30. STRUCTURI DE DATE IN SECURIZAREA
INFORMATIEI

30.1 Structuri si algoritmi utilizati in securizarea
informatiei

Structurile de date folosite in securizarea informatiilor de obicei sunt
structuri de date “neconventionale” si se implementeaza la diferite niveluri
ale aplicatiei. Se observa, pentru a securiza informatia, structurile de date
se implementeaza la orice nivel al aplicatiei. Se intédlnesc patru niveluri
importante de implementare a structurilor de date:

1. la nivelul operatiilor matematice pe care le implementeaza
algoritmul - structuri de date algebrice implementate prin
programare cu ajutorul claselor si obiectelor (inele algebrice in
camp finit — Galois Field (GF), inele polinomiale sau inelele claselor
de resturi);

2. la nivelul transformarilor de prelucrare a datelor, sau schema
algoritmului (folosirea retelelor Feistel, sau a unor retele proprii si
combinate sau transformari proprii);

3. la nivelul modului de folosire a algoritmilor simetrici in practica (de
obicei se intdlnesc doua moduri principale de utilizare - cifrarea
bloc si cifrarea secventiald);

4. nivelul protocoalelor de transmisie a datelor si al memorarii
certificatelor publice (de obicei aceste structuri a pachetelor de
date sau a certificatelor se descriu in ASN.1/DER - Abstract

_ Syntax Notation 1 /Definite Encoding Rules).

In criptografie din punct de vedere matematic se intélnesc
urmatoarele tipuri de algoritmi folositi pentru:

- functii de dispersie (“digerarea” mesajului) - MD2, MD4, MD5

(Message Digest), SHA-1 (Secure Hash Algoritm);

- algoritmi care fundamenteaza sisteme criptografice simetrice
(cele ce opereaza cu blocuri pe 64 biti - DES, 3DES, FEAL, LOKI
si cele noi din standardul AES (Advanced Encryption Standard) -
AES-Rijndael, Twofish, Blowfish, Serpent, RC6, DEAL, MARS,
FROG, LOKI-97);

- algoritmi ce fundamenteaza sisteme criptografice asimetrice
pentru criptare sau semnatura electronica (RSA, EI Gammal,
DSA).

30.2 Structuri de date la nivelul operatiilor matematice

La primul nivel - al operatiilor matematice - se genereaza structuri
de date specifice, care se folosesc in algoritmi criptografici. Pentru o
intelegere mai buna se prezinta succint operatia de adunare si inmultire in
inelul algebric cu multimea numerelor in cdmp finit GF(23), Galois Field
(256).

In GF(23) se reprezintd numere de la 0 la 255, adicd 256 de numere.
Valoarea maxima care se poate reprezenta de un byte (octet) fara semn
este 255 (toti cei 8 biti cu valoarea 1 => 2°+2'+22+23+2%+2°+2%427 = 28-



1 = 255). Pe de o parte se va opera cu biti, iar pe de alta parte se va opera
cu polinoame matematice.

De exemplu valoare 7 in binar se reprezinta 0000 0111 pe un octet
sau in forma polinomiala este: b(x) =
0*x’+0*X°+0*x°+0*x*+0*x>+ 1*x*+ 1 *x*+1*x°. Daca x=2 inseamna c3 b(2)
= 7. Cu alte cuvinte, orice numar din intervalul 0..255, adica un octet b cu
bitii b, be bs bs bs b, b; by se reprezintd ca un polinom algebric cu
coeficientii b; in multimea {0, 1}:

by x” + bs xX® + bs x° + bsx* + b3 x> + ba X* + b; X + by (30.1)

a) adunarea este echivalenta cu XOR (SAU exclusiv) pe biti sau
adunarea modulo 2. De exemplu, daca se aduna urmatoarele
numere in hexazecimal: ‘57'+'83’ = 'D4’ sau (fiecare cifra in
hexazecimal ocupa 4 biti) ‘01010111’ + ‘10000011’ = ‘11010100’
sau in reprezentare polinomiald (x°+x*+x*+x+1) + (X’+x+1) =
x’+x8+x*+x2. Aceastd operatie se implementeaza la nivel de octet
foarte usor in C/C++, folosind XOR pe biti (operatorul ~).
Multimea {0, 1, ..., 255} impreuna cu operatia XOR formeaza grup
abelian (operatia este internd, asociativa, comutativa, exista
elementul neutru '00’, exista elementul invers - insusi elementul
este inversul lui);

