze, folosind
lantul de pointeri ce le leaga. Deci, accesul la fisierele cu un index B+-
arbore poate fi facut in mod secvential si aleatoriu.

Totodata, se observa o simplificare in structura generala a fisierului,
deoarece fisierele indexate sunt scutite de utilizarea spatiului de tranzactii.
Daca fisierele organizate secvential si indexat secvential trebuiau
reorganizate periodic pentru a aduce ordinea logica la cea fizica, in fisierele
indexate, ordinea fisierului de date este neesentiala. Aceasta se datoreaza
faptului ca inregistrarile sunt accesate prin index, fara a avea de-a face cu
configuratia fizica a acestora.

Cu toate acestea, o mare problema intalnita in fisierele cu organizare
de tip indexat este necesitatea de actualizare a tuturor indecsilor cand, de
exemplu, o noud inserare este facuta.

28.7 Fisiere cu dispersie

Intr-un fisier cu dispersie existd o relatie predefinitd intre valoarea
cheii utilizate pentru identificarea unei inregistrari gi localizarea inregistrarii
in fisier. Inregistrarile nu sunt, neaparat, ordonate fizic in acord cu valoarea
cheilor. Inregistrarile sunt stocate pe dispozitivele externe de stocare de
acces direct si recuperate prin utilizarea acestei legaturi.

Acesta este tipul de organizare care contine numai un spatiu de date
pentru stocarea inregistrarilor. Inregistririle sunt identificate de o cheie
principala, a cdrei adresa fizica, pentru stocare, este data de valoarea cheii
sau de o valoare calculata, pornind de la valoarea cheii. Intr-un fisier cu
organizare dispersatd, de obicei, cheia este de tip numeric, pentru a calcula
adresa si localiza inregistrarea in spatiul de date.

Caracteristicile fisierelor cu dispersie

Fisierele cu dispersie prezinta o organizare a datelor destul de des
utilizata in tehnicile de proiectare fizica a bazelor de date, mai ales in
modelele orientate pe obiecte. Ele necesita timp, relativ, redus de acces al
inregistrarilor individuale, insa lectura secventiald a unui fisier cu dispersie
este o sarcina anevoioasa. Exista doua forme de organizare a fisierelor cu
dispersie:

— cu adresare directd;

— cu adresare indirecta.

Caracteristica principala a fisierelor cu dispersie este ca adresa
fiecarei inregistrari e determinata in functie de valoarea cheii primare a
inregistrarii. Astfel, este utilizatda o functie de dispersie (hash function),
care, pentru fiecare valoare a cheii C, returneaza adresa h(C) intr-un spatiu
de stocare, unde inregistrarea respectiva trebuie plasata.

Aceasta este cea mai rapidda metoda de acces la date, numai daca
cautarea se petrece cu conditia de egalitate asupra campului de dispersie.

Functia de dispersie trebuie sa tina cont de spatiul alocat fisierului,
pentru a realiza o distribuire uniforma a inregistrarilor in spatiul rezervat.
Exista functii care pdstreaza ordinea (cheii) si care nu pastreaza ordinea
(cele mai populare). Intre ultimele exista functiile deterministe (o singura
adresa poate fi generata de o cheie) si functii nedeterministe (cdnd mai
mult de o cheie poate genera aceeasi adresa, fapt care se numeste
coliziune).

Pentru includerea in fisier a unei inregistrari, este suficient sa se
calculeze adresa ei, aplicand valoarea cheii in functia de dispersie aleasa.
Daca apare o coliziune, adica, daca exista o alta inregistrare pe aceeasi
pozitie, trebuie sa fie utilizate unele proceduri de tratare a coliziunilor.

Pentru excluderea unei inregistrari, este de ajuns sa se gaseasca
inregistrarea prin aceeasi metoda si sa se excluda datele ei sau sa se
marcheze ca e exclusa. Procesul de modificare se petrece in mod analog.
Pentru modificari in cheia primara se apeleaza la operatia de excludere (a
cheii vechi) urmata de o operatie de includere (a cheii noi).

