
30. STRUCTURI DE DATE ÎN SECURIZAREA 
INFORMAŢIEI 

 
 

30.1 Structuri şi algoritmi utilizaţi în securizarea 
informaţiei 

 
Structurile de date folosite în securizarea informaţiilor de obicei sunt 

structuri de date “neconvenţionale” şi se implementează la diferite niveluri 
ale aplicaţiei. Se observă, pentru a securiza informaţia, structurile de date 
se implementează la orice nivel al aplicaţiei. Se întâlnesc patru niveluri 
importante de implementare a structurilor de date: 

1. la nivelul operaţiilor matematice pe care le implementează 
algoritmul – structuri de date algebrice implementate prin 
programare cu ajutorul claselor şi obiectelor  (inele algebrice în 
câmp finit – Galois Field (GF), inele polinomiale sau inelele claselor 
de resturi); 

2. la nivelul transformărilor de prelucrare a datelor, sau schema 
algoritmului (folosirea reţelelor Feistel, sau a unor reţele proprii şi 
combinate sau transformări proprii); 

3. la nivelul modului de folosire a algoritmilor simetrici în practică (de 
obicei se întâlnesc două moduri principale de utilizare – cifrarea 
bloc şi cifrarea secvenţială); 

4. nivelul protocoalelor de transmisie a datelor şi al memorării 
certificatelor publice (de obicei aceste structuri a pachetelor de 
date sau a certificatelor se descriu în ASN.1/DER – Abstract 
Syntax Notation 1 /Definite Encoding Rules). 

În criptografie din punct de vedere matematic se întâlnesc 
următoarele tipuri de algoritmi folosiţi pentru: 

- funcţii de dispersie (“digerarea” mesajului) – MD2, MD4, MD5 
(Message Digest), SHA-1 (Secure Hash Algoritm); 

- algoritmi care fundamentează sisteme criptografice simetrice 
(cele ce operează cu blocuri pe 64 biţi – DES, 3DES, FEAL, LOKI 
şi cele noi din standardul AES (Advanced Encryption Standard) – 
AES-Rijndael, Twofish, Blowfish, Serpent, RC6, DEAL, MARS, 
FROG, LOKI-97); 

- algoritmi ce fundamentează sisteme criptografice asimetrice 
pentru criptare sau semnătură electronică (RSA, El Gammal, 
DSA). 

 
 
30.2 Structuri de date la nivelul operaţiilor matematice 
 
La primul nivel – al operaţiilor matematice – se generează structuri 

de date specifice, care se folosesc în algoritmi criptografici. Pentru o 
înţelegere mai bună se prezintă succint operaţia de adunare şi înmulţire în 
inelul algebric cu mulţimea numerelor în câmp finit GF(23), Galois Field 
(256). 

În GF(23) se reprezintă numere de la 0 la 255, adică 256 de numere. 
Valoarea maximă care se poate reprezenta de un byte (octet) fără semn 
este 255 (toţi cei 8 biţi cu valoarea 1 => 20+21+22+23+24+25+26+27 = 28-



1 = 255). Pe de o parte se va opera cu biţi, iar pe de altă parte se va opera 
cu polinoame matematice. 

De exemplu valoare 7 în binar se reprezintă 0000 0111 pe un octet 
sau în forma polinomială este: b(x) = 
0*x7+0*x6+0*x5+0*x4+0*x3+1*x2+1*x1+1*x0. Dacă x=2 înseamnă că b(2) 
= 7. Cu alte cuvinte, orice număr din intervalul 0..255, adică un octet b cu 
biţii b7 b6 b5 b4 b3 b2 b1 b0 se reprezintă ca un polinom algebric cu 
coeficienţii bi în mulţimea {0, 1}: 

 
b7 x7 + b6 x6 + b5 x5 + b4 x4 + b3 x3 + b2 x2 + b1 x + b0      (30.1) 

 
a) adunarea este echivalentă cu XOR (SAU exclusiv) pe biţi sau 

adunarea modulo 2. De exemplu, dacă se adună următoarele 
numere în hexazecimal: ‘57’+’83’ = ‘D4’ sau (fiecare cifră în 
hexazecimal ocupă 4 biţi) ‘01010111’ + ‘10000011’ = ‘11010100’ 
sau în reprezentare polinomială (x6+x4+x2+x+1) + (x7+x+1) = 
x7+x6+x4+x2. Această operaţie se implementează la nivel de octet 
foarte uşor în C/C++, folosind XOR pe biţi (operatorul ^).  
Mulţimea {0, 1, …, 255} împreună cu operaţia XOR formează grup 
abelian (operaţia este internă, asociativă, comutativă, există 
elementul neutru ‘00’, există elementul invers – însuşi elementul 
este inversul lui); 

