
31. COMPLEXITATEA STRUCTURILOR DE DATE 
 
 
31.1 Noţiunea de complexitate 
 
În practică apare adeseori necesitatea comparării diverşilor algoritmi 

existenţi pentru rezolvarea unei anumite probleme în funcţie de criterii de 
performanţă. Pentru evaluarea algoritmilor care lucrează cu structuri de 
date există două tipuri de criterii: statice şi dinamice. Criteriile statice sunt 
în general subiective şi se referă la aspecte precum eleganţa şi simplitatea 
algoritmului sau calitatea codului. Singurul criteriu static esenţial pentru un 
algoritm este cel al corectitudinii, nerespectarea acestuia făcând inutilă orice 
analiză ulterioară. Criteriile dinamice se referă la factori de comportament. 
Cele mai importante criterii sunt cele legate de consumul de resurse: timp 
de execuţie, spaţiu de memorie şi volumul operaţiilor de I/E.  

În lucrul cu structuri de date pentru modelarea proceselor social-
economice se folosesc modele complexe care presupun un consum foarte 
mare de resurse pentru rezolvare. Metodele de evaluare a complexităţii 
oferă posibilitatea depistării componentelor care presupun un consum foarte 
mare de timp de execuţie şi permit simplificarea acestora prin reducerea 
dimensiunii problemei sau a complexităţii calculelor (de exemplu prin 
eliminarea elementelor neliniare şi acceptarea unei pierderi de precizie). 

Prezentul capitol prezintă fundamentele teoretice ale metodelor 
folosite pentru analiza complexităţii algoritmilor. În cadrul capitolului sunt 
prezentate modalităţile de evaluare a algoritmilor în funcţie de criteriile de 
performanţă, precum şi aparatul matematic necesar. Pentru simplitate ne 
vom referi în continuare numai la aspectele legate de timpul de execuţie; 
cuantificarea utilizării celorlalte tipuri de resurse se poate face prin analogie. 

Pentru a putea compara algoritmii avem nevoie în primul rând de o 
metodologie de măsurare. O primă modalitate ar fi implementarea 
algoritmilor şi măsurarea timpului necesar execuţiei folosind o baterie de 
date de test. Deşi foarte precisă, această abordare are numeroase 
dezavantaje: necesită implementarea algoritmului, depinde de maşina pe 
care se execută şi de datele de test şi nu oferă nici o fundamentare formală 
pentru determinarea comportamentului algoritmului pe alte date de test. 
Pentru a rezolva aceste probleme putem să folosim o abordare mai 
riguroasă: construim un model al tehnologiei de implementare folosită în 
care includem resursele utilizate şi costul acestora, după care analizăm 
comportarea dinamică a algoritmului folosind acest model. Chiar şi analiza 
unui algoritm simplu folosind o astfel de abordare necesită utilizarea unor 
mecanisme matematice complicate şi un proces laborios de calcul. De 
asemenea, datorită faptului ca un algoritm se poate comporta diferit pentru 
diferite date de intrare, vom avea nevoie şi de un mecanism de a consolida 
informaţiile obţinute din analiză în formule simple, folosibile în practică. 

Pentru eliminarea acestor dificultăţi a fost propusă o abordare bazată 
pe noţiunea de complexitate asimptotică pentru evaluarea performanţelor 
algoritmilor. Spunem că un algoritm este cu atât mai complex cu cât 
consumul de resurse este mai mare. Analiza complexităţii îşi propune să 
determine clasa de complexitate a algoritmului în funcţie de doi parametri 
esenţiali: operaţiile critice efectuate de algoritm şi talia problemei de 
rezolvat.  



Operaţiile critice (sau elementare) sunt stabilite în funcţie de 
specificul problemei de rezolvat; ele sunt acele operaţii care prin natura lor 
sau prin faptul că sunt executate frecvent în cursul execuţiei programului 
implică un consum mare de resurse. De exemplu, în cazul algoritmilor de 
sortare, operaţia critică este compararea a două chei. Pentru un algoritm de 
căutare într-o bază de date operaţia critică poate fi reprezentă de o citire de 
pe disc. Prelucrările considerate operaţii elementare nu trebuie sa fie 
neapărat omogene. Putem considera de exemplu ca orice operaţie 
aritmetico-logică este o operaţie elementară. De asemenea putem considera 
un grup de operaţii ca fiind o operaţie elementară. 

