
31. COMPLEXITATEA STRUCTURILOR DE DATE

31.1 Noţiunea de complexitate

În practică apare adeseori necesitatea comparării diverşilor algoritmi

existenţi pentru rezolvarea unei anumite probleme în funcţie de criterii de
performanţă. Pentru evaluarea algoritmilor care lucrează cu structuri de
date există două tipuri de criterii: statice şi dinamice. Criteriile statice sunt
în general subiective şi se referă la aspecte precum eleganţa şi simplitatea
algoritmului sau calitatea codului. Singurul criteriu static esenţial pentru un
algoritm este cel al corectitudinii, nerespectarea acestuia făcând inutilă orice
analiză ulterioară. Criteriile dinamice se referă la factori de comportament.
Cele mai importante criterii sunt cele legate de consumul de resurse: timp
de execuţie, spaţiu de memorie şi volumul operaţiilor de I/E.

În lucrul cu structuri de date pentru modelarea proceselor social-
economice se folosesc modele complexe care presupun un consum foarte
mare de resurse pentru rezolvare. Metodele de evaluare a complexităţii
oferă posibilitatea depistării componentelor care presupun un consum foarte
mare de timp de execuţie şi permit simplificarea acestora prin reducerea
dimensiunii problemei sau a complexităţii calculelor (de exemplu prin
eliminarea elementelor neliniare şi acceptarea unei pierderi de precizie).

Prezentul capitol prezintă fundamentele teoretice ale metodelor
folosite pentru analiza complexităţii algoritmilor. În cadrul capitolului sunt
prezentate modalităţile de evaluare a algoritmilor în funcţie de criteriile de
performanţă, precum şi aparatul matematic necesar. Pentru simplitate ne
vom referi în continuare numai la aspectele legate de timpul de execuţie;
cuantificarea utilizării celorlalte tipuri de resurse se poate face prin analogie.

Pentru a putea compara algoritmii avem nevoie în primul rând de o
metodologie de măsurare. O primă modalitate ar fi implementarea
algoritmilor şi măsurarea timpului necesar execuţiei folosind o baterie de
date de test. Deşi foarte precisă, această abordare are numeroase
dezavantaje: necesită implementarea algoritmului, depinde de maşina pe
care se execută şi de datele de test şi nu oferă nici o fundamentare formală
pentru determinarea comportamentului algoritmului pe alte date de test.
Pentru a rezolva aceste probleme putem să folosim o abordare mai
riguroasă: construim un model al tehnologiei de implementare folosită în
care includem resursele utilizate şi costul acestora, după care analizăm
comportarea dinamică a algoritmului folosind acest model. Chiar şi analiza
unui algoritm simplu folosind o astfel de abordare necesită utilizarea unor
mecanisme matematice complicate şi un proces laborios de calcul. De
asemenea, datorită faptului ca un algoritm se poate comporta diferit pentru
diferite date de intrare, vom avea nevoie şi de un mecanism de a consolida
informaţiile obţinute din analiză în formule simple, folosibile în practică.

Pentru eliminarea acestor dificultăţi a fost propusă o abordare bazată
pe noţiunea de complexitate asimptotică pentru evaluarea performanţelor
algoritmilor. Spunem că un algoritm este cu atât mai complex cu cât
consumul de resurse este mai mare. Analiza complexităţii îşi propune să
determine clasa de complexitate a algoritmului în funcţie de doi parametri
esenţiali: operaţiile critice efectuate de algoritm şi talia problemei de
rezolvat.

Operaţiile critice (sau elementare) sunt stabilite în funcţie de
specificul problemei de rezolvat; ele sunt acele operaţii care prin natura lor
sau prin faptul că sunt executate frecvent în cursul execuţiei programului
implică un consum mare de resurse. De exemplu, în cazul algoritmilor de
sortare, operaţia critică este compararea a două chei. Pentru un algoritm de
căutare într-o bază de date operaţia critică poate fi reprezentă de o citire de
pe disc. Prelucrările considerate operaţii elementare nu trebuie sa fie
neapărat omogene. Putem considera de exemplu ca orice operaţie
aritmetico-logică este o operaţie elementară. De asemenea putem considera
un grup de operaţii ca fiind o operaţie elementară.