Exista eventualitatea ca functia de dispersie sa produca, pentru doua
sau mai multe valori diferite ale cheii, aceeasi adresa. In acest caz, prima
inregistrare inclusa raméane in domeniul de date, iar pentru celelalte se

apeleaza la o procedura de prelucrare a coliziunilor pentru a fi incluse in
spatiul de coliziuni. Exista mai multe proceduri de tratare a coliziunilor:

— utilizarea unui figsier de tranzactii (overflow), unde sunt plasate
inregistrarile excedentare (care nu pot fi incluse in fisierul
principal, deoarece, deja, exista alta inregistrare pe aceeasi
adresa), formand o lista inlantuita;

— alocarea inregistrarii in pozitia urmatoare libera (fapt ce poate
mari probabilitatea aparitiei coliziunilor);

— inregistrarile care se ciocnesc sunt alocate in locurile libere ale
aceluiasi fisier, formand liste inlantuite;

— utilizarea unei a doua functii de dispersie, pentru pozitionarea
inregistrarii pe alta adresa (de asemenea, mareste probabilitatea
coliziunilor care, la randul lor, necesita alt mod de tratament al
coliziunilor);

— utilizarea blocurilor - adresa generata de functia de dispersie
apartine unui bloc unde inregistrarile pot fi plasate in forma
seriala.

Consultarea inregistrarilor (dupa cheia primara) este mai eficienta in
acest tip de organizare, dar trebuie sa se tina cont de procedura aleasa
pentru tratarea coliziunilor.

Dezavantajele acestui tip de organizare sunt: imposibilitatea de
consultare dupa mai multe chei (trebuie sa fie utilizate impreuna alte
mecanisme) si necesitatea de rearanjare (reorganizare), cand fisierul cregte
prea mult (multe includeri). In acest caz, trebuie aleasa o altd functie de
dispersie si toate inregistrarile repozitionate de functia noua.

Pentru a diminua probabilitatea de aparitie a coliziunilor, se poate
aloca un spatiu mai mare pentru fisier (un spatiu suplimentar de 20%-
30%). O buna functie de dispersie, de asemenea, poate diminua coliziunile
(dar nu le poate evita). Acest tip de organizare este optimal pentru
aplicatiile care au nevoie de consultari aleatorii rapide (ale unor inregistrari
specifice) si cand fisierul nu creste mult.

Daca fisierul creste mult, pot fi utilizate alte tehnici. Tehnicile
cunoscute ca dispersia dinamica si dispersia extensibild utilizeaza blocuri
pentru alocarea Iinregistrarilor. Daca blocul a crescut prea mult (pana
aproape de limita sa), el trebuie sa fie divizat si inregistrarile Iui
redistribuite in blocurile nou-produse.

Cu dispersia dinamica, realocarea inregistrarilor in blocurile noi este
dictata de o functie noud. Acum, pentru gasirea unei inregistrari, este
necesara examinarea istoriei realocarii (retrecand toate functiile deja
utilizate).

In cazul dispersiei extensibile, realocarea este determinata de
cresterea cheii. Intr-adevar, cheia produsa de functia de dispersie este de
lungime fixa, dar codificata de o secventa de biti de lungime suficient de
mare. Numarul de biti ce este analizat pentru identificarea blocului
inregistrarii se modifica (se majoreaza cand blocurile sunt divizate si se
diminueaza in cazul fuzionarii blocurilor).

Aceste doud tehnici implica reorganizarea unei parti a fisierului, de
aceea nu influenteaza mult functionarea generala a sistemului.

Dat fiind faptul ca inregistrarile nu sunt ordonate, ci distribuite in
forma aleatorie in fisier, structura fisierului cu dispersie nu functioneaza
bine pentru consultari secventiale (parcurgerea secventiala a inregistrarilor
in ordinea cheii primare).

Daca exista o asa necesitate, poate fi utilizata tehnica dispersia
indexata. Aceasta este o combinare intre organizarile de tip indexat si
dispersat. in dispersia indexatd, valoarea produsd de functia de dispersie nu
este adresa directa a inregistrarii de date, ci o adresa in fisierul index (cu
perechea care reprezinta cheia si adresa inregistrarii).

Fisierul index functioneaza ca cel mai intern nivel al organizarilor de
tip indexat, unde cheile apar ordonate. Consultarea secventiala poate fi
facuta asupra acestui fisier index, in timp ce, pentru cele de consultare
aleatorie apare numai o accesare in plus. O alta alternativa poate fi
inlantuirea inregistrarilor cu utilizarea pointerilor.

Astfel, pentru fisierele cu dispersie existda doua moduri de acces:

- secvential, care reprezinta o lectura secventiala a datelor,

conform ordinii dictate de cheie.

— aleatoriu, care localizeaza o inregistrare dupa adresa calculata cu

ajutorul unei functii de dispersie, pornind de la valoarea cheii de
acces.