Talia problemei este definită ca acel parametru sau acei parametri de 
care depinde frecvenţa de execuţie a operaţiilor critice. Modalităţile de 
exprimare ale acesteia sunt foarte variate. Astfel, pentru algoritmii de 
sortare sau pentru algoritmii de căutare cea mai naturală modalitate de 
exprimare este numărul de elemente ale şirului de intrare. Pentru multe alte 
probleme, cum ar fi înmulţirea a doi întregi sau verificarea primalităţii unui 
număr, cea mai bună măsură a taliei problemei este numărul total de biţi 
necesar pentru reprezentarea numerelor în notaţia binară. Uneori este mai 
indicat să descriem dimensiunea problemei de rezolvat in funcţie de mai 
mulţi parametri. De exemplu, în cazul algoritmilor care fac prelucrări pe 
grafuri, talia problemei este determinată de numărul de noduri şi numărul 
de arce. 

Pentru a putea compara algoritmii din punctul de vedere al 
performanţelor avem nevoie de o metrică a complexităţii. Aceasta trebuie să 
permită atât o determinare corectă a resurselor folosite cât şi o simplificare 
a procesului analiză. În majoritatea cazurilor, analiza exactă a complexităţii 
este dificilă şi chiar inutilă. Nu avem nevoie de o valoare exactă a volumului 
de resurse consumate de algoritm, ci doar de o estimare a acesteia astfel 
încât algoritmul să poată fi încadrat într-o clasă de complexitate. Metrica 
folosită este bazată pe noţiunile de timp de execuţie şi rată de creştere. 

Timpul de execuţie al unui algoritm este definit ca numărul de 
operaţii critice sau “paşi” executaţi. Pentru simplitate se poate presupune că 
toate operaţiile se execută în timp constant. Vom vedea mai departe că 
această simplificare nu influenţează rezultatul analizei. Singura restricţie 
impusă în alegerea operaţiei în funcţie de care se determină timpul de 
execuţie este aceea de a nu depinde de dimensiunea problemei. Nu putem 
considera un grup de n comparaţii ca o operaţie elementară în cazul unui 
algoritm care sortează un sir de n numere naturale. Timpul de execuţie este 
exprimat în general ca o funcţie de talia problemei. Pot exista cazuri în care 
timpul de execuţie depinde şi de valorile efective ale datelor de intrare, nu 
numai de volumul acestora. În aceste cazuri se vor determina, în funcţie de 
specificul problemei, timpii de execuţie în cazul cel mai defavorabil şi 
eventual pentru cazul mediu. 

Deoarece în majoritatea cazurilor timpul de execuţie este dificil de 
determinat, în analiza complexităţii metrica folosită pentru clasificarea 
algoritmilor este rata de creştere a timpului de execuţie. Aceasta măsoară 
valoarea asimptotică (când talia problemei tinde către infinit) a 
performanţei. Pentru determinarea comportamentului vom lua in 
considerare numai termenul dominant al funcţiei care reprezintă timpul de 
execuţie, ignorând coeficientul acestuia şi termenii de rang inferior. Deşi 
pentru date de intrare de talie mică această metrică poate conduce la 



rezultate eronate, pentru valori suficient de mari permite o caracterizare 
corectă şi o clasificare consistentă a performanţelor algoritmilor. 

 
 
31.2 Modelarea matematică a complexităţii algoritmilor 
 
Noţiunilor intuitive prezentate in secţiunea anterioară le-a fost asociat 

un set de notaţii matematice. În continuare vom prezenta definiţiile 
matematice ale conceptelor utilizate, precum şi proprietăţile importante ale 
acestora. 

Presupunem că funcţiile care descriu cantitativ timpul de execuţie al 
algoritmului sunt de variabilă întreagă, cu valori reale pozitive, deci de 
forma . Parametrul funcţiei reprezintă talia problemei, iar 
valoarea funcţiei reprezintă numărul de operaţii elementare necesare. 