b) inmultirea nu mai are echivalenta cu o operatie pe biti existenta la
procesoarele actuale. In reprezentarea polinomiala, multiplicarea
- inmultirea in GF(2®) corespunde cu inmultirea a doud polinoame
modulo un polinom ireductibil de grad 8. Un polinom ireductibil
inseamna un polinom care nu are alti divizori in afara de 1 si el
insusi. De exemplu pentru Rijndael (algoritmul acceptat ca
standard AES - Advanced Encryption Standard in S.U.A),
polinomul de grad 8 ireductibil este de numit m(x) si are forma:
m(x) = x®+x*+x3+x+1, adicd ‘11B’ in reprezentare hexazecimal3.
De exemplu: ‘57'*'83’="C1’, in hexazecimal sau polinomial:

(XPH+X*+X°+x+1)*(X +x+1)) = XB+x 1 +x°+X3+x"+x" +x° +X°+x°+x+x° +x*
+x74x +1= xP+x T+ +xB+ X+ +x* +x7+1 xP x4 X2+ X +xC+x° +x +x7+1
modulo m(x) = x"+x°+1 (30.2)

In programare inmultirea a doud numere din GF(2°) se face ca suma
exponentiald a 2 logaritmi in baz& numar prim in GF(2%). Concret, se
genereaza intr-un vector alog[] de marime 256 toate valorile posibile a unui
numar prim din GF(28). Orice numar prim din GF(28) ridicat la putere cu
toate celelalte numere mod '11B’ genereaza tot campul finit. Inmultirea cu
3 adica x+1 inseamna b(x)*(x+1) = b(x)*x+b(x), deoarece GF(28) este
grup abelian si fata de a doua operatie. Mai mult b(x)*x inseamna
deplasarea la stanga cu un bit si in caz ca apare transport pe ultimul bit se
face XOR cu '11B'.

Codul sursa este urmatorul:



#include <stdio.h>
class inelGF {

public:

unsigned char val;//l octet fara semn adica 8 biti

int alog[256];//functia exponentiala f(y) = 3y = (x+1l)y
/] £(4) = (x+1)* (x+1)* (x+1)* (x+1)

int log[256];//functia logaritm inversa exponentialei

//constructorii

inelGF (int b=0) ;

//adunare

};

inelGF (unsigned char b);

//metodele folosite

void generareALOGSiLog() ;
void setVal (unsigned char b);
unsigned char getval() ;

inelGF operator+ (inelGF &) ;
//inmultire
inelGF operator* (inelGF &) ;
//atribuire
inelGF operator= (inelGF &) ;

inelGF: :inelGF (int b) {

this->val

= (unsigned char)b;

this->generareALOGSiLog() ;

}

inelGF: :inelGF (unsigned char b) {

this->val

= b;

this->generareALOGSilLog() ;

}

void inelGF': :generareALOGSiLog() {
alog[0]=1;

int
int

i=0,3j=0;
ROOT = 0x11B;

for (i=1;i<256;i++) {

for

}

j=(alog[i-1] << 1)“*alog[i-1];
if((j&0x100) '=0) j=3*ROOT;
alog[il=j;
}
(1 =1; i < 256; i++) logl[alog[i]] = i;

void inelGF': :setVal (unsigned char b) {
this->val = b;

}

unsigned char inelGF::getVal() {

}

return this->val;

inelGF inelGF': :operator+(inelGF &igf2) ({
inelGF temp;
temp.val = this->val“*igf2.val;
return temp;

}

inelGF inelGF': :operator* (inelGF &igf2) ({
inelGF temp;

int
int
int
(t2

tl = (int) temp.val;
t2 = (int) this->val;
t3 = (int) igf2.val;
'= 0 && t3 != 0) ?tl = this->alog[(log[t2 & OxFF] + log[t3

OxFF]) % 255] : t1 = 0O;