Adresarea directa

Adresa directa, in forma sa mai simpla, este o adresa hardware, fie
relativa, fie absoluta, care permite sistemului sa acceseze inregistrarea
corespunzatoare. Adresa hardware a unei inregistrari este formata din
numarul cilindrului, numarul pistei si din pozitia inregistrarii pe pista.

O abordare mai simpla a acestui tip de organizare consta in tratarea
valorii cheii ca un numar tradus de sistem intr-o adresa hardware relativa.

De exemplu, fie un fisier cu organizare directa pastreaza inregistrari
cu valorile cheii primare intre 0 si 9999. Daca valoarea cheii este tratata ca
numar relativ al inregistrarii, atunci trebuie rezervat un spatiu pentru 1000
inregistrari, care corespunde unei valori posibile a cheii intre 0 si 9999
inclusiv.

Adresarea directa semnifica faptul ca sistemului 1i este furnizata
adresa fizica a inregistrarii cautate, pentru a-i permite recuperarea directa a
inregistrarii. Adresa furnizata poate fi atat fizica a hardware-ului (numarul
cilindrului, numarul pistei, numarul inregistrarii), cat si un numar de adresa
relativa (pozitia intr-un fisier). A doua optiune este mai utilizata, si din
faptul ca adresa relativa poate fi automat tradusa intr-o adresa fizica.

Tratarea unei valori a cheii ca numar de adresa relativa are un
dezavantaj. De exemplu, daca un fisier cu organizare directa are inregistrari
cu valorile cheii intre 0 si 9999, trebuie rezervate 10000 inregistrari, fiecare
corespunzand unei valori posibile a cheii. Aceasta rezerva trebuie facuta,
chiar daca in fisier exista numai o inregistrare (cheia 9999, de exemplu).

Spatiul neutilizat, in aceasta organizare, poate fi foarte mare. Pentru
aceasta administratorul bazei de date trebuie sa analizeze necesitatea reala
de adrese directe in ce priveste spatiul real ocupat de fisier si spatiul irosit.
Daca spatiul liber, procentual, nu este mare, poate fi compensat de
avantajele utilizarii adresarii directe.

Cand numarul de chei posibile este, relativ, aproape de numarul real
de chei, aceasta forma de adresare este foarte eficienta. Dar, aproape
intotdeauna, numarul real de chei este mult mai mic decat numarul de
spatii de inregistrari care trebuie pastrate. Cand aceasta se intampla, pentru
accesarea unui fisier cu dispersie, trebuie sa fie utilizate consultarea
dictionarului sau adresarea indirecta. Pentru ca sistemul sa poata converti

aceasta valoare intr-o adresa hardware, trebuie cunoscute urmatoarele
marimi: valoarea cheii, numarul de cilindri pe dispozitivul extern de stocare,
numarul de inregistrari pe pista, numarul de piste pe cilindru, adresa
hardware absoluta a fisierului.

Pentru a gasi adresa relativa si absoluta a unei inregistrari sunt trei

etape trecute de sistem:
valoarea cheii se imparte la numarul de inregistrari pe pista, unde
catul este numarul pistei relative a inregistrarii, iar restul este
pozitia relativa a inregistrarii pe aceasta pista;

— numarul pistei relative a inregistrarii este impartit la numarul de
piste pe cilindru si se obtine numarul relativ al cilindrului si pista
relativa a cilindrului (restul);

— adresa hardware absoluta a inregistrarii se gaseste, daca se
adauga adresa hardware relativa a Iinregistrarii la adresa
hardware absoluta a fisierului.

Adresarea indirecta

Adresarea indirecta presupune ca se aplica o functie de transformare
a valorii cheii intr-o adresa directa, care poate fi utilizata de sistemul de
gestiune pentru localizarea inregistrarii dorite. Aceasta, spre deosebire de
adresarea directa, unde nu se face nici o transformare a valorii cheii inainte
de utilizarea ei de sistem.

In fisierele cu dispersie, cu adresare indirectda, inregistrarile se
grupeaza in clase. Apartenenta unei inregistrari la una din clase este
determinata, in functie de valoarea pe care o are cheia inregistrarii.