Talia problemei este definită ca acel parametru sau acei parametri de
care depinde frecvenţa de execuţie a operaţiilor critice. Modalităţile de
exprimare ale acesteia sunt foarte variate. Astfel, pentru algoritmii de
sortare sau pentru algoritmii de căutare cea mai naturală modalitate de
exprimare este numărul de elemente ale şirului de intrare. Pentru multe alte
probleme, cum ar fi înmulţirea a doi întregi sau verificarea primalităţii unui
număr, cea mai bună măsură a taliei problemei este numărul total de biţi
necesar pentru reprezentarea numerelor în notaţia binară. Uneori este mai
indicat să descriem dimensiunea problemei de rezolvat in funcţie de mai
mulţi parametri. De exemplu, în cazul algoritmilor care fac prelucrări pe
grafuri, talia problemei este determinată de numărul de noduri şi numărul
de arce.

Pentru a putea compara algoritmii din punctul de vedere al
performanţelor avem nevoie de o metrică a complexităţii. Aceasta trebuie să
permită atât o determinare corectă a resurselor folosite cât şi o simplificare
a procesului analiză. În majoritatea cazurilor, analiza exactă a complexităţii
este dificilă şi chiar inutilă. Nu avem nevoie de o valoare exactă a volumului
de resurse consumate de algoritm, ci doar de o estimare a acesteia astfel
încât algoritmul să poată fi încadrat într-o clasă de complexitate. Metrica
folosită este bazată pe noţiunile de timp de execuţie şi rată de creştere.

Timpul de execuţie al unui algoritm este definit ca numărul de
operaţii critice sau “paşi” executaţi. Pentru simplitate se poate presupune că
toate operaţiile se execută în timp constant. Vom vedea mai departe că
această simplificare nu influenţează rezultatul analizei. Singura restricţie
impusă în alegerea operaţiei în funcţie de care se determină timpul de
execuţie este aceea de a nu depinde de dimensiunea problemei. Nu putem
considera un grup de n comparaţii ca o operaţie elementară în cazul unui
algoritm care sortează un sir de n numere naturale. Timpul de execuţie este
exprimat în general ca o funcţie de talia problemei. Pot exista cazuri în care
timpul de execuţie depinde şi de valorile efective ale datelor de intrare, nu
numai de volumul acestora. În aceste cazuri se vor determina, în funcţie de
specificul problemei, timpii de execuţie în cazul cel mai defavorabil şi
eventual pentru cazul mediu.

Deoarece în majoritatea cazurilor timpul de execuţie este dificil de
determinat, în analiza complexităţii metrica folosită pentru clasificarea
algoritmilor este rata de creştere a timpului de execuţie. Aceasta măsoară
valoarea asimptotică (când talia problemei tinde către infinit) a
performanţei. Pentru determinarea comportamentului vom lua in
considerare numai termenul dominant al funcţiei care reprezintă timpul de
execuţie, ignorând coeficientul acestuia şi termenii de rang inferior. Deşi
pentru date de intrare de talie mică această metrică poate conduce la

rezultate eronate, pentru valori suficient de mari permite o caracterizare
corectă şi o clasificare consistentă a performanţelor algoritmilor.

31.2 Modelarea matematică a complexităţii algoritmilor

Noţiunilor intuitive prezentate in secţiunea anterioară le-a fost asociat

un set de notaţii matematice. În continuare vom prezenta definiţiile
matematice ale conceptelor utilizate, precum şi proprietăţile importante ale
acestora.

Presupunem că funcţiile care descriu cantitativ timpul de execuţie al
algoritmului sunt de variabilă întreagă, cu valori reale pozitive, deci de
forma . Parametrul funcţiei reprezintă talia problemei, iar
valoarea funcţiei reprezintă numărul de operaţii elementare necesare.