b) înmulţirea nu mai are echivalenţă cu o operaţie pe biţi existentă la 
procesoarele actuale. În reprezentarea polinomială, multiplicarea 
– înmulţirea în GF(28) corespunde cu înmulţirea a două polinoame 
modulo un polinom ireductibil de grad 8. Un polinom ireductibil 
înseamnă un polinom care nu are alţi divizori în afară de 1 şi el 
însuşi. De exemplu pentru Rijndael (algoritmul acceptat ca 
standard AES – Advanced Encryption Standard în S.U.A), 
polinomul de grad 8 ireductibil este de numit m(x) şi are forma: 
m(x) = x8+x4+x3+x+1, adică ‘11B’ în reprezentare hexazecimală. 
De exemplu: ‘57’*’83’=’C1’, în hexazecimal sau polinomial: 

 
((x6+x4+x2+x+1)*(x7+x+1)) = x13+x11+x9+x8+x7+x7 +x5 +x3+x2+x+x6 +x4 
+x2+x +1= x13+x11+x9+x8+x6+x5+x4+x3+1 x13+x11+x9+x8+x6+x5+x4+x3+1 
modulo m(x) = x7+x6+1                                              (30.2) 

În programare înmulţirea a două numere din GF(28) se face ca sumă 
exponenţială a 2 logaritmi în bază număr prim în GF(28). Concret, se 
generează într-un vector alog[] de mărime 256 toate valorile posibile a unui 
număr prim din GF(28). Orice număr prim din GF(28) ridicat la putere cu 
toate celelalte numere mod ‘11B’ generează tot câmpul finit. Înmulţirea cu 
3 adică x+1 înseamnă b(x)*(x+1) = b(x)*x+b(x), deoarece GF(28) este 
grup abelian şi faţă de a doua operaţie. Mai mult b(x)*x înseamnă 
deplasarea la stânga cu un bit şi în caz că apare transport pe ultimul bit se 
face XOR cu ‘11B’. 

Codul sursă este următorul: 
 



#include <stdio.h> 
class inelGF { 
public: 
  unsigned char val;//1 octet fara semn adica 8 biti 
  int alog[256];//functia exponentiala f(y) = 3y = (x+1)y 
           // f(4) = (x+1)*(x+1)*(x+1)*(x+1) 
  int log[256];//functia logaritm inversa exponentialei 
   
  //constructorii   
inelGF(int b=0); 
  inelGF(unsigned char b); 
  
  //metodele folosite 
  void generareALOGSiLog(); 
  void setVal(unsigned char b); 
  unsigned char getVal(); 
  
//adunare 
  inelGF operator+ (inelGF &); 
  //inmultire 
  inelGF operator* (inelGF &); 
  //atribuire 
  inelGF operator= (inelGF &); 
}; 
inelGF::inelGF(int b) { 
this->val = (unsigned char)b;  
this->generareALOGSiLog(); 
} 
inelGF::inelGF(unsigned char b) { 
this->val = b; 
this->generareALOGSiLog(); 
} 
void inelGF::generareALOGSiLog() { 
 alog[0]=1; 
 int i=0,j=0; 
 int ROOT = 0x11B; 
     for(i=1;i<256;i++) { 
       j=(alog[i-1] << 1)^alog[i-1]; 
                 if((j&0x100)!=0)j=j^ROOT; 
                         alog[i]=j; 
            } 
 for (i = 1; i < 256; i++) log[alog[i]] = i; 
} 
void inelGF::setVal(unsigned char b) { 
 this->val = b; 
} 
unsigned char inelGF::getVal() { 
  return this->val; 
} 
inelGF inelGF::operator+(inelGF &igf2) { 
 inelGF temp; 
 temp.val = this->val^igf2.val; 
 return temp; 
} 
inelGF inelGF::operator*(inelGF &igf2) { 
 inelGF temp; 
 int t1 = (int) temp.val; 
 int t2 = (int) this->val; 
 int t3 = (int) igf2.val; 
 (t2 != 0 && t3 != 0) ?t1 = this->alog[(log[t2 & 0xFF] + log[t3 & 
0xFF]) % 255] : t1 = 0; 