Spatiul necesar pentru stocarea claselor de inregistrari este divizat in
blocuri de stocare. Un bloc de stocare poate contine una sau mai multe
inregistrari logice, capacitatea lor fiind determinata de proiectant. Functia
de dispersie calculeaza, de fapt, adresa primului bloc al clasei, unde este
stocata inregistrarea. In implementarea fisierelor cu dispersie se
construieste o lista numita directoriu cu pointeri la blocul de incepere
corespunzator fiecarei clase, figura 28.12.

Functie de dispersie Bloc
1 -
Cheie — :
N | -
Directoriu

Figura 28.12 Un fisier cu dispersie

Functia de dispersie, de obicei, poate mapa diferite valori ale cheii pe
aceeasi adresa a spatiului de stocare, provocand fenomenul numit coliziune.
Evident ca inregistrarile care au aceeasi adresa produsa de functia de
dispersie apartin aceleiasi clase. Stocarea inregistrarilor ce apartin unei
clase in blocuri depinde de metodele de solutionare a coliziunilor.

Principala problema ce tine de adresarea indirectda este alegerea
functiei h, care transforma valoarea C a cheii unei inregistrari in adresa A,
care i corespunde in fisier. O alta problema este gasirea unei metode
adecvate de solutionare a coliziunilor si de plasare a inregistrarilor
excedentare in blocuri. Astfel, algoritmul de lucru cu fisierele cu dispersie
presupune, printre altele, doua activitati: maparea (utilizand functia de
dispersie) valorii cheii intr-o adresa absoluta sau relativda si citirea
inregistrarilor excedentare.

Daca proiectantul alege un spatiu mic de stocare a primului bloc din
fiecare clasa de inregistrari, apare un numar relativ inalt de coliziuni, fapt ce
produce lecturi suplimentare pentru localizarea inregistrarii dezirabile in
spatiul de finregistrari excedentare. O capacitate de stocare mai mare
provoacd mai putine coliziuni, dar mult spatiu rdmane nevalorificat. In
practica, capacitatea spatiului de stocare depinde de caracteristicile
dispozitivului secundar de stocare a fisierului cu date. Raportul dintre
numarul de finregistrari existente in fisier si numarul total de locuri
disponibile pentru inregistrari in fisier se numeste grad de incarcare a
fisierului. Pe masura ce gradul de incarcare creste, probabilitatea unei
inregistrari, ce trebuie addugata, de a deveni una excedentara (care
provoaca o coliziune), de asemenea, creste.

Eficienta unui fisier cu dispersie, cu utilizarea adresarii indirecte, este
influentata de mai multi factori:

— dimensiunea spatiului de stocare;

— gradul de incarcare;

— valorile cheilor;

— functia de dispersie;

— metoda de solutionare a coliziunilor;

— metoda de citire a inregistrarilor excedentare.

Calcularea adresei

Exista diverse tehnici pentru transformarea cheii intr-o adresa.

Pot fi considerate doua tipuri de functii de dispersie, primul fiind
constituit din functii deterministe care pentru doua valori diferite ale cheii
produc adrese diferite. Acest tip de functii prezinta avantaje evidente. Dar,
in practica, pentru un numar mare de inregistrari, este imposibil de gasit o
functie determinista simpla. Acele functii care pot fi folosite sunt asa de
complexe, ca elimina toate avantajele accesului direct. In afara de
necesitatea de adaptare la fiecare inserare suferita de fisier, de obicei,
produc adrese necontinue, ceea ce duce la utilizarea unui spatiu larg,
similar adresarii directe. Din acest motiv, functiile deterministe nu prezinta
un mare interes practic.

Al doilea tip formeaza functiile nedeterministe, care produc pentru
fiecare valoare a cheii o singura valoare a adresei, iar, uneori, pentru valori
distincte ale cheii, aceeasi adresa, ceea ce constituie o coliziune. Functiile
nedeterministe pot fi proiectate si cu scopul de a atinge unele obiective
secundare, obiective care nu sunt incompatibile:

— pastrarea ordinii inregistrarilor dupa valoarea cheii de acces;

— marirea gradului de unicitate a adreselor produse, adica,

distribuirea Tinregistrarilor in fisier, cu o mare uniformitate
posibila.

O functie de dispersie nedeterminista care nu tine cont de ordinea
cheii se mai humesete functie de randomizare si are ca obiectiv distribuirea
uniforma a inregistrarilor in fisier.

Functia de dispersie “restul de la impartire”. Aceasta functie de
dispersie este utilizata frecvent. In calitate de valoare a functiei de dispersie
se foloseste restul de la impartirea unei chei la un numar intreg N:
h(C)=CmodN +1. Aici la rezultatul impartirii se adauga 1 pentru a obtine o

valoare a functiei intre 1 si N.