 RNf :

Pentru o funcţie dată definim clasa)(ng  )(ng a algoritmilor ca
totalitatea algoritmilor cu de timpi de execuţie caracterizaţi de o funcţie f(n)
din mulţimea:

  )]()()(0[))()((|)()(210021 ngcnfngcnnNnR,ccnfng   

)(nfO funcţie aparţine mulţimii  )(ng dacă există două constante

pozitive şi astfel încât, pentru un suficient de mare, este încadrată

de şi . Deşi
1c 2c n

)(ng)(2 ngc1c  este o mulţime, apartenenţa se notează cu
 şi se citeşte “f este în clasa))((ng))((ng) (nf  ” sau “f are ordinul g(n)”.

În aceste condiţii spunem ca g(n) este o limită asimptotică “strânsă” pentru
f(n).

Notaţia este utilizabilă numai atunci când funcţia care
caracterizează timpul de execuţie este unică. Pentru situaţiile în care nu se
poate determina o astfel de funcţie se foloseşte notaţia O. Pentru o funcţie
dată , definim clasa a algoritmilor ca totalitatea algoritmilor cu
timpi de execuţie caracterizaţi de o funcţie f(n) din mulţimea



(c

)(ng

 )n

))((ngO

)(0 Nn)]()(0[))(|)((0 ncgnfnnRnfgO   .

Spre deosebire de  , notaţia O oferă doar o limită asimptotică
superioară, fără a face nici o precizare despre cât de strânsă este această
limită. Aceste caracteristici ale notaţiei o fac potrivită pentru analiza
comportării algoritmilor în cazul cel mai defavorabil. Notaţia stabileşte o
limită superioară a timpului de execuţie independentă de structura datelor
de intrare. Dacă timpul de execuţie al unui algoritm este de ordin ,
atunci, indiferent de valorile datelor de intrare de dimensiune n, timpul de
execuţie este cel mult egal cu cg(n). Similar se poate defini si o notaţie
pentru determinarea limitei asimptotice inferioare.

))((ngO

Pentru o funcţie dată , clasa)(ng))((ng a algoritmilor este formată
din totalitatea algoritmilor cu de timpi de execuţie caracterizaţi de o funcţie
f(n) din mulţimea:   )]()(0[))()((|)()(00 nfncgnnNnRcnfng   .

Această notaţie este folosită în special pentru a caracteriza
comportarea algoritmului în cazul cel mai favorabil.

Figura 31.1 prezintă interpretarea grafică a celor trei notaţii.

Figura 31.1 interpretarea grafică a notaţiilor de complexitate

Se poate demonstra uşor că între notaţiile de complexitate există

următoarele relaţii:

      )(()())(()())(()(ngnfngnfngOnf  (31.1)

relaţia de dualitate:    ))(()())(()(nfngngOnf  (31.2)

Pentru a desemna limite inferioare sau superioare care nu sunt

asimptotic strânse se utilizează notaţiile o si , care sunt definite similar
notaţiilor O, respectiv , astfel:

  )]()(0[))()((|)()(00 ncgnfnnNnRcnfngo   (31.3)

respectiv:

  )]()(0[))()((|)()(00 nfncgnnNnRcnfng   (31.4)

Diferenţa faţă de notaţiile principale este că inegalitatea este

verificată pentru orice constantă c pozitivă, ceea ce implică intuitiv că
funcţia f(n) devine nesemnificativă în raport cu g(n) pentru n foarte mare

(în cazul notaţiei o), adică 0
)(

)(
lim 

 ng

nf
n

.

În cazul în care funcţia caracteristică a unui algoritm depinde de mai
multe variabile (exemplu: numărul de noduri şi numărul de arce în cazul
unui graf) se pot analiza separat componentele folosind notaţiile prezentate
sau se pot extinde notaţiile pentru a lucra cu funcţii de tipul NNNN  .