//adica 7*5 = alog[log[7]+log[5]];//in mod normal
logaritmul //pastreaza toate propietatile in acest inel algebric ca
peste //numerele reale

temp.val = (unsigned char)tl;
return temp;
}
inelGF inelGF': :operator= (inelGF &igf2) {
this->val = igf2.val;
return *this;
}
void main()
{
inelGF a(87);
inelGF b(131);
inelGF rezl, rez2;
rezl =(a + b);
rez2 =(a * b);
printf (" Afisez rezultat adunare: %d\n",rezl.val);
printf (" Afisez rezultat inmultire: %d\n",rez2.val);

Acest exemplu este o clasa creata in C++, unde sunt implementate
cele doua operatii si impreuna cu campul Galois formeaza un inel algebric.

In realitate pentru reutilizarea codului se elaboreaza biblioteci cu
clase foarte puternice in limbaje de asamblare pentru diferite procesoare si
in limbaje evoluate precum C/C++, C# si Java. Clase foarte folositoare din
practica se dovedesc cele pentru numere intregi foarte mari, BigInt pentru
algoritmi cu cheii publice, si clase pentru inele si corpuri algebrice in camp
finit, si clase pentru matrice, vectori si liste cu informatii utile in GF(2%).

30.3 Structuri de date la nivelul etapelor algoritmului de
criptare/decriptare

La al doilea nivel, adica al operatiilor de ansamblu al algoritmului sau
schema algoritmului (folosirea retelelor Feistel, sau a unor retele proprii si
combinate sau transformari proprii), apar cele mai diverse structuri de date.

In figurile 30.1, 30.2 si 30.3 se prezinta modelul general al unui
sistem criptografic simetric “era 128 de biti” (algoritmii care au fost
acceptati finalisti pentru AES - Advanced Encryption Standard), standard
cerut de NIST - National Institute of Standards and Technology.

Algoritmul de criptare castigator la AES a fost cel care are schema
prezentata in figura 30.1. Algoritmul a fost creat scris pe 2 Octombrie 2000,
si a fost proiectat de Vincent Rijmen si Joan Rijndael. Aceasta este o
structura de date “neconventionala”.

Structura propriu-zisa nu retine date, in schimb preia date din alte
structuri (fisier sau masiv de octeti) si pune date in alte structuri.
Descrierea cifrului este relativ simpla dar nu face obiectul acestui capitol.




Aceasta structurd de date preia date sub forma de octeti (128 de biti) si
transmite criptati in functie de cheie utilizator tot 128 de biti. In schema din
figura 30.1 este prezentata o singura runda, iar de exemplu pentru o cheie
de 128 biti si blocuri de criptare de 128 biti algoritmul se executa in 9
runde, adica figura 30.1 pusa cap la cap de 9 ori.
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Figura 30.1 Schema de criptare a algoritmului Rijndael AES
[Copyright Sava00]
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Figura 30.2 Schema de criptare al algoritmului Twofish
[Copyright Twof00]

Algoritmul Twofish are 16 runde ce se bazeaza pe niste “cutii S” care
iau ca intrare 8 biti si produc 8 biti prin aplicarea unei functii F bijective, in
timp ce Rijndael se bazeaza in cutiile S pe o transformare neliniara in
GF(2?)).

Cifrul Twofish se mai bazeaza pe matrice 4x4 de distante maximum
separabile in cdmp GF(2®) - MDS (in Rijndael se foloseste ShiftRow -
deplasare pe biti dupa anumite reguli asupra blocului de informatii),
aplicarea de transformari pseudo-Hadamard (in Rijndael se foloseste



MixColumn ca in figura 30.1, dar in implementare prin programare
inseamnd multiplicare de matrice in GF(28)), si un mod de expandare al
cheilor la fel de eficient ca in Rijndael.
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Figura 30.3 Schema cifrului RC6 - Rivest Cipher 6 de la MIT
[Copyright Rive00]

Ideea principala este ca si in sistemele criptografice se folosesc
structuri de date care sunt programate structuri ca atare sau ca simple
secvente de transformari. Nu este necesar ca sagetile din cifruri sa fie
pointeri catre functii sau atribute. De fapt, ele reprezinta fluxurile de date.