             //adica 7*5 = alog[log[7]+log[5]];//in mod normal 
logaritmul //pastreaza toate propietatile in acest inel algebric ca 
peste //numerele reale 
 temp.val = (unsigned char)t1; 
 return temp; 
} 
inelGF inelGF::operator= (inelGF &igf2) { 
 this->val = igf2.val; 
 return *this; 
} 
void main()  
{ 
 inelGF a(87); 
 inelGF b(131); 
 inelGF rez1, rez2; 
 rez1 =(a + b); 
 rez2 =(a * b); 
 printf(" Afisez rezultat adunare: %d\n",rez1.val); 
 printf(" Afisez rezultat inmultire: %d\n",rez2.val); 
} 

 
Acest exemplu este o clasă creată în C++, unde sunt implementate 

cele două operaţii şi împreună cu câmpul Galois formează un inel algebric. 
În realitate pentru reutilizarea codului se elaborează biblioteci cu 

clase foarte puternice în limbaje de asamblare pentru diferite procesoare şi 
în limbaje evoluate precum C/C++, C# şi Java. Clase foarte folositoare din 
practică se dovedesc cele pentru numere întregi foarte mari, BigInt pentru 
algoritmi cu cheii publice, şi clase pentru inele şi corpuri algebrice în câmp 
finit, şi clase pentru matrice, vectori şi liste cu informaţii utile în GF(28). 

 
 
30.3 Structuri de date la nivelul etapelor algoritmului de 

criptare/decriptare 
 
La al doilea nivel, adică al operaţiilor de ansamblu al algoritmului sau 

schema algoritmului (folosirea reţelelor Feistel, sau a unor reţele proprii şi 
combinate sau transformări proprii), apar cele mai diverse structuri de date. 

În figurile 30.1, 30.2 şi 30.3 se prezintă modelul general al unui 
sistem criptografic simetric “era 128 de biţi” (algoritmii care au fost 
acceptaţi finalişti pentru AES – Advanced Encryption Standard), standard 
cerut de NIST – National Institute of Standards and Technology.  

Algoritmul de criptare câştigător la AES a fost cel care are schema 
prezentată în figura 30.1. Algoritmul a fost creat scris pe 2 Octombrie 2000, 
şi a fost proiectat de Vincent Rijmen şi Joan Rijndael. Aceasta este o 
structură de date “neconvenţională”.  

Structura propriu-zisă nu reţine date, în schimb preia date din alte 
structuri (fişier sau masiv de octeţi) şi pune date în alte structuri. 
Descrierea cifrului este relativ simplă dar nu face obiectul acestui capitol. 



Această structură de date preia date sub formă de octeţi (128 de biţi) şi 
transmite criptaţi în funcţie de cheie utilizator tot 128 de biţi. În schema din 
figura 30.1 este prezentată o singură rundă, iar de exemplu pentru o cheie 
de 128 biţi şi blocuri de criptare de 128 biţi algoritmul se execută în 9 
runde, adică figura 30.1 pusă cap la cap de 9 ori. 

 

 
Figura 30.1 Schema de criptare a algoritmului Rijndael AES 

 [Copyright Sava00] 
 
 



 
Figura 30.2 Schema de criptare al algoritmului Twofish  

[Copyright Twof00]  
 
Algoritmul Twofish are 16 runde ce se bazează pe nişte “cutii S” care 

iau ca intrare 8 biţi şi produc 8 biţi prin aplicarea unei funcţii F bijective, în 
timp ce Rijndael se bazează în cutiile S pe o transformare neliniară în 
GF(28)). 

Cifrul Twofish se mai bazează pe matrice 4x4 de distanţe maximum 
separabile în câmp GF(28) – MDS (în Rijndael se foloseşte ShiftRow – 
deplasare pe biţi după anumite reguli asupra blocului de informaţii), 
aplicarea de transformări pseudo-Hadamard (în Rijndael se foloseşte 



MixColumn ca în figura 30.1, dar în implementare prin programare 
înseamnă multiplicare de matrice în GF(28)), şi un mod de expandare al 
cheilor la fel de eficient ca în Rijndael.  

 

 
Figura 30.3 Schema cifrului RC6 – Rivest Cipher 6 de la MIT 

 [Copyright Rive00] 
 
Ideea principală este că şi în sistemele criptografice se folosesc 

structuri de date care sunt programate structuri ca atare sau ca simple 
secvenţe de transformări. Nu este necesar ca săgeţile din cifruri să fie 
pointeri către funcţii sau atribute. De fapt, ele reprezintă fluxurile de date. 