31.3 Clase de complexitate

Se poate demonstra uşor că notaţiile de complexitate au următoarele

proprietăţi relaţionale pe mulţimea funcţiilor :  RN
Tranzitivitate:
-))((şi))(()(ngnf )(nhng  implică))(()(nhng  ;
-))((şi))(()(ngOnf )(nhOng  implică))(()(nhOng  ;
-))((şi))(()(ngnf )(nhng  implică))(()(nhng  ;

-))(()(ngonf  şi))(()(nhong  implică))(()(nhong  ;
-))(()(ngnf  şi))(()(nhng  implică))(()(nhng  .
Reflexivitate:
-))(()(nfnf  ;
-))(()(nfOnf  ;
-))(()(nfnf  .
Simetrie: dacă şi numai dacă))(()(ngnf ))(()(nfng  .
Antisimetrie:
-))(()(ngOnf  dacă şi numai dacă))(()(nfng  ;
-))(()(ngonf  dacă şi numai dacă))(()(nfng  .
Notaţiile O şi , care sunt tranzitive, antisimetrice si tranzitive,

formează relaţii de ordine parţială peste mulţimea funcţiilor , iar ,
care este reflexivă, simetrică si tranzitivă, formează o relaţie de echivalenţă.
Aceste relaţii pot fi asimilate cu relaţiile de ordine de pe mulţimea
numerelor reale astfel:

 RN

bangnf ))(()(, banf ngO )())((,
bangnf ))(()(, bangonf ))(()(şi bg an nf ))(()( . O

singură proprietate a numerelor reale nu este valabilă şi pentru notaţiile de
complexitate trihotomia (pentru oricare numere reale a şi b exact una dintre
relaţiile a<b, a>b sau a=b este adevărată). Aceasta arată ca există funcţii
care nu pot fi comparate asimptotic (de exemplu n si).)sin(1 nn

Faptul că , O şi  pot fi văzute ca relaţii de ordine, chiar şi parţiale,
ajută la compararea algoritmilor caracterizaţi de funcţii din clasele
respective de complexitate. De asemenea, acestea pot fi folosite pentru a
construi clase de performanţă pentru algoritmi. Tabelul 31.1 prezintă
principalele clase de complexitate ale algoritmilor care apar în lucrul cu
structuri de date.

Tabelul nr. 31.1 Clase de complexitate

Număr de operaţii Clasa Exemple

n=3 n=10 n=100
)1(O Operaţii aritmetice simple,

căutare folosind tabele de
dispersie

1 1 1

))(ln(nO Căutare binară 1 2 5
)(nO Căutare secvenţială, suma unui

şir
3 10 100

))ln((nnO Sortările rapide (interclasare,
sortare rapidă, ...)

3 23 460

)(2nO Sortările “naive”(metoda bulelor,
inserţie, ...), parcurgeri de
matrice pătratice de ordin n

9 100 10000

)(3nO Înmulţirea clasică a matricelor 27 1000 1000000

)2(nO Generare aranjamente 8 1024 1030

Pentru o problemă dată, căutăm mereu sa găsim un algoritm care să

se situeze într-o clasă de complexitate cat mai mică. După cum se observă
şi din numărul de operaţii necesar diferitelor clase de complexitate, in cazul

in care lucrăm cu un volum mare de date clasa algoritmului devine foarte
importantă.

Pentru volume mari de date, diferenţele dintre diferite maşini de
calcul şi dintre compilatoare devin neesenţiale în comparaţie cu diferenţele
dintre clasele de algoritmi. Pentru edificare vom considera următoarele
implementări ale unei soluţii informatice destinate sortării unui volum mare
de înregistrări:

- implementare a algoritmului de sortare prin inserţie ()(2nO) pe
un supercalculator capabil sa execute 100 de milioane de
instrucţiuni pe secundă; presupunem că implementarea a fost
făcută şi optimizată folosind un limbaj de asamblare, obţinându-
se astfel un timp de execuţie 22n ;

- implementare a algoritmului de sortare prin interclasare
())lg((nn) pe un calculator personal capabil sa execute numai 1
milion de instrucţiuni pe secundă; presupunem că implementarea
a fost făcută folosind un limbaj de nivel înalt cu un compilator
ineficient, obţinându-se astfel un timp de execuţie de nn lg50 .