In practicd se pot implementa structuri de liste circulare ce p&streaza
rezultatele intermediare din fiecare runda si le aplica altor blocuri de date
astfel incat descifrarea mesajului sa fie imposibila.

Fiecare algoritm are propria schema de criptare si propriile operatii
algebrice.



Nu numai algoritmii de criptare se pot folosi in structuri de date dar si
functiile de dispersie (hash) pot crea avalanse de modificari imposibil de
produs daca se aleg structuri de date complicate.

Aceste lucruri se fac pentru producerea unor avalanse de modificari
greu de rezolvat fara cheia cifrului.

30.4 Structuri de date la nivelul de cifru al algoritmului

La nivelul modului de utilizare a algoritmilor simetrici se intélnesc in
practica doua tipuri de cifrari: cifrarea bloc si cifrarea sir de caractere
(secventiala).

Cifrarea bloc opereaza cu blocuri de date in clar si cifrate — de regula
64 si 128 biti dar, uneori, si mai mari.

Cifrarea secventiala opereaza cu secvente de date in clar si cifrate de
mérim§ un bit sau octet, dar, uneori si cu date de 32 de biti.

In cazul cifrarii bloc, acelasi bloc de date in clar va fi cifrat de fiecare
data in acelasi bloc de date cifrat, folosind aceeasi cheie. In cazul cifrarii
secventiale, secvente similare de date in clar vor fi cifrate diferit, in cazul
unor cifrari repetate.

Modurile de criptare constituie combinatii ale celor doua tipuri de
baza, unele folosind metode feedback, altele realizdnd simple operatii.
Aceste operatii sunt simple deoarece securitatea este atributul cifrarii si nu
a modului In care se realizeaza schema de cifrare. Mai mult decat atat,
modul de realizare a cifrarii nu duce la compromiterea securitatii date de
algoritmul de baza.

Cifruri bloc

Cifrarea ECB (Electronic Codebook). ECB este cea mai obisnuita cale
de cifrare bloc, prin care un bloc de date sau text clar se transforma intr-un
bloc cifrat. Din moment ce acelasi bloc de date se cifreaza in acelasi bloc
cifrat, teoretic este posibila crearea unei carti de coduri in care sa se faca
asocierea date in clar - date cifrate. insd, pentru blocuri de 64 de biti
rezultda un numdr de 264 intrdri in cartea de coduri - mdrime prea mare
pentru a permite memorarea si manipularea datelor. In plus fiecare cheie
necesita propria carte de coduri.

Acesta este cel mai simplu mod de lucru, in care fiecare bloc de date
in clar este cifrat independent. Nu trebuie ca fisierul care se cripteaza sa
intre in cifrare liniar, de la inceput pana la sfarsit. Criptarea se face luand
aleator blocuri din cadrul fisierului. Acest lucru este important pentru
fisierele criptate care sunt accesate aleator, ca, de exemplu, in cazul bazelor
de date. Schema de lucru arata ca in figura 30.4.
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Figura 30.4 Structura de date pentru cifrarea ECB

Problema ECB-ului este ca daca un criptanalist, care detine blocul de
date in clar si blocul de date cifrat echivalent pentru cateva mesaje, poate
realiza o carte de coduri fara a cunoaste cheia. In exprimarea curenta sunt
fragmente de mesaje care tind sa se repete. Mesajele pot avea structuri
redundante sau siruri lungi de spatii sau zerouri. Daca criptanalistul
realizeaza ca mesajul in clar ‘5ffabbal’ se cripteaza in mesajul ‘778e342b’,
el poate decripta imediat mesajul respectiv acolo unde il intalneste.

Cifrarea bloc cu inlantuire CBC (Cipher Block Chaining) adauga
mecanismului de criptare un bloc cu reactie. Rezultatul criptarii unui bloc
anterior revine prin bucla si intervine in criptarea blocului curent. In felul
acesta, datele cifrate nu mai depind doar de datele in clar, ci si de modul de
cifrare a blocului anterior.