 RNf :

Pentru o funcţie dată  definim clasa )(ng  )(ng  a algoritmilor ca 
totalitatea algoritmilor cu de timpi de execuţie caracterizaţi de o funcţie f(n) 
din mulţimea:  

    )]()()(0[ ))()(( |)()( 210021 ngcnfngcnnNnR,ccnfng   

)(nfO funcţie  aparţine mulţimii  )(ng  dacă există două constante 

pozitive  şi  astfel încât, pentru un  suficient de mare, este încadrată 

de şi . Deşi 
1c 2c n

)(ng )(2 ngc1c  este o mulţime, apartenenţa se notează cu 
 şi se citeşte “f este în clasa ))(( ng ))(( ng) (nf  ” sau “f are ordinul g(n)”. 

În aceste condiţii spunem ca g(n) este o limită asimptotică “strânsă” pentru 
f(n). 

Notaţia  este utilizabilă numai atunci când funcţia care 
caracterizează timpul de execuţie este unică. Pentru situaţiile în care nu se 
poate determina o astfel de funcţie se foloseşte notaţia O. Pentru o funcţie 
dată , definim clasa a algoritmilor ca totalitatea algoritmilor cu 
timpi de execuţie caracterizaţi de o funcţie f(n) din mulţimea 



( c

)(ng

 )n

))(( ngO

)(0 Nn  )]()(0[ ))( |)(( 0 ncgnfnnRnfgO   .  

Spre deosebire de  , notaţia O oferă doar o limită asimptotică 
superioară, fără a face nici o precizare despre cât de strânsă este această 
limită. Aceste caracteristici ale notaţiei o fac potrivită pentru analiza 
comportării algoritmilor în cazul cel mai defavorabil. Notaţia stabileşte o 
limită superioară a timpului de execuţie independentă de structura datelor 
de intrare. Dacă timpul de execuţie al unui algoritm este de ordin , 
atunci, indiferent de valorile datelor de intrare de dimensiune n, timpul de 
execuţie este cel mult egal cu cg(n). Similar se poate defini si o notaţie 
pentru determinarea limitei asimptotice inferioare. 

))(( ngO

Pentru o funcţie dată , clasa )(ng ))(( ng a algoritmilor este formată 
din totalitatea algoritmilor cu de timpi de execuţie caracterizaţi de o funcţie 
f(n) din mulţimea:     )]()(0[ ))()(( |)()( 00 nfncgnnNnRcnfng   .  

Această notaţie este folosită în special pentru a caracteriza 
comportarea algoritmului în cazul cel mai favorabil. 

Figura 31.1 prezintă interpretarea grafică a celor trei notaţii. 
 



 
 

Figura 31.1 interpretarea grafică a notaţiilor de complexitate 
 
Se poate demonstra uşor că între notaţiile de complexitate există 

următoarele relaţii: 
 
      )(()())(()())(()( ngnfngnfngOnf     (31.1) 

 
relaţia de dualitate:    ))(()())(()( nfngngOnf   (31.2) 
 
Pentru a desemna limite inferioare sau superioare care nu sunt 

asimptotic strânse se utilizează notaţiile o si , care sunt definite similar 
notaţiilor O, respectiv , astfel: 

 
    )]()(0[ ))()(( |)()( 00 ncgnfnnNnRcnfngo    (31.3) 

 
respectiv: 
 

    )]()(0[ ))()(( |)()( 00 nfncgnnNnRcnfng    (31.4) 

 
Diferenţa faţă de notaţiile principale este că inegalitatea este 

verificată pentru orice constantă c pozitivă, ceea ce implică intuitiv că 
funcţia f(n) devine nesemnificativă în raport cu g(n) pentru n foarte mare 

(în cazul notaţiei o), adică 0
)(

)(
lim 

 ng

nf
n

.  

În cazul în care funcţia caracteristică a unui algoritm depinde de mai 
multe variabile (exemplu: numărul de noduri şi numărul de arce în cazul 
unui graf) se pot analiza separat componentele folosind notaţiile prezentate 
sau se pot extinde notaţiile pentru a lucra cu funcţii de tipul NNNN  . 