O

Pentru a sorta o serie de un milion de înregistrări vor fi necesari
următorii timpi:


 

ore 6secunde 20000
ni/secundăinstructiu 10

niinstructiu 102
8

26




T pentru un super

calculator;

 minute 17secunde 1000
secunda / niinstructiu 10

 niinstructiu)10lg(102
6

66




T pentru un PC.

Se observă că, folosind un algoritm dintr-o clasă de complexitate mai
mică, calculatorul personal, chiar si folosind un compilator ineficient, a fost
de 20 de ori mai rapid decât supercalculatorul. Acest exemplu arată că
alegerea algoritmului este determinantă pentru performanţele sistemelor.
Optimizarea implementării şi alegerea echipamentelor hardware devin
importante numai după ce a fost ales un algoritm eficient.

31.4 Metode de calcul pentru indicatorii de complexitate

Nu există nici o formulă generală pentru determinarea complexităţii.

Aceasta se face de la caz la caz, ţinând cont de particularităţile problemei.
În general se urmează următorii paşi:

- determinarea parametrilor de care depinde talia problemei
(aceştia vor fi parametrii funcţiei care caracterizează timpul de
execuţie şi implicit ai funcţiei caracteristice a clasei de
complexitate in care va fi încadrat algoritmul);

- alegerea operaţiilor elementare (această alegere va determina
valoarea funcţiei pentru o valoare a parametrilor);

- determinarea formulei funcţiei care caracterizează timpul de
execuţie ;

- încadrarea algoritmului într-o clasă de complexitate şi/sau
compararea lui cu alţi algoritmi care rezolvă aceeaşi problemă.

În legătură cu determinarea funcţiei caracteristice trebuie făcute
unele precizări:

- nu este necesară determinarea precisă a acesteia; este suficient
să se determine numai termenul dominant al acesteia;

- în cazul în care depinde şi de valorile particulare ale datelor de
intrare (nu numai de volumul acestora) se vor determina funcţiile
in cazul cel mai favorabil şi în cazul cel mai defavorabil pentru a
se stabili limitele asimptotice şi, dacă se consideră necesar, se vor
determina funcţii şi pentru valori intermediare pentru stabilirea
unui comportament mediu.

Metode generale

Pentru calculul funcţiei caracteristice si pentru încadrarea acesteia

într-o clasă de complexitate putem folosi următoarele proprietăţi de bază
ale notaţiilor:

Compunerea:
- dacă avem un algoritm compus din două secvenţe cu timpii de

execuţie caracterizaţi de funcţiile f(n), respectiv g(n), atunci
algoritmul va fi de ordinul max(f,g):)),(max()(gfgf  ;
relaţia este valabilă şi pentru celelalte notaţii; se poate generaliza

ca 
















))((max)(

,11

nfnf k
kk

k

i
k , k – constantă;

- dacă un algoritm apelează o secvenţă de ordin f(n) de k ori (k –
constantă), atunci algoritmul va avea tot ordinul f(n):

))((;))((nfnkf 
- dacă un algoritm apelează o secvenţă de ordin f(n) intr-un ciclu

care se execută de g(n) ori, atunci algoritmul va avea ordinul
))() . ((nfng 

Utilizarea limitelor pentru determinarea apartenenţei la o clasă
(implicaţiile inverse sunt adevărate, dar numai în cazul în care există
limitele):

- dacă 0
)(

)(
lim 

 ng

nf
n

, atunci))(()(ngonf  ())((şi

)()

)(ngOnf 

(nnf )

- dacă 
 R

ng

nf
n)(

)(
lim , atunci))(()(ngnf 

- dacă 
)(

)(
lim

ng

nf
n

, atunci))(()(ngnf  ())((şi

)()

)(ngnf 

(nnf )
Folosind limitele se pot demonstra imediat următoarele proprietăţi:

- complexitatea funcţiilor polinomiale: dacă i , atunci

)(;

m

i
inanf 




0

)(

)(mnnf 
- pentru orice constante reale a şi b, b>0 avem)(;)(bb nan 
- pentru orice constantă reală a>1, dacă))((avem

)()(.