In CBC, datele in clar, inainte de a intra in blocul decriptare propriu-
zis, sunt insumate modulo 2 (XOR) cu blocul de date cifrat anterior. Figura
30.5 reprezinta modul de criptare CBC:
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Figura 30.5 Structura de date ce realizeaza criptarea CBC

Pasii pe scurt sunt urmatorii:

- se initializeaza registrul de reactie cu o functie hash de dispersie
MD5, care produce rezumatul unei parole;

- pentru j de la 0 la numarul de blocuri a fisierului sau structurii de
date -1 se executa XOR intre blocul citit din fisier si blocul de date
din registrul de reactie;

- se scrie blocul criptat in fisier;

- se atribuie registrului de reactie blocul de biti criptat;



- se incrementeaza i si se reia procesul.

Aceasta e o structura de date compusa care implica doua structuri de
date de tip fisier si o structura de tip masiv sau dupa necesitati poate fi una
dinamica, lista de liste de octeti.

CBC face ca acelasi bloc de date sa se transforme in blocuri de date
diferite, deoarece la diferite rulari valoarea de initializare a registrului de
reactie poate fi diferita. Daca valoarea initiald a registrului de reactie
ramane neschimbata intre rulari, atunci doua mesaje identice folosind
aceeasi cheie se vor transforma in acelasi mesaj criptat.

Vectorul de initializare, valoarea initiala a registrului de reactie, nu
trebuie neaparat sa fie secret.

Chiar daca acest lucru pare gresit, si anume de a nu tine secret
valoarea initialda, nu este deoarece, oricum prin canal circulda blocurile
criptate dar nu si cheia. Deci, cineva care ar dori sa sparga cifrul va trebui
sa cunoasca ce structura de date s-a folosit si ce algoritm si mai mult sa stie
protocolul de transmisie a datelor.

O posibila descriere in C/C++ a acestui tip de structura este:

struct CBC {

FILE *foriginal;

FILE *fcriptat;

unsigned char registruReactie[16];//16 octeti = 128 biti

unsigned char buffer[16];

AlgoritmCriptare ob; /*obiectul care realizeaza criptarea ce
primeste parametrii blocul de date in clar si parola si “scoate”
blocul criptat”*/

}:

O alta problema este ca fisierele sau alte structuri de date nu se
impart exact la 128 de biti, ceea ce inseamna ca se completeaza cu “0”
pana se ajunge la lungimea dorita multiplu de 128 de biti.

Cifarea CBC cu propagare (PCBC - Propagation Cipher Block
Chaining) este similar cu CBC, cu exceptia faptului ca atat blocul de date
anterior in clar, cat si cel cifrat anterior sunt facute XOR cu blocul curent de
date in clar inainte sau dupa criptare ca in figura 30.6.

PCBC a fost utilizat in Kerberos versiunea 4 pentru a realiza in acelasi
timp secretizarea céat si testul de integritate. O eroare in blocul de date
cifrat, va determina decriptarea incorectda a tuturor blocurilor urmatoare.
Aceasta inseamna ca este necesara transmiterea in finalul mesajului a unui
bloc standard pentru a se asigura integritatea mesajului.
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Figura 30.6 Structura de date care realizeaza PCBC

Pasii algoritmului cat si initializ&rile sunt cele de la CBC. in continuare
se va prezenta codul sursa in C++ pentru codificarea acestei structuri.
Descriere in totalitate a claselor AlgoritmCriptare si FunctieHash nu face
obiectul acestui capitol, iar completarea fisierului cu lungimea multiplu de
128 de biti nu este prezentata.

#include <stdio.h>
#include <string.h>
#include <io.h>
class AlgoritmCriptare {
private:
char *tipullAlg;
char *parola;
int lungCheie;
char *tipHashGenerareParola;
public:
AlgoritmCriptare (char*,char*,int,char¥*) ;
~AlgoritmCriptare() ;
unsigned char* doFinalEncryption (unsigned char*);
unsigned char* doFinalDecryption (unsigned char*);
}i
AlgoritmCriptare: :AlgoritmCriptare (char* tipAlg,char* pass,int 1lCheie,
char* tipHash4Pass) {
strcpy (this->tipulAlg, tipAlg) ;
strcpy (this->parola,pass) ;
this->lungCheie = 1lCheie;
strcpy (this->tipHashGenerareParola, tipHash4Pass) ;
}
AlgoritmCriptare: :~AlgoritmCriptare () ({
strcpy (this->tipulAlg,"0") ;
strcpy (this->parola,"0") ;
this->1lungCheie = 0;
strcpy (this->tipHashGenerareParola,"0") ;