 
 
31.3 Clase de complexitate 
 
Se poate demonstra uşor că notaţiile de complexitate au următoarele 

proprietăţi relaţionale pe mulţimea funcţiilor :  RN
Tranzitivitate: 
- ))((  şi ))(()( ngnf  )( nhng   implică ))(()( nhng  ; 
- ))((  şi ))(()( ngOnf  )( nhOng   implică ))(()( nhOng  ; 
- ))((  şi ))(()( ngnf  )( nhng   implică ))(()( nhng  ; 



- ))(()( ngonf   şi ))(()( nhong   implică ))(()( nhong  ; 
- ))(()( ngnf   şi ))(()( nhng   implică ))(()( nhng  . 
Reflexivitate: 
- ))(()( nfnf  ; 
- ))(()( nfOnf  ; 
- ))(()( nfnf  . 
Simetrie:  dacă şi numai dacă ))(()( ngnf  ))(()( nfng  . 
Antisimetrie: 
- ))(()( ngOnf   dacă şi numai dacă ))(()( nfng  ; 
- ))(()( ngonf   dacă şi numai dacă ))(()( nfng  . 
Notaţiile O şi , care sunt tranzitive, antisimetrice si tranzitive, 

formează relaţii de ordine parţială peste mulţimea funcţiilor , iar , 
care este reflexivă, simetrică si tranzitivă, formează o relaţie de echivalenţă. 
Aceste relaţii pot fi asimilate cu relaţiile de ordine de pe mulţimea 
numerelor reale astfel: 

 RN

bangnf  ))(()( , banf ngO )( ))(( , 
bangnf  ))(()( , bangonf  ))(()(  şi bg an nf  ))(()(  . O 

singură proprietate a numerelor reale nu este valabilă şi pentru notaţiile de 
complexitate trihotomia (pentru oricare numere reale a şi b exact una dintre 
relaţiile a<b, a>b sau a=b este adevărată). Aceasta arată ca există funcţii 
care nu pot fi comparate asimptotic (de exemplu n si ). )sin(1 nn

Faptul că , O şi  pot fi văzute ca relaţii de ordine, chiar şi parţiale, 
ajută la compararea algoritmilor caracterizaţi de funcţii din clasele 
respective de complexitate. De asemenea, acestea pot fi folosite pentru a 
construi clase de performanţă pentru algoritmi. Tabelul 31.1 prezintă 
principalele clase de complexitate ale algoritmilor care apar în lucrul cu 
structuri de date. 

 
Tabelul nr. 31.1 Clase de complexitate 

 
Număr de operaţii Clasa Exemple 

n=3 n=10 n=100 
)1(O  Operaţii aritmetice simple, 

căutare folosind tabele de 
dispersie 

1 1 1 

))(ln(nO  Căutare binară 1 2 5 
)(nO  Căutare secvenţială, suma unui 

şir 
3 10 100 

))ln(( nnO  Sortările rapide (interclasare, 
sortare rapidă, ...) 

3 23 460 

)( 2nO  Sortările “naive”(metoda bulelor, 
inserţie, ...), parcurgeri de 
matrice pătratice de ordin n 

9 100 10000 

)( 3nO  Înmulţirea clasică a matricelor 27 1000 1000000 

)2( nO  Generare aranjamente 8 1024 1030 

 
Pentru o problemă dată, căutăm mereu sa găsim un algoritm care să 

se situeze într-o clasă de complexitate cat mai mică. După cum se observă 
şi din numărul de operaţii necesar diferitelor clase de complexitate, in cazul 



in care lucrăm cu un volum mare de date clasa algoritmului devine foarte 
importantă. 