În practică se pot implementa structuri de liste circulare ce păstrează 
rezultatele intermediare din fiecare rundă şi le aplică altor blocuri de date 
astfel încât descifrarea mesajului să fie imposibilă. 

Fiecare algoritm are propria schemă de criptare şi propriile operaţii 
algebrice.  



Nu numai algoritmii de criptare se pot folosi în structuri de date dar şi 
funcţiile de dispersie (hash) pot crea avalanşe de modificări imposibil de 
produs dacă se aleg structuri de date complicate.   

Aceste lucruri se fac pentru producerea unor avalanşe de modificări 
greu de rezolvat fără cheia cifrului. 

 
 
30.4 Structuri de date la nivelul de cifru al algoritmului 
 
La nivelul modului de utilizare a algoritmilor simetrici se întâlnesc în 

practică două tipuri de cifrări: cifrarea bloc şi cifrarea şir de caractere 
(secvenţială).  

Cifrarea bloc operează cu blocuri de date în clar şi cifrate – de regulă 
64 şi 128 biţi dar, uneori, şi mai mari. 

Cifrarea secvenţială operează cu secvenţe de date în clar şi cifrate de 
mărime un bit sau octet, dar, uneori şi cu date de 32 de biţi. 

În cazul cifrării bloc, acelaşi bloc de date în clar va fi cifrat de fiecare 
dată în acelaşi bloc de date cifrat, folosind aceeaşi cheie. În cazul cifrării 
secvenţiale, secvenţe similare de date în clar vor fi cifrate diferit, în cazul 
unor cifrări repetate. 

Modurile de criptare constituie combinaţii ale celor două tipuri de 
bază, unele folosind metode feedback, altele realizând simple operaţii. 
Aceste operaţii sunt simple deoarece securitatea este atributul cifrării şi nu 
a modului în care se realizează schema de cifrare. Mai mult decât atât, 
modul de realizare a cifrării nu duce la compromiterea securităţii date de 
algoritmul de bază. 

 
Cifruri bloc 
 
Cifrarea ECB (Electronic Codebook). ECB este cea mai obişnuită cale 

de cifrare bloc, prin care un bloc de date sau text clar se transformă într-un 
bloc cifrat. Din moment ce acelaşi bloc de date se cifrează în acelaşi bloc 
cifrat, teoretic este posibilă crearea unei cărţi de coduri în care să se facă 
asocierea date în clar – date cifrate. Însă, pentru blocuri de 64 de biţi 
rezultă un număr de 264 intrări în cartea de coduri – mărime prea mare 
pentru a permite memorarea şi manipularea datelor. În plus fiecare cheie 
necesită propria carte de coduri. 

Acesta este cel mai simplu mod de lucru, în care fiecare bloc de date 
în clar este cifrat independent. Nu trebuie ca fişierul care se criptează să 
intre în cifrare liniar, de la început până la sfârşit. Criptarea se face luând 
aleator blocuri din cadrul fişierului. Acest lucru este important pentru 
fişierele criptate care sunt accesate aleator, ca, de exemplu, în cazul bazelor 
de date. Schema de lucru arată ca în figura 30.4. 
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Figura 30.4 Structură de date pentru cifrarea ECB 

 
Problema ECB-ului este că dacă un criptanalist, care deţine blocul de 

date în clar şi blocul de date cifrat echivalent pentru câteva mesaje, poate 
realiza o carte de coduri fără a cunoaşte cheia. În exprimarea curentă sunt 
fragmente de mesaje care tind să se repete. Mesajele pot avea structuri 
redundante sau şiruri lungi de spaţii sau zerouri. Dacă criptanalistul 
realizează că mesajul în clar ‘5ffa6ba1’ se criptează în mesajul ‘778e342b’, 
el poate decripta imediat mesajul respectiv acolo unde îl întâlneşte. 

Cifrarea bloc cu înlantuire CBC (Cipher Block Chaining) adaugă 
mecanismului de criptare un bloc cu reacţie. Rezultatul criptării unui bloc 
anterior revine prin buclă şi intervine în criptarea blocului curent. În felul 
acesta, datele cifrate nu mai depind doar de datele în clar, ci şi de modul de 
cifrare a blocului anterior. 