}

unsigned char* AlgoritmCriptare::doFinalEncryption (unsigned char
*messaged4Encryption) ({
if (stricmp (this->tipulAlg,"Rijndael")==0) ({
//se fac pasii algoritmului Rijndael sau al altui algoritm
//la sfarsit se intoarce rezultatul care este in
//principiu de 128 de biti

//criptare
unsigned char* rezultat = NULL;
for(int i=0,;i<128;i++)rezultat[i] = messagedEncryption[i];
//criptarea in functie de parola data
return (unsigned char*)rezultat;
}
else return NULL;
}
unsigned char* AlgoritmCriptare::doFinalDecryption (unsigned char
*messaged4Decryption) ({
if (stricmp (this->tipulAlg,"Rijndael")==0) ({
//se fac pasii algoritmului Rijndael sau al altui algoritm
//la sfarsit se intoarce rezultatul care este in principiu
//de 128 de biti

//decriptare
unsigned char* rezultat = NULL;
for(int i=0,;i<128;i++)rezultat[i] = messagedDecryption[i];
//decriptarea in functie de parola data
return (unsigned char*)rezultat;
}
else return NULL;
}
class FunctieHash {
private:
char *numeFctHash;
unsigned char *mesajDeDigerat;
int 1lmesaj;
public:
FunctieHash (char¥*) ;
~FunctieHash() ;
unsigned char * doFinalHash (unsigned char*);
int lungime (unsigned char¥*) ;
};
FunctieHash: :FunctieHash (char *nameFctHash) {
strcpy (this->numeFctHash,nameFctHash) ;
}
FunctieHash: :~FunctieHash () {
strcpy (this->numeFctHash,"0") ;
for (int i=0;i<this->lmesaj;i++) this->mesajDeDigerat[i]='0";
this->mesajDeDigerat = NULL;
}
int FunctieHash: :lungime (unsigned char* cc) {
int i=0;
for(; ((cc[i]1!'="\0") | (cc[i] '=NULL)) ;i++) ;
this->1lmesaj = i;
return i;

}

unsigned char * FunctieHash: :doFinalHash (unsigned char¥*

messagedDigest) {
if (stricmp (this->numeFctHash, "MD5")==0) {
this->mesajDeDigerat = message4Digest;
this->lungime (this->mesajDeDigerat) ;




unsigned char* rezultat=NULL;
for (int i=0;i<this->1lmesaj;i++)rezultat[i] =
messagedDigest[i];
//se executa hashul
return rezultat;
}
else return NULL;
}
class PCBC {
private:
FILE *fo;
FILE *fc;
unsigned char* registruReactie;
//de obicei are 16 octeti = 128 biti
unsigned char *buffer[2];
AlgoritmCriptare *obac;// obiectul care realizeaza criptarea
// ce primeste parametrii blocul de date
// in clar si parola si “scoate” blocul
// criptat
FunctieHash *obfh; // obiect ce realizeaza functia de
// dispersie si
// initializeaza registrul de reactie
char *nfo;
char *nfc;

public:
PCBC(char *nume_ fis orig,char *nume fis criptat, char¥*
namelAlg,
char* passKeyAlg, int 1lenKey, char* nameHashF, wunsigned char*
passregReact) ;
~PCBC () ;

void doFinalPCBCEncryption() ;

}i
PCBC: :PCBC(char *nume fis orig,char *nume fis criptat, char* nameAlg,
char* passKeyAlg, int lenKey, char* nameHashF, unsigned char*
passRegReact) {

strcpy (this->nfo, nume fis origqg);

strcpy (this->nfc, nume fis criptat);

this->fo = fopen(this->nfo,"rb") ;

this->fc = fopen(this->nfo,"wb+") ;

this->obac = new
AlgoritmCriptare (nameAlg,passKeyAlg, lenKey,nameHashF) ;

this->obfh = new FunctieHash (nameHashF) ;

this->registruReactie = this->obfh->doFinalHash (passRegReact) ;
}
void PCBC: :doFinalPCBCEncryption() {

unsigned char buff[16];

unsigned char * rez;