Evident ca eficienta distribuirii cheilor depinde mult de valoarea Iui N.
Astfel, contraindicat ca N sa fie puterea bazei unui sistem de numeratie,
deoarece, in acest caz, valorile functiei de dispersie vor fi reprezentate de
ultima cifra a cheii. Cele spuse sunt adevarate si pentru cheile alfanumerice.
Dacd N=2%, de exemplu, valoarea functiei de dispersie va fi ultimul caracter
al cheii. Pentru a depasi concentrarea cheilor in jurul unor adrese, se
recomanda ca N sa fie un numar prim.

Deseori, multimea de chei reprezinta niste secvente de progresii de
tipul XXA,XXB,... sau FTO01, FTO02,.. Functia de dispersie restul de Ila
Impartire transforma astfel de chei in adrese succesive. O asemenea situatie
poate fi considerata destul de satisfacatoare.

Metoda inmultirii. Fie cheia C este reprezentata in forma unui numar
binar si fie N=2". Se inmulteste o fractie « cu C si se ia partea fractionara
care este notata prin {Ca}, iar in calitate de valoare a functiei de dispersie
se folosesc numai primii n octeti. Cu alte cuvinte, h(C)=/Nx{Ca}_J, unde /[x/
este cel mai mare numar intreg mai mic decat x.

Se recomanda a se folosi in calitate de valoare « un numar irational,
aproape de lungimea unui cuvant. De exemplu, daca « este reprezentata de
a=(/5-1)/2, atunci segmentul [0,1] se imparte foarte bine la {a},{2a},....

Cu alte cuvinte, oricat de marunt s-ar diviza segmentul, lungimea
segmentelor obtinute dupa divizare nu se vor exprima prin mai mult de trei

valori 5, a“*?, “*2. In cazul divizarii urmatoare segmentul de lungime o se

imparte in segmente cu lungimile &“*!, o*. Aceastd proprietate, in cazul
aplicarii metodei inmultirii, permite a obtine rezultate bune.

Cerinta N=2" pentru calcularea functiei de dispersie h(C) nu este
obligatorie. Trebuie mentionat ca, daca a=1/N, atunci aceasta metoda este
echivalenta cu metoda restul de la impartire.

Foarte aproape de aceasta metoda de dispersie este metoda
“"mijlocul” patratului, in care, in calitate de valoare a functiei de dispersie
h(C), se folosesc n octeti din mijlocul numarului C?. Si aceasta este o
metoda de dispersare, dar, dupa multi parametri, cedeaza metodei
nmultirii.

Metoda transformarea sistemelor de numeratie. Metoda de calculare
a valorii functiei de dispersie presupune transformarea valorii cheii C,

reprezentata in sistemul de numeratie in baza p, C=a,+a,p+a,p’ +..., intr-o

valoare reprezentata in sistemul de numeratie in baza g cu constrangerea s
asupra ordinii rezultatului: A(C)=a,+a,q+..+a,,¢"". Aici p si g sunt numere
pozitive, astfel, ca p<q.

Pentru calcularea valorii functiei de dispersie h(C), sunt necesare s
operatii de inmultire sau impartire. Prin urmare, complexitatea (numarul de
operatii) acestei metode este mai inalta decat a metodei inmultirea.

Metoda impartirea polinoamelor. Fie cheia C, exprimata in sistemul
binar de numeratie, se scrie C=2""5, , +...+2b +b, si fie N=2". Cheia binara

C se reprezinta in forma unui polinom C(t)=b,t" +..+bt+b,, pastrand

aceiasi coeficienti. Acum se determina restul de la impartirea acestui
polinom la polinomul constant de forma P()=¢"+p, ,t"" +..+ pjt+ p,. Restul

obtinut se considera din nou in sistemul binar de numeratie si se foloseste
in calitate de valoare a functiei de dispersie h(C). Pentru calcularea restului
de la impartirea polinoamelor, se foloseste aritmetica polinomiala dupa
modulul 2. Daca in calitate de P(t) este ales un polinom ireductibil simplu,
atunci, pentru doua chei foarte aproape, dar nu egale, C;#C,, intotdeauna
se va realiza conditia h(C;)=h(C;). Aceasta functie de dispersie poseda
proprietati mai puternice de dispersare a multimii de chei decat
precedentele.