În CBC, datele în clar, înainte de a intra în blocul decriptare propriu-
zis, sunt însumate modulo 2 (XOR) cu blocul de date cifrat anterior. Figura 
30.5 reprezintă modul de criptare CBC: 
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Figura 30.5 Structura de date ce realizează criptarea CBC 

 
Paşii pe scurt sunt următorii: 
- se iniţializează registrul de reacţie cu o funcţie hash de dispersie 

MD5, care produce rezumatul unei parole; 
- pentru i de la 0 la numărul de blocuri a fişierului sau structurii de 

date -1 se execută XOR între blocul citit din fişier şi blocul de date 
din registrul de reacţie; 

- se scrie blocul criptat în fişier; 
- se atribuie registrului de reacţie blocul de biţi criptat; 



- se incrementează i şi se reia procesul.  
Aceasta e o structură de date compusă care implică două structuri de 

date de tip fişier şi o structură de tip masiv sau după necesităţi poate fi una 
dinamică, listă de liste de octeţi. 

CBC face ca acelaşi bloc de date să se transforme în blocuri de date 
diferite, deoarece la diferite rulări valoarea de iniţializare a registrului de 
reacţie poate fi diferită. Dacă valoarea iniţială a registrului de reacţie 
rămâne neschimbată între rulări, atunci două mesaje identice folosind 
aceeaşi cheie se vor transforma în acelaşi mesaj criptat. 

Vectorul de iniţializare, valoarea iniţială a registrului de reacţie, nu 
trebuie neapărat să fie secret. 

Chiar dacă acest lucru pare greşit, şi anume de a nu ţine secret 
valoarea iniţială, nu este deoarece, oricum prin canal circulă blocurile 
criptate dar nu şi cheia. Deci, cineva care ar dori să spargă cifrul va trebui 
să cunoască ce structură de date s-a folosit şi ce algoritm şi mai mult să ştie 
protocolul de transmisie a datelor. 

O posibilă descriere în C/C++ a acestui tip de structură este: 
 

struct CBC { 
 FILE *foriginal; 
 FILE *fcriptat; 
 unsigned char registruReactie[16];//16 octeţi = 128 biţi 
 unsigned char buffer[16]; 
 AlgoritmCriptare ob;    /*obiectul care realizeaza criptarea ce 
primeste parametrii blocul de date in clar si parola si “scoate” 
blocul criptat”*/ 
}; 

  
O altă problemă este că fişierele sau alte structuri de date nu se 

împart exact la 128 de biţi, ceea ce înseamnă că se completează cu “0” 
până se ajunge la  lungimea dorită multiplu de 128 de biţi. 

Cifarea CBC cu propagare (PCBC – Propagation Cipher Block 
Chaining) este similar cu CBC, cu excepţia faptului că atât blocul de date 
anterior în clar, cât şi cel cifrat anterior sunt făcute XOR cu blocul curent de 
date în clar înainte sau după criptare ca în figura 30.6.  

PCBC a fost utilizat în Kerberos versiunea 4 pentru a realiza în acelaşi 
timp secretizarea cât şi testul de integritate. O eroare în blocul de date 
cifrat, va determina decriptarea incorectă a tuturor blocurilor următoare. 
Aceasta înseamnă că este necesară transmiterea în finalul mesajului a unui 
bloc standard  pentru a se asigura integritatea mesajului. 
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Figura 30.6 Structură de date care realizează PCBC 

 
Paşii algoritmului cât şi iniţializările sunt cele de la CBC. În continuare 

se va prezenta codul sursă în C++ pentru codificarea acestei structuri. 
Descriere în totalitate a claselor AlgoritmCriptare şi FunctieHash nu face 
obiectul acestui capitol, iar completarea fişierului cu lungimea multiplu de 
128 de biţi nu este prezentată. 

 
#include <stdio.h> 
#include <string.h> 
#include <io.h> 
class AlgoritmCriptare { 
private: 
 char *tipulAlg; 
 char *parola; 
 int   lungCheie; 
 char *tipHashGenerareParola; 
public: 
 AlgoritmCriptare(char*,char*,int,char*); 
 ~AlgoritmCriptare(); 
 unsigned char* doFinalEncryption(unsigned char*); 
 unsigned char* doFinalDecryption(unsigned char*); 
}; 
AlgoritmCriptare::AlgoritmCriptare(char* tipAlg,char* pass,int lCheie, 
char* tipHash4Pass) { 
 strcpy(this->tipulAlg,tipAlg); 
 strcpy(this->parola,pass); 
 this->lungCheie = lCheie; 
 strcpy(this->tipHashGenerareParola,tipHash4Pass); 
} 
AlgoritmCriptare::~AlgoritmCriptare() { 
 strcpy(this->tipulAlg,"0"); 
 strcpy(this->parola,"0"); 
 this->lungCheie = 0; 
 strcpy(this->tipHashGenerareParola,"0"); 