Pentru volume mari de date, diferenţele dintre diferite maşini de 
calcul şi dintre compilatoare devin neesenţiale în comparaţie cu diferenţele 
dintre clasele de algoritmi. Pentru edificare vom considera următoarele 
implementări ale unei soluţii informatice destinate sortării unui volum mare 
de înregistrări: 

- implementare a algoritmului de sortare prin inserţie ( )( 2nO ) pe 
un supercalculator capabil sa execute 100 de milioane de 
instrucţiuni pe secundă; presupunem că implementarea a fost 
făcută şi optimizată folosind un limbaj de asamblare, obţinându-
se astfel un timp de execuţie 22n ; 

- implementare a algoritmului de sortare prin interclasare 
( ))lg(( nn ) pe un calculator personal capabil sa execute numai 1 
milion de instrucţiuni pe secundă; presupunem că implementarea 
a fost făcută folosind un limbaj de nivel înalt cu un compilator 
ineficient, obţinându-se astfel un timp de execuţie de nn lg50 . 

O

Pentru a sorta o serie de un milion de înregistrări vor fi necesari 
următorii timpi: 

 
 

ore 6secunde 20000
ni/secundăinstructiu 10

niinstructiu 102
8

26




T  pentru un super 

calculator; 

 minute 17secunde 1000
secunda / niinstructiu 10

 niinstructiu )10lg(102
6

66




T pentru un PC. 

Se observă că, folosind un algoritm dintr-o clasă de complexitate mai 
mică, calculatorul personal, chiar si folosind un compilator ineficient, a fost 
de 20 de ori mai rapid decât supercalculatorul. Acest exemplu arată că 
alegerea algoritmului este determinantă pentru performanţele sistemelor. 
Optimizarea implementării şi alegerea echipamentelor hardware devin 
importante numai după ce a fost ales un algoritm eficient. 

 
 
31.4 Metode de calcul pentru indicatorii de complexitate 
 
Nu există nici o formulă generală pentru determinarea complexităţii. 

Aceasta se face de la caz la caz, ţinând cont de particularităţile problemei. 
În general se urmează următorii paşi: 

- determinarea parametrilor de care depinde talia problemei 
(aceştia vor fi parametrii funcţiei care caracterizează timpul de 
execuţie şi implicit ai funcţiei caracteristice a clasei de 
complexitate in care va fi încadrat algoritmul); 

- alegerea operaţiilor elementare (această alegere va determina 
valoarea funcţiei pentru o valoare a parametrilor); 

- determinarea formulei funcţiei care caracterizează timpul de 
execuţie ; 

- încadrarea algoritmului într-o clasă de complexitate şi/sau 
compararea lui cu alţi algoritmi care rezolvă aceeaşi problemă. 

În legătură cu determinarea funcţiei caracteristice trebuie făcute 
unele precizări: 



- nu este necesară determinarea precisă a acesteia; este suficient 
să se determine numai termenul dominant al acesteia; 

- în cazul în care depinde şi de valorile particulare ale datelor de 
intrare (nu numai de volumul acestora) se vor determina funcţiile 
in cazul cel mai favorabil şi în cazul cel mai defavorabil pentru a 
se stabili limitele asimptotice şi, dacă se consideră necesar, se vor 
determina funcţii şi pentru valori intermediare pentru stabilirea 
unui comportament mediu. 
 

Metode generale 
 
Pentru calculul funcţiei caracteristice si pentru încadrarea acesteia 

într-o clasă de complexitate putem folosi următoarele proprietăţi de bază 
ale notaţiilor: 

Compunerea:  
- dacă avem un algoritm compus din două secvenţe cu timpii de 

execuţie caracterizaţi de funcţiile f(n), respectiv g(n), atunci 
algoritmul va fi de ordinul max(f,g):  )),(max()( gfgf  ; 
relaţia este valabilă şi pentru celelalte notaţii; se poate generaliza 

ca 
















 ))((max)(

,11

nfnf k
kk

k

i
k , k – constantă; 

- dacă un algoritm apelează o secvenţă de ordin f(n) de k ori (k – 
constantă), atunci algoritmul va avea tot ordinul f(n): 

))(( ; ))(( nfnkf 
- dacă un algoritm apelează o secvenţă de ordin f(n) intr-un ciclu 

care se execută de g(n) ori, atunci algoritmul va avea ordinul 
))() . (( nfng 

Utilizarea limitelor pentru determinarea apartenenţei la o clasă 
(implicaţiile inverse sunt adevărate, dar numai în cazul în care există 
limitele): 