//inainte de a apela metoda se face "umplerea fisierului cu "O"

//pana cand lungimea lui este divizibila cu 2*128 biti

int j=0;

while (!feof (this->fo)) {

if (!feof (this->fo)) {

fread (this->buffer[l],sizeof (unsigned char[16]) ,1,this->fo) ;

}

if (!feof (this->fo)) {

fread (this->buffer[2],sizeof (unsigned char[16]) ,1,this->fo);

}
long 11 = ftell (this->fo);




fseek (this->fo,1l1-sizeof (unsigned char[16]) ,SEEK_SET) ;

for (§=0;3j<16; j++) buff[j] = this->buffer[1][j] * this-
>buffer[2][j]-;
for (j=0;3j<16;j++) buff[j] = buff[j] * this->registruReactie[]j];

rez = this->obac->doFinalEncryption (buff) ;
fwrite (&rez,sizeof (char[1l6]),1,this->fc);
this->registruReactie = rez;

}

}

PCBC: :~PCBC() {
if (this->fo!=NULL) fclose (fo) ;
if (this->fc!=NULL) fclose (fc) ;

Decriptarea PCBC se face la fel ca si criptarea. Acest mod de
criptare/decriptare se poate folosi cu orice tip de algoritm ce fundamenteaza
un sistem criptografic simetric.

Cifruri secventiale
Prin Cifrarea secventiala (Stream Ciphers) datele in clar se convertesc

bit cu bit in text cifrat. Modelul general, structura de date -care
fundamenteaza modelul, este dat in figura 30.7.

Generator de
chei

Generator de
chei

Date cifrate
Q) C; Q)

P; — date in clar

Date in clar

Fisiere Fisiere |

Figura 30.7 Structura de date pentru cifrare secventiala

Exista un generator de cheie care, in functie de timp si, uneori parola,
genereaza un sir de biti ki, ka, ..., ki. Cu acest sir cheie se face XOR cu sirul
de biti ai blocului de date in clar, pi, pz2, ..., pi, pentru a produce un sir de
date cifrate: ¢ =pi@ ki.

La sfarsitul decriptarii, rezultatul este obtinut din efectuarea unui XOR
intre criptograma si aceeasi cheie curenta.

Securitatea sistemului depinde in intregime de generatorul de chei
din aceasta structura de date. Daca aceasta cheie genereaza acelasi sir
cheie, atunci securitatea sistemului nu este deosebitda. Daca, insa, acesta
genereaza siruri aleatoare, atunci exista un Tnalt grad de securitate.




Acest tip este cel mai simplu mod de cifrare secventiala. Mai exista
cifrarea secventiala cu auto-sincronizare, cifrarea cu reactie, cifrarea
secventialda sincrona si cifrarea secventiala cu reactie la iesire. Aceste tipuri
de cifrari au tipuri proprii de structuri de date cu ajutorul carora se
realizeaza criptarea/decriptarea blocurilor de date.

30.5 Structuri de date la nivelul protocoalelor de
transmisie a datelor si al memorarii certificatelor publice

Algoritmul dominant in sistemele oferite pe piata de software pentru
sistemele de semnatura electronica il reprezinta algoritmul RSA (Rivest -
Shamir - Adleman), considerat un standard de facto in acest domeniu. RSA
isi bazeaza taria criptografica pe imposibilitatea factorizarii numerelor
intregi foarte mari. Folosirea acestui algoritm in industrie se face conform
unei suite de standarde, cunoscute sub denumirea de PKCS (Public-Key
Cryptography Standards), realizate de proprietarul lui RSA, firma RSA Data
Security Inc.’'s: PKCS #3 - descrie metoda Diffie-Hellman de distribuire a
cheilor criptografice simetrice:

- PKCS #1 - descrie metoda matematica de cifrare si descifrare

RSA, precum si implementarea lor pentru realizarea doua functii:
semnarea electronica si anveloparea digitala a cheilor
criptografice simetrice (PKCS #1 include acum si PKCS #2 si
PKCS #4);