} 
unsigned char* AlgoritmCriptare::doFinalEncryption(unsigned char 
 *message4Encryption) { 
 if(stricmp(this->tipulAlg,"Rijndael")==0) { 
 //se fac pasii algoritmului Rijndael sau al altui algoritm 
           //la sfarsit se intoarce rezultatul care este in  
           //principiu de 128 de biti 
  
 //criptare 
 unsigned char* rezultat = NULL; 
 for(int i=0;i<128;i++)rezultat[i] = message4Encryption[i]; 
 //criptarea in functie de parola data 
 return (unsigned char*)rezultat; 
            } 
 else return NULL; 
} 
unsigned char* AlgoritmCriptare::doFinalDecryption(unsigned char 
 *message4Decryption) { 
 if(stricmp(this->tipulAlg,"Rijndael")==0) { 
 //se fac pasii algoritmului Rijndael sau al altui algoritm 
 //la sfarsit se intoarce rezultatul care este in principiu  
           //de 128 de biti 
  
 //decriptare 
 unsigned char* rezultat = NULL; 
 for(int i=0;i<128;i++)rezultat[i] = message4Decryption[i]; 
 //decriptarea in functie de parola data 
 return (unsigned char*)rezultat; 
 } 
 else return NULL; 
} 
class FunctieHash { 
private: 
 char *numeFctHash; 
 unsigned char *mesajDeDigerat; 
 int lmesaj; 
public: 
 FunctieHash(char*); 
 ~FunctieHash(); 
 unsigned char * doFinalHash(unsigned char*); 
 int lungime(unsigned char*); 
}; 
FunctieHash::FunctieHash(char *nameFctHash) { 
 strcpy(this->numeFctHash,nameFctHash);  
} 
FunctieHash::~FunctieHash() { 
 strcpy(this->numeFctHash,"0"); 
 for(int i=0;i<this->lmesaj;i++)     this->mesajDeDigerat[i]='0'; 
 this->mesajDeDigerat = NULL; 
} 
int FunctieHash::lungime(unsigned char* cc) { 
 int i=0; 
 for(;((cc[i]!='\0')|(cc[i]!=NULL));i++); 
 this->lmesaj = i; 
 return i; 
} 
unsigned char * FunctieHash::doFinalHash(unsigned char* 
message4Digest) { 
 if(stricmp(this->numeFctHash,"MD5")==0) { 
  this->mesajDeDigerat = message4Digest; 
  this->lungime(this->mesajDeDigerat); 



   
  unsigned char* rezultat=NULL; 
             for(int i=0;i<this->lmesaj;i++)rezultat[i] = 
message4Digest[i]; 
  //se executa hashul 
  return rezultat; 
 } 
 else return NULL; 
} 
class PCBC { 
private: 
 FILE *fo; 
 FILE *fc;   
 unsigned char* registruReactie; 
           //de obicei are 16 octeţi = 128 biţi 
 unsigned char *buffer[2]; 
 AlgoritmCriptare *obac;// obiectul care realizeaza criptarea 
 // ce primeste parametrii blocul de date  
           // in clar si parola si “scoate” blocul   
           // criptat 
          FunctieHash *obfh;     // obiect ce realizeaza functia de  
           // dispersie si  
         // initializeaza registrul de reactie 
 char *nfo; 
 char *nfc; 
     
public: 
              PCBC(char *nume_fis_orig,char *nume_fis_criptat, char* 
nameAlg,  
char* passKeyAlg, int lenKey, char* nameHashF, unsigned char* 
passregReact); 
 ~PCBC(); 
  