Trebuie mentionat ca, in fisierele cu dispersie, transformarile cheii in
adresa sunt similare functiilor de dispersie utilizate pentru cautarea in
tabelele stocate in memoria principala. Deosebirea consta in caracteristicile
accesului la memoria secundara, care difera de cele ale accesului in
memoria interna accesibila direct. Pentru functiile de dispersie in memoria
principala timpul de calculare a adresei poate fi critic, insa, pentru memoria
secundara, acest timp poate fi neglijat.

Tratarea coliziunilor

Tratarea coliziunilor este unul din aspectele mai importante in
adresarea indirecta si este consecinta utilizarii functiilor nedeterministe
pentru transformarea valorilor cheii in adrese ale fisierului. Se spune ca
exista o coliziune cand doua valori diferite ale cheii de acces sunt
transformate in aceeasi adresa.

Deoarece pe o adresa se poate stoca o singura inregistrare, este
necesara stabilirea unei proceduri pentru a alege o alta adresa, unde va fi
plasata inregistrarea care a provocat coliziunea. Aceasta procedura se aplica
si in operatia de acces, daca, pe adresa produsa in baza argumentului de
cautare, se gaseste o inregistrare cu o cheie diferita de cea a argumentului.

Solutiile mai frecvent utilizate sunt adresarea deschisa si inlantuirea.

Tratarea cu adresare deschisa. Aceasta metoda de solutionare a
coliziunilor presupune ca se foloseste o anumita regulda de parcurgere a
inregistrarilor. O data cu aparitia unei coliziuni la operatia de inserare, este
facutd o cautare in fisier pentru localizarea unei adrese libere, unde va fi
stocata inregistrarea. Procesul de inserare se supune unei secvente
predefinite, care este urmata si in timpul accesului la inregistrare. Regula de
cautare trebuie sa fie astfel, incat, chiar in lipsa pointerilor, aceeasi
secventa sa poata fi parcursa. Procedura poate arata astfel:

1. i=0
2. A=hi(C):

3.1. Daca adresa A este liberd, stop (daca aceasta e procedura de
inserare, algoritmul se termina cu succes, insa, daca aceasta e
procedura de cautare, inseamna ca asa cheie nu exista);

3.2. Daca cheia de pe adresa A este egala cu C, stop (dacd este
procedura de inserare, inserarea a doua nu se mai face, iar daca e
procedura de cautare, algoritmul se termind cu succes);

4. In caz contrar - coliziune; i:=i+1 si se trece la pasul 2.

In sensul larg, {h.}", reprezintd o secventa de functii de dispersie.

Alegerea lor este o problema destul de complicata. Considerand ca h, este
una din functiile examinate anterior, mai departe se examineaza celelalte
functii din secventa.

Cautarea pozitiei libere poate fi realizata cu una din urmatoarele
metode de adresare deschisa:

— cercetarea liniara;

- cercetarea patratica;

— rerandomizarea.

Cercetarea liniara. Aceasta este cea mai simpla schema de
adresare deschisa, in care h,(C)=h,(C)+ki, unde k este o constanta. Regula

este simpld, insa exista pericolul unei concentrari a finregistrarilor la
inceputul procesului, unde foarte mult sunt mixate adresele. Pentru a evita
aceasta, k si N trebuie sa fie reciproc numere prime, iar kK un numar nu prea
mic. Dar in cazul cdnd numarul cheilor este mic in raport cu numarul N,
pericolul cregterii caii de cautare nu este mare, iar faptul ca sinonimele se
vor stoca pe adrese adiacente este un avantaj. In figura 28.13 numarul de
adrese N=10, functia de dispersie initiala este hyo(C)=Cmod10+1, iar
hi(C)=ho(C)+i.

C | hy(C) | (O Adresi | Inregistr.
25 6 1 80
43 4 2
56 7 3
35 6 8 4 43
54 5 5 54
13 4 9 6 25
80 1 7 56]
104 5 10 8 35
9 13 D
10 104 <+

Figura 28.13 Cercetarea liniara

Cercetarea patratica. Aceasta este schema de adresare deschisa, in
care h,(C)=h,(C)+ki+di*, unde k si d sunt constante. Datorita neliniaritatii

acestei adresari se poate evita cresterea numarului de probe pentru mai
mult de doua sinonime. Insa, in cazul unui fisier aproape plin, nu se poate
evita a doua concentrare de chei. Aceasta e conditionata de faptul ca, in
cazul unui numar mare de chei, sinonimele unui grup intra in coliziune cu
alte chei.