)(ngnf 
)(ngnf aa 

Proprietăţile sumelor şi produselor:

- din proprietatea de liniaritate a seriilor avem

;  
 











n

k

n

i

kfkf
1 1

)())((

- serii aritmetice:)(
2

)1(2

1

n
nn

k
n

k







;

- serii geometrice:)(
1

11

1

n
nn

k

k x
x

x
x 








 , x>1;

- serii armonice:)1()ln(
1

1




n
k

n

k

;

- transformarea produselor in sumă: şi

))(ln(











 n

k
k

n

k
k aa

11

)ln(ln

))(ln()()(gfgf  .
Pentru sume complexe se pot utiliza tehnici precum inducţia

matematică, mărginirea termenilor, despărţirea sumelor sau aproximarea
prin integrale.

Metode pentru funcţii recursive

Fie T(n) funcţia care caracterizează timpul de execuţie al unui

algoritm. În multe situaţii avem de-a face cu funcţii recursive. În secţiunile
următoare vom prezenta trei tehnici de rezolvare a recurenţelor de
complexitate: metoda iteraţiei, metoda substituţiei şi metoda Master.
Aceste tehnici pornesc de la observaţia că nu este importantă forma exactă
a funcţiei ci doar clasa de complexitate din care face parte. De asemenea
putem omite condiţiile de oprire ale recurenţei deoarece putem presupune
ca pentru un n suficient de mic.)1()(nT

Metoda substituţiei. Metoda presupune “ghicirea” formei soluţiei şi
după aceea folosirea inducţiei matematice pentru a găsi constantele şi a
demonstra că soluţia este corectă. Numele metodei vine de la substituirea
răspunsului ghicit atunci când ipoteza de inducţie este aplicată valorilor
mici. Metoda este foarte puternică, dar este aplicabilă doar in cazurile in
care se poate intui forma soluţiei.

Pentru exemplificare vom analiza funcţia

corespunzătoare unei căutări binare, pentru care presupunem că ordinul de
complexitate va fi . Pentru a demonstra această afirmaţie vom folosi
inducţia matematică.

 








1,1

1,)2/(
)(

n

nnT
nT

)(log nO

Presupunem ca avem  )2/log()2/(ncnT  pentru o constantă

aleasă convenabil. Vom demonstra că afirmaţia este valabilă şi pentru .

Avem

0c

)(nT

   )1(log12log(1)2/()(1 nccnTnT  

ncnT log)(

00 log)(ncnT 

loglog1)2/ ncn 
1c

1

c , de

unde obţinem pentru . Pentru ca demonstraţia să fie
completă trebuie să arătam că este respectată condiţia şi pentru cazul
iniţial: . Se observă că nu este necesară demonstrarea

afirmaţiei pentru cazul limită n , deoarece, din definiţia complexităţii,
cunoaştem faptul că este suficient ca afirmaţia să fie validă pentru toţi

, unde n0 este o constantă pozitivă oarecare. În cazul de faţă, pentru 0nn 

20 n

nT)(
 avem pentru oricare . In concluzie avem

 pentru oricare

2log2)2(cT  2c

nc log 20 n

(T

n

)n

 şi oricare constantă . 2c

Procesul de demonstrare a unei recurenţe de complexitate folosind
metoda substituţiei are următorii paşi:

- intuirea unei soluţii)(nf ;
- verificarea relaţiei)(ncf prin substituirea lui)(nT cu)(nf ;

- verificarea cazului limită)(0)0 ncfn(T  .