             void doFinalPCBCEncryption(); 
}; 
PCBC::PCBC(char *nume_fis_orig,char *nume_fis_criptat, char* nameAlg,  
char* passKeyAlg, int lenKey, char* nameHashF, unsigned char* 
passRegReact) { 
 strcpy(this->nfo, nume_fis_orig); 
 strcpy(this->nfc, nume_fis_criptat);  
 this->fo = fopen(this->nfo,"rb"); 
 this->fc = fopen(this->nfo,"wb+"); 
 this->obac = new 
AlgoritmCriptare(nameAlg,passKeyAlg,lenKey,nameHashF); 
 this->obfh = new FunctieHash(nameHashF); 
 this->registruReactie = this->obfh->doFinalHash(passRegReact); 
} 
void PCBC::doFinalPCBCEncryption() { 
 unsigned char buff[16]; 
 unsigned char * rez; 
 //inainte de a apela metoda se face "umplerea fisierului cu "0" 
 //pana cand lungimea lui este divizibila cu 2*128 biti 
 int j=0; 
           while(!feof(this->fo)) { 
 if(!feof(this->fo)){ 
 fread(this->buffer[1],sizeof(unsigned char[16]),1,this->fo); 
 } 
 if(!feof(this->fo)){ 
 fread(this->buffer[2],sizeof(unsigned char[16]),1,this->fo); 
 } 
long ll = ftell(this->fo); 



fseek(this->fo,ll-sizeof(unsigned char[16]),SEEK_SET); 
for(j=0;j<16;j++)     buff[j] = this->buffer[1][j] ^ this-
>buffer[2][j]; 
for(j=0;j<16;j++)     buff[j] = buff[j] ^ this->registruReactie[j]; 
rez = this->obac->doFinalEncryption(buff); 
fwrite(&rez,sizeof(char[16]),1,this->fc); 
this->registruReactie = rez; 
     
} 
} 
PCBC::~PCBC() { 
 if(this->fo!=NULL)    fclose(fo); 
 if(this->fc!=NULL)   fclose(fc); 
} 

 
Decriptarea PCBC se face la fel ca şi criptarea. Acest mod de 

criptare/decriptare se poate folosi cu orice tip de algoritm ce fundamentează 
un sistem criptografic simetric. 
 

Cifruri secvenţiale 
 
Prin Cifrarea secvenţială (Stream Ciphers) datele în clar se convertesc 

bit cu bit în text cifrat. Modelul general, structura de date care 
fundamentează modelul, este dat în figura 30.7.  
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Figura 30.7 Structură de date pentru cifrare secvenţială 

 
Există un generator de cheie care, în funcţie de timp şi, uneori parolă, 

generează un şir de biţi k1, k2, …, ki. Cu acest şir cheie se face XOR cu şirul 
de biţi ai blocului de date în clar, p1, p2, …, pi, pentru a produce un şir de 
date cifrate: ci =pi ki. 

La sfârşitul decriptării, rezultatul este obţinut din efectuarea unui XOR 
între criptogramă şi aceeaşi cheie curentă. 

Securitatea sistemului depinde în întregime de generatorul de chei 
din această structură de date. Dacă această cheie generează acelaşi şir 
cheie, atunci securitatea sistemului nu este deosebită. Dacă, însă, acesta 
generează şiruri aleatoare, atunci există un înalt grad de securitate. 



Acest tip este cel mai simplu mod de cifrare secvenţială. Mai există 
cifrarea secvenţială cu auto-sincronizare, cifrarea cu reacţie, cifrarea 
secvenţială sincronă şi cifrarea secvenţială cu reacţie la ieşire. Aceste tipuri 
de cifrări au tipuri proprii de structuri de date cu ajutorul cărora se 
realizează criptarea/decriptarea blocurilor de date. 

 
 
30.5 Structuri de date la nivelul protocoalelor de 

transmisie a datelor şi al memorării certificatelor publice 
 
Algoritmul dominant în sistemele oferite pe piaţa de software pentru 

sistemele de semnătură electronică îl reprezintă algoritmul RSA (Rivest – 
Shamir – Adleman), considerat un standard de facto în acest domeniu. RSA 
îşi bazează tăria criptografică pe imposibilitatea factorizării numerelor 
întregi foarte mari. Folosirea acestui algoritm în industrie se face conform 
unei suite de standarde, cunoscute sub denumirea de PKCS (Public-Key 
Cryptography Standards), realizate de proprietarul lui RSA, firma RSA Data 
Security Inc.’s: PKCS #3 –  descrie metoda Diffie-Hellman de distribuire a 
cheilor criptografice simetrice: 

- PKCS #1 –  descrie metoda matematică de cifrare şi descifrare 
RSA, precum şi implementarea lor pentru realizarea  două funcţii: 
semnarea electronică şi anveloparea digitală a cheilor 
criptografice simetrice (PKCS #1 include acum şi PKCS #2 şi 
PKCS #4); 

- PKCS #3 –  descrie metoda Diffie-Hellman de distribuire a cheilor 
criptografice simetrice; 