De acest dezavantaj practic este absolvita metoda urmatoare, in care
secventele de probe pentru astfel de chei se dovedesc a fi diferite.

Rerandomizarea. Rerandomizarea este schema de adresare
deschisa in care, 4, (C)=g(h_(C)), unde g(C) este o functie asemanatoare cu

hy, dar nu echivalenta ei. Procesul este repetat pana se gaseste o adresa
libera. Avantajul acestei metode, in comparatie cu cele anterioare, este de a

evita concentrarea excesiva a inregistrdrilor in unele regiuni ale figierului,
marind, deci, eficienta operatiilor si accesului. In figura 28.14, este
reprezentat rezultatul aplicarii functiilor de dispersie hy(C)=Cmod10+1 si
hi(C)=(h;-1(C)+1)mod10+1.

C | hy(O) | hy(C) | hy(C) | hy(C) Adresi | Inregistr.
25 6 1 80
43 4 2
56 7 3
35 6 8 4 43
54 5 5 54
13 4 6 8 10 6 25
80 1 7 56 :|
104 5 7 9 8 35
9 104 <
10 13 <

Figura 28.14 Rerandomizarea

Tratarea prin inlantuire. Tratarea prin inlantuire a coliziunilor
presupune ca toate sau o parte de chei sinonime sunt adunate si inlantuite
cu ajutorul pointerilor, formand o lista. Fiecare lista se acceseaza prin
adresa produsa de functia de dispersie, figura 28.15. Listele pot fi pastreze
atat impreuna cu directoriul, cat si intr-un spatiu de memorie separat.

C h(C) Adresa inregistr.
25 6 1 80
43 4 2
56 7 3
35 6 4 43 o——Pp 13
54| 5 5 54 o P 104
13 4 6 25 o——Pp| 35
80 1 7 56
104 5 8
9
10

Figura 28.15 Tratarea prin inlantuire

In cazul cand listele de adrese sunt stocate aparte, consultarea lor
este simpla. Dupa calcularea valorii functiei de dispersie A=h(C), problema
se reduce la cautarea secventialda a listei cu adresa A (eventual stocata in
memoria secundara). Memoria secundara, in acest caz, poate fi divizata in
blocuri, astfel incat cheile sinonime sa se pastreze intr-un bloc. Deoarece
directoriul va contine numai pointeri, numarul lor poate fi destul de mare
pentru a micsora probabilitatea aparitiei coliziunilor. Aceasta metoda este
adecvata unui numar mare de inregistrari de lungime variabila.

Nu apar probleme la includerea unor chei noi. Daca, insa, numarul de
sinonime devine prea mare, in loc de liste liniare, pot fi utilizate structuri
arborescente.

	28. STRUCTURI DE DATE ŞI ACCES ÎN BAZE DE DATE
	28.1 Stocarea datelor
	Dispozitive de stocare a datelor
	Funcţionarea discului magnetic
	Dispozitivul. În mod obişnuit, bazele de date sunt stocate pe disc şi datele sunt transferate de pe disc în memoria principală în măsura necesităţilor. Pentru a limita costul dispozitivului şi mări capacitatea de stocare, mai multe discuri sunt montate pe o axă şi formează un pachet de discuri. În lucru, axa şi discurile sunt antrenate într-o mişcare de rotaţie cu o viteză mare, figura 28.2.
	Accesul la date. Un disc este o memorie cu acces direct. Spre deosebire de o bandă magnetică, de exemplu, este posibil de accesat o unitate de date situată în orice loc pe disc, fără a avea de parcurs secvenţial tot suportul. Accesul direct se bazează pe o adresă dată fiecărui bloc în momentul iniţializării discului de către sistemul de exploatare. În general, această adresă este compusă din trei elemente:

	Optimizarea accesului la date
	Regruparea datelor. Din cele relatate mai sus, reiese că timpul de executare a operaţiilor asupra datelor în baza de date este afectat semnificativ de faptul cum sunt stocate datele pe disc. Timpul de transfer al blocurilor, din sau spre disc, de obicei, domină timpul consumat de operaţiile bazei de date. Pentru a minimiza acest timp, este necesar de a alege o strategie de amplasare a datelor pe disc, ţinând cont atât de geometria discului, cât şi de mecanica discului.