- dacă 0
)(

)(
lim 

 ng

nf
n

, atunci ))(()( ngonf   ( ))((  şi 

)()

)( ngOnf 

( nnf  ) 

- dacă 
 R

ng

nf
n )(

)(
lim , atunci ))(()( ngnf   

- dacă 
 )(

)(
lim

ng

nf
n

, atunci ))(()( ngnf   ( ))((  şi 

)()

)( ngnf 

( nnf  ) 
Folosind limitele se pot demonstra imediat următoarele proprietăţi: 

- complexitatea funcţiilor polinomiale: dacă i , atunci 

)( ; 

m

i
inanf 




0

)(

)( mnnf 
- pentru orice constante reale a şi b, b>0 avem )( ; )( bb nan 
- pentru orice constantă reală a>1, dacă ))((  avem 

)( )( . 

)( ngnf 
)( ngnf aa 

Proprietăţile sumelor şi produselor: 



- din proprietatea de liniaritate a seriilor avem 

;  
 











n

k

n

i

kfkf
1 1

)())((

- serii aritmetice: )(
2

)1( 2

1

n
nn

k
n

k







; 

- serii geometrice: )(
1

11

1

n
nn

k

k x
x

x
x 








 , x>1; 

- serii armonice: )1()ln(
1

1
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; 

- transformarea produselor in sumă:  şi 
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)ln(ln

))(ln()()( gfgf  . 
Pentru sume complexe se pot utiliza tehnici precum inducţia 

matematică, mărginirea termenilor, despărţirea sumelor sau aproximarea 
prin integrale. 

 
Metode pentru funcţii recursive 
 
Fie T(n) funcţia care caracterizează timpul de execuţie al unui 

algoritm. În multe situaţii avem de-a face cu funcţii recursive. În secţiunile 
următoare vom prezenta trei tehnici de rezolvare a recurenţelor de 
complexitate: metoda iteraţiei, metoda substituţiei şi metoda Master. 
Aceste tehnici pornesc de la observaţia că nu este importantă forma exactă 
a funcţiei ci doar clasa de complexitate din care face parte. De asemenea 
putem omite condiţiile de oprire ale recurenţei deoarece putem presupune 
ca pentru un n suficient de mic. )1()( nT

Metoda substituţiei. Metoda presupune “ghicirea” formei soluţiei şi 
după aceea folosirea inducţiei matematice pentru a găsi constantele şi a 
demonstra că soluţia este corectă. Numele metodei vine de la substituirea 
răspunsului ghicit atunci când ipoteza de inducţie este aplicată valorilor 
mici. Metoda este foarte puternică, dar este aplicabilă doar in cazurile in 
care se poate intui forma soluţiei. 

Pentru exemplificare vom analiza funcţia  

corespunzătoare unei căutări binare, pentru care presupunem că ordinul de 
complexitate va fi . Pentru a demonstra această afirmaţie vom folosi 
inducţia matematică.  

 








1,1

1,)2/(
)(

n

nnT
nT

)(log nO

Presupunem ca avem   )2/log()2/( ncnT   pentru o constantă  

aleasă convenabil. Vom demonstra că afirmaţia este valabilă şi pentru . 

Avem 

0c

)(nT

    )1(log12log(1)2/()( 1 nccnTnT  

ncnT log)( 

00 log)( ncnT 

loglog1)2/ ncn 
1c

1

c , de 

unde obţinem  pentru . Pentru ca demonstraţia să fie 
completă trebuie să arătam că este respectată condiţia şi pentru cazul 
iniţial: . Se observă că nu este necesară demonstrarea 

afirmaţiei pentru cazul limită n , deoarece, din definiţia complexităţii, 
cunoaştem faptul că este suficient ca afirmaţia să fie validă pentru toţi 

, unde n0 este o constantă pozitivă oarecare. În cazul de faţă, pentru 0nn 



20 n

nT )( 
 avem  pentru oricare . In concluzie avem 

 pentru oricare 

2log2)2( cT  2c

nc log 20 n

(T

n

)n

 şi oricare constantă .  2c

Procesul de demonstrare a unei recurenţe de complexitate folosind 
metoda substituţiei are următorii paşi: 

- intuirea  unei soluţii )(nf ; 
- verificarea relaţiei )(ncf  prin substituirea lui )(nT  cu )(nf ; 

- verificarea cazului limită )( 0)0 ncfn(T  . 