- PKCS #5 –  descrie metoda de implementare a cifrării simetrice 
DES-CBC, cu o cheie derivată din parolă; 

- PKCS #6 –  descrie standardul de certificat digital, supra-set al 
standardului X.509; 

- PKCS #7 –  descrie sintaxa generală a datelor ce urmează a fi 
criptate sau semnate; 

- PKCS #8 –  descrie sintaxa perechii private a cheilor RSA (cheie şi 
atribute); 

- PKCS #9 –  descrie atributele tipurilor definite în #6,#7,#8; 
- PKCS #10 – descrie sintaxa standard pentru cererile de certificat; 
- PKCS #11 – descrie interfaţa de program numită “Cryptoki”; 
- PKCS #12 – descrie sintaxa pentru memorarea în cadrul 

software-ului a  unor informaţii criptografice, cum ar fi chei 
publice, chei secrete, certificate. Scopul îl constituie 
standardizarea unei structuri de fişier ce poate fi folosit de mai 
multe aplicaţii. 

Forma electronică completă a acestor standarde se găseşte la adresa: 
http://www.rsa.com/rsalabs/pubs/PKCS/ sau se poate obţine prin e-mail de 
la adresa: pkcs@rsa.com . În ceea ce priveşte protocoalele implementate de 
diferite aplicaţii se întâlnesc structuri de date foarte diferite. De exemplu, în 
aplicaţia SSFTP descrisă în [Ivan02] chiar dacă se foloseşte un protocol de 
tip text în momentul de transmitere a cheilor publice se scriu în reţea 
obiecte serializate în format de certificat digital standard X509 descris în 
PKCS #6. 

PKCS #6 versiunea 1.5 descrie sintaxa certificatelor extinse. Un 
certificat extins este format din certificatul unei chei publice, aşa cum este 

http://www.rsa.com/rsalabs/pubs/PKCS/
mailto:pkcs@rsa.com


el descris în standardul X509 şi un set de atribute; acest certificat extins 
este semnat de cel care îl emite. De aceea, autenticitatea certificatului 
poate fi verificată printr-o singură operaţie cu cheia publică şi oricând poate 
fi extras certificatul de tip X509. 

Sintaxa certificatului extins în ASN1 este următoarea: 
 
ExtendedCertificate::=SEQUENCE{ 
  extendedCertificateInfo ExtendedCertificateInfo, 
 signatureAlgorithm SignatureAlgorithmIdentifier, 
 signature Signature 
} 
 SignatureAlgorithmIdentifier::=AlgorithmIdentifier 
 Signature::=BIT STRING 
 ExtendedCertificateInfo::=SEQUENCE{ 
  version Version, 
  certificate Certificate, 
  attributes Attributes 
      } 
 Version::=INTEGER 
 Attributes::=SET OF Attribute 

 
Se observă că acestea sunt structuri în alte structuri de date şi sunt 

create pentru a asigura un standard şi o calitate superioară a aplicaţiilor 
informatice. Toate PKCS-urile conţin structuri în structuri de date şi sunt 
unanim acceptate în industria criptografică de către producători. 

În orice tip de aplicaţie, dar mai ales în cele în care este necesară 
asigurarea unei protecţii superioare a informaţiilor, se folosesc structuri de 
date mai mult sau mai puţin convenţionale.  

Structurile de date uşurează în general munca de programare. 
Structurile de date care se implementează nu ţin de limbajul de 
programare; se pot implementa în orice limbaj de programare universal: 
Pascal, C/C++, C#, Java. În criptografie se folosesc cu predilecţie astfel de 
structuri la toate nivelurile procesului implementat: de la nivelul aplicaţie al 
algoritmului până la protocolul de transmisie în reţea. Structurile alese ţin 
de natura aplicaţiei şi se o serie de cauze subiective (alegerea 
programatorului) şi obiective (restricţiile impuse de aplicaţie). Structurile de 
date mai sunt folosite şi în securitatea criptării simetrice pentru protecţia 
cheii. Managementul cheilor este vital în securitatea datelor şi cuprinde 
următoarele aspecte:  

- generarea cheilor – se folosesc tabele de conversie şi structuri de 
date ce implementează funcţii de dispersie; 

- distribuţia cheilor – transportul cheii secrete; 
- memorarea cheilor.  
Nu există domeniu al informaticii aplicate, şi cu atât mai mult în 

securizarea datelor, în care să nu se folosească structuri de date. 
 
 