	28.2 Concepte generale de organizare a fişierelor
	Blocuri

	28.3 Fişiere secvenţiale
	Consultarea cu cheia de acces diferită de cheia de ordonare. Consultarea cu cheia de acces diferită de cheia de ordonare are loc ca în fişierele neordonate. Căutarea este făcută prin lectura exhaustivă până când se localizează înregistrarea căutată sau se termină fişierul. Aici NMC = (n+1)/2, unde NMC este numărul mediu de comparaţii, iar n – numărul de înregistrări în fişier. Algoritmul poate fi următorul:
	Consultarea cu cheia de acces egală cu cheia de ordonare. Consultarea cu cheia de acces egală cu cheia de ordonare (sau cu partea ei iniţială) a fişierului stocat pe un dispozitiv cu acces secvenţial se face cu o căutare secvenţială. Singurul avantaj este că, dacă înregistrarea curentă are valoarea cheii mai mare decât a celei căutate, ea nu există şi căutarea este întreruptă. Dacă, însă, dispozitivul permite accesul direct, se poate realiza o căutare mai eficientă, cum ar fi căutarea binară şi atunci NMC= Algoritmul de căutare binară este următorul:
	Inserarea înregistrărilor. Inserarea unei înregistrări în timp real are un cost înalt, deoarece trebuie efectuată reordonarea fişierului după cheia de ordonare. Pentru aceasta, se determină poziţia adecvată a înregistrării noi (conform cheii primare), se deplasează toate înregistrările care posedă cheia mai mare decât a celei incluse, se inserează înregistrarea nouă. Algoritmul de inserare a înregistrării
	Suprimarea înregistrărilor. Suprimarea sau eliminarea înregistrării trebuie făcută la nivel fizic, cu reorganizarea fişierului în timpul executării operaţiei. Suprimarea presupune următoarele activităţi:
	Modificarea înregistrărilor. Modificarea unei înregistrări presupune modificarea valorilor unor câmpuri ale înregistrării. Pentru aceasta, înregistrarea este localizată, citită, câmpurile ei sunt modificate şi apoi ea este scrisă. În general, sunt actualizate numai atributele care nu fac parte din cheie. Dar, dacă înregistrarea are lungimea variabilă şi modificarea măreşte lungimea ei, înregistrarea nu poate fi înscrisă în poziţia iniţială, deoarece lipseşte spaţiul necesar. Atunci, de obicei, ea este exclusă şi apoi inclusă, dar, deja, actualizată.
	Lectura exhaustivă a înregistrărilor. Lectura exhaustivă a înregistrărilor este o operaţie eficientă, deoarece constă în citirea fiecărei înregistrări din fişier. Cea mai adecvată organizare pentru acest tip de operaţii este cea secvenţială.
	Fişiere secvenţiale ordonate la nivel logic de pointeri
	Fişiere secvenţiale cu spaţiu de tranzacţii
	Căutarea secvenţială cu blocuri de înregistrări

	28.4 Indecşi
	Concepte preliminare
	Indecşi ordonaţi
	Indecşi primari. Indexul ordonat este un index primar, dacă fişierul de date şi indexul au acelaşi criteriu de ordonare, adică, dacă fişierul este ordonat de un câmp cheie, indexul care se defineşte pe acest câmp este un index primar. Deseori, termenul index primar este utilizat pentru desemnarea uni index al cheii primare (a unei relaţii din baza de date), dar această formă nu este un standard şi poate fi evitată.

	Indecşi cu dispersie

	28.5 Fişiere indexat secvenţiale
	Structuri ale fişierelor indexat secvenţiale
	Fişierele indexat secvenţiale şi dispozitivele de stocare
	Operaţii cu fişiere indexat secvenţiale

	28.6 Fişiere indexate
	Structuri şi operaţii în fişierele indexate
	Fişiere inversate
	Indecşi Bitmap
	Arborii binari
	B-arbori
	B+-arbori

	28.7 Fişiere cu dispersie
	Caracteristicile fişierelor cu dispersie
	Adresarea directă
	Adresarea indirectă
	Calcularea adresei
	Tratarea coliziunilor
	Tratarea prin înlănţuire. Tratarea prin înlănţuire a coliziunilor presupune că toate sau o parte de chei sinonime sunt adunate şi înlănţuite cu ajutorul pointerilor, formând o listă. Fiecare listă se accesează prin adresa produsă de funcţia de dispersie, figura 28.15. Listele pot fi păstreze atât împreună cu directoriul, cât şi într-un spaţiu de memorie separat.