Metoda substituţiei poate fi folosită atât pentru determinarea unei
limite superioare, cât şi pentru determinarea unei limite inferioare sau a
unei încadrări exacte a timpului de execuţie al algoritmului (caz în care
inegalităţile vor fi substituite cu egalităţi). În cazul în care expresia este
prea complexă şi nu se poate intui uşor o soluţie se pot demonstra limite
superioare şi inferioare largi pentru algoritm, care vor fi apoi restrânse
progresiv.

Chiar şi atunci când este găsită o limită asimptotică bună, pot apărea
probleme la demonstrarea prin inducţie. De obicei, problema este
considerarea unei ipoteze de inducţie prea slabe şi poate fi rezolvată prin
scăderea unor termeni de rang inferior. De exemplu, pentru recurenţa

1)2/(2)(nT nT încercăm să arătăm că)(nT)(On  demonstrând că
. Vom avea cnnT )(11)2/(2)( cnT cn

cn

n , care nu implică
pentru oricare c. Pentru depăşirea acestei probleme, vom

considera o ipoteză de inducţie mai puternică:
cnnT )(

bnT )(, unde b este o
constantă pozitivă. Folosindu-ne de această ipoteză obţinem:

bcn bcn  121)b
n

c 
2

(2nT )(pentru . Principiul aplicat este

acela că pentru a demonstra o condiţie mai strânsă pentru valori mari
trebuie să pornim de la ipoteze mai puternice.

b 1

O altă posibilitate de a simplifica recurenţele în vederea aplicării
metodei este schimbarea de variabilă. De exemplu, în recurenţa

nT)(2 nT)( nlog
mS

 făcând schimbarea de variabilă obţinem
recurenţa echivalentă

nm log
mS m)2

log(m
 /(2

)(Om
)(

S
 care se poate rezolva uşor,

obţinându-se soluţia)m , de unde rezultă

.   nloglog


1

(1)1(nTnT

nT)( nO log 
Metoda iteraţiei

Această metoda transformă recurenţa într-o sumă şi se bazează pe
folosirea tehnicilor de mărginire a sumelor pentru rezolvare. Conversia
recurenţei în sumă se face prin expandarea recurenţei şi exprimarea ca o
sumă de termeni dependenţi numai de n şi de condiţiile iniţiale.

Pentru exemplificare vom considera problema turnurilor din Hanoi
care are un timp de execuţie caracterizat de următoarea recurenţă:









,

,)1
)(

n

nn
nT

 (2)1 T

1

1
 (31.5)

Prin expandarea expresiei se obţine:

 
 











1

0

2

...124)2(8121)2(24

12)1(411)2(221)1(2)(

n

i

i

nTnT

nTnTnTnT

 (31.6)

care este o progresie geometrică cu soluţia 12 n , deci avem .)2()(nOnT 
În general, aplicarea metodei conduce la calcule algebrice complicate

si necesită o atenţie sporită la exactitatea relaţiilor. Punctele cheie care
trebuie urmărite în analiză sunt numărul de iteraţii necesare pentru
atingerea condiţiilor limită şi suma de termeni existentă pe fiecare nivel.
Uneori, în procesul de iterare, soluţia poate fi “văzută” fără a efectua toate
calculele; în acest caz se poate abandona metoda şi se va recurge la
metoda substituţiei care este mai puţin laborioasă.

O problemă mai deosebită în aplicarea metodei care poate apărea în
cazul în care funcţia care trebuie analizată conţine funcţiile parte întreagă
inferioară sau superioară ( sau   ). În general, aceste cazuri pot fi

rezolvate uşor numai dacă se iau în considerare numai puterile exacte ale
lui n. Pentru exemplificare vom considera următoarea recurenţă
corespunzătoare unei sortări prin interclasare:

   








1,1

1,)2/()2/(
)(

n

nnnTnT
nf (31.7)

Pentru rezolvarea recurenţelor de acest tip putem folosi următoarea

proprietate: Dacă o funcţie f este netedă ())(()(a.î. 2 nfObnfb ), şi
există un întreg oarecare şi t o funcţie nedescrescătoare a.î.
când n este o putere exactă a lui a, atunci