- PKCS #3 - descrie metoda Diffie-Hellman de distribuire a cheilor

criptografice simetrice;

- PKCS #5 - descrie metoda de implementare a cifrarii simetrice

DES-CBC, cu o cheie derivata din parol3a;
- PKCS #6 - descrie standardul de certificat digital, supra-set al
standardului X.509;

- PKCS #7 - descrie sintaxa generala a datelor ce urmeaza a fi

criptate sau semnate;

- PKCS #8 - descrie sintaxa perechii private a cheilor RSA (cheie si

atribute);

- PKCS #9 - descrie atributele tipurilor definite in #6,#7,#8;

- PKCS #10 - descrie sintaxa standard pentru cererile de certificat;

- PKCS #11 - descrie interfata de program numita “Cryptoki”;

- PKCS #12 - descrie sintaxa pentru memorarea in cadrul
software-ului a unor informatii criptografice, cum ar fi chei
publice, chei secrete, certificate. Scopul il constituie

standardizarea unei structuri de fisier ce poate fi folosit de mai
multe aplicatii.

Forma electronica completa a acestor standarde se gaseste la adresa:
http://www.rsa.com/rsalabs/pubs/PKCS/ sau se poate obtine prin e-mail de
la adresa: pkcs@rsa.com . In ceea ce priveste protocoalele implementate de
diferite aplicatii se intalnesc structuri de date foarte diferite. De exemplu, in
aplicatia SSFTP descrisa in [Ivan02] chiar daca se foloseste un protocol de
tip text in momentul de transmitere a cheilor publice se scriu in retea
obiecte serializate in format de certificat digital standard X509 descris in
PKCS #6.

PKCS #6 versiunea 1.5 descrie sintaxa certificatelor extinse. Un
certificat extins este format din certificatul unei chei publice, asa cum este



http://www.rsa.com/rsalabs/pubs/PKCS/
mailto:pkcs@rsa.com

el descris in standardul X509 si un set de atribute; acest certificat extins
este semnat de cel care il emite. De aceea, autenticitatea certificatului
poate fi verificata printr-o singura operatie cu cheia publica si oricand poate
fi extras certificatul de tip X5009.

Sintaxa certificatului extins in ASN1 este urmatoarea:

ExtendedCertificate: :=SEQUENCE {
extendedCertificateInfo ExtendedCertificatelInfo,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature Signature

SignatureAlgorithmIdentifier: :=AlgorithmIdentifier
Signature: :=BIT STRING
ExtendedCertificateInfo: :=SEQUENCE {
version Version,
certificate Certificate,
attributes Attributes
}
Version: :=INTEGER
Attributes: :=SET OF Attribute

Se observa ca acestea sunt structuri in alte structuri de date si sunt
create pentru a asigura un standard si o calitate superioara a aplicatiilor
informatice. Toate PKCS-urile contin structuri in structuri de date si sunt
unanim acceptate in industria criptografica de catre producatori.

In orice tip de aplicatie, dar mai ales in cele in care este necesara
asigurarea unei protectii superioare a informatiilor, se folosesc structuri de
date mai mult sau mai putin conventionale.

Structurile de date usureaza in general munca de programare.
Structurile de date care se implementeaza nu tin de limbajul de
programare; se pot implementa in orice limbaj de programare universal:
Pascal, C/C++, C#, Java. In criptografie se folosesc cu predilectie astfel de
structuri la toate nivelurile procesului implementat: de la nivelul aplicatie al
algoritmului pana la protocolul de transmisie in retea. Structurile alese tin
de natura aplicatiei si se o0 serie de cauze subiective (alegerea
programatorului) si obiective (restrictiile impuse de aplicatie). Structurile de
date mai sunt folosite si in securitatea criptarii simetrice pentru protectia
cheii. Managementul cheilor este vital in securitatea datelor si cuprinde
urmatoarele aspecte:

- generarea cheilor - se folosesc tabele de conversie si structuri de

date ce implementeaza functii de dispersie;

- distributia cheilor - transportul cheii secrete;

- memorarea cheilor.

Nu exista domeniu al informaticii aplicate, si cu atat mai mult in
securizarea datelor, in care sa nu se foloseasca structuri de date.