2a
() fO)n(t

)()(fOnt  pentru oricare n.
Vom considera pentru exemplul prezentat că n este o putere exactă a

lui 2 şi obţinem:

 

nnnnn

nTnnnTnnTnT

nn
n 









)(log)(log2

...2
2

1
22/)4/(2)2/(2)(

2log

2

2

 (31.8)

deci T(n)=O(n log(n)) pentru n putere exactă a lui 2. Aplicând proprietatea
anterioară obţinem T(n)=O(n log(n)) pentru oricare n.
Metoda Master

Metoda Master se bazează pe teorema cu acelaşi nume şi oferă o
soluţie directă pentru recurenţele de forma)()/()(nfbnaTnT  , unde
şi sunt constante, iar f(n) este o funcţie asimptotic pozitivă. Această
recurenţă caracterizează timpul de execuţie al unui algoritm care divide
problema in a sub-probleme de dimensiune n/b pe care le rezolvă recursiv,
iar costul necesar divizării problemei si combinării soluţiei este f(n). Pentru
corectitudine termenul trebuie scris ca

1a
1b

)/(bnT  )/(bnT sau T

(deoarece funcţia T este definită pe mulţimea numerelor naturale), dar
acest lucru nu afectează rezultatul teoremei.

 )/ bn(

Teorema Master: Dacă şi sunt constante, f(n) este o
funcţie asimptotic pozitivă şi T(n) este o funcţie nenegativă definită de

1a 1b

recurenţa (unde a/b este interpretat ca sau

), atunci T(n) poate fi mărginit asimptotic astfel:

)()/()(nfbnaTnT 

()(log abnOnf

 )/(bnT

 )/(bnT

1. dacă) pentru o constantă 0 , atunci

)(;)(log abnnT 
)(log abnnf 

()(log  abnnf

2. dacă)(, atunci))lg(; ()(log nnnT ab 
3. dacă) pentru o constantă 0 şi)(ncf

pentru o constantă 1
)/(bnf a 

c şi oricare n suficient de mare, atunci
))(()(nfnT  .

După cum rezultă din teoremă, nu orice recurenţă poate fi rezolvată
folosind această metodă. Uneori teorema nu poate fi aplicată direct, iar
alteori nu poate fi aplicată deloc, dar, atunci când este aplicabilă, ea
înlocuieşte un calcul greoi cu verificarea unor condiţii între parametrii
recurenţei.

 Pentru exemplificare vom considera recurenţa nnTnT log2)(

)2()(2log nTmS 

.
Observăm că teorema nu se poate aplica direct şi facem următoarea
transformare (folosind relaţia cu a=b=2):

, unde, făcând substituţia ,
obţinem recurenţa echivalentă

an bb na loglog 

mm

 nn T2 log2/loglog 2)2(2)  n22TnT ()(
SmS )2/(

n balog

2)(. În acest caz putem

aplica teorema (cazul 2) cu a=b=2, f(n)=(n) şi şi obţinem nn 2log2
   nnnba

22
log loglog nS)( n .

Revenind la recurenţa iniţială obţinem:

    nnmm 2222 loglogloglog) mST nlog)()2(2 nT ((31.9)

	31. COMPLEXITATEA STRUCTURILOR DE DATE
	31.1 Noţiunea de complexitate
	31.2 Modelarea matematică a complexităţii algoritmilor
	31.3 Clase de complexitate
	31.4 Metode de calcul pentru indicatorii de complexitate
	Metode generale
	Metode pentru funcţii recursive
	Metoda substituţiei. Metoda presupune “ghicirea” formei soluţiei şi după aceea folosirea inducţiei matematice pentru a găsi constantele şi a demonstra că soluţia este corectă. Numele metodei vine de la substituirea răspunsului ghicit atunci când ipoteza de inducţie este aplicată valorilor mici. Metoda este foarte puternică, dar este aplicabilă doar in cazurile in care se poate intui forma soluţiei.
	Metoda iteraţiei
	Metoda Master