Metoda substituţiei poate fi folosită atât pentru determinarea unei 
limite superioare, cât şi pentru determinarea unei limite inferioare sau a 
unei încadrări exacte a timpului de execuţie al algoritmului (caz în care 
inegalităţile vor fi substituite cu egalităţi). În cazul în care expresia este 
prea complexă şi nu se poate intui uşor o soluţie se pot demonstra limite 
superioare şi inferioare largi pentru algoritm, care vor fi apoi restrânse 
progresiv.  

Chiar şi atunci când este găsită o limită asimptotică bună, pot apărea 
probleme la demonstrarea prin inducţie. De obicei, problema este 
considerarea unei ipoteze de inducţie prea slabe şi poate fi rezolvată prin 
scăderea unor termeni de rang inferior. De exemplu, pentru recurenţa 

1)2/(2)( nT nT  încercăm să arătăm că )(nT )( On   demonstrând că 
. Vom avea cnnT )( 11)2/(2)(  cnT cn

cn

n , care nu implică 
pentru oricare c. Pentru depăşirea acestei probleme, vom 

considera o ipoteză de inducţie mai puternică: 
cnnT )(

bnT )( , unde b este o 
constantă pozitivă. Folosindu-ne de această ipoteză obţinem: 

bcn bcn  121)b
n

c 
2

(2nT )(  pentru . Principiul aplicat este 

acela că pentru a demonstra o condiţie mai strânsă pentru valori mari 
trebuie să pornim de la ipoteze mai puternice. 

b 1

O altă posibilitate de a simplifica recurenţele în vederea aplicării 
metodei este schimbarea de variabilă. De exemplu, în recurenţa 

nT )(2 nT )(  nlog
mS

 făcând schimbarea de variabilă  obţinem 
recurenţa echivalentă 

nm log
mS m)2

log(m
 /(2

)( Om
)(

S
 care se poate rezolva uşor, 

obţinându-se soluţia )m , de unde rezultă 

.   nloglog


1

(1)1( nTnT

nT )(  nO log 
Metoda iteraţiei 

Această metoda transformă recurenţa într-o sumă şi se bazează pe 
folosirea tehnicilor de mărginire a sumelor pentru rezolvare. Conversia 
recurenţei în sumă se face prin expandarea recurenţei şi exprimarea ca o 
sumă de termeni dependenţi numai de n şi de condiţiile iniţiale. 

Pentru exemplificare vom considera problema turnurilor din Hanoi 
care are un timp de execuţie caracterizat de următoarea recurenţă: 
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       (31.5) 

 
Prin expandarea expresiei se obţine: 
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      (31.6) 

care este o progresie geometrică cu soluţia 12 n , deci avem . )2()( nOnT 
În general, aplicarea metodei conduce la calcule algebrice complicate 

si necesită o atenţie sporită la exactitatea relaţiilor. Punctele cheie care 
trebuie urmărite în analiză sunt numărul de iteraţii necesare pentru 
atingerea condiţiilor limită şi suma de termeni existentă pe fiecare nivel. 
Uneori, în procesul de iterare, soluţia poate fi “văzută” fără a efectua toate 
calculele; în acest caz se poate abandona metoda şi se va recurge la 
metoda substituţiei care este mai puţin laborioasă. 

O problemă mai deosebită în aplicarea metodei care poate apărea în 
cazul în care funcţia care trebuie analizată conţine funcţiile parte întreagă 
inferioară sau superioară (   sau    ). În general, aceste cazuri pot fi 

rezolvate uşor numai dacă se iau în considerare numai puterile exacte ale 
lui n. Pentru exemplificare vom considera următoarea recurenţă 
corespunzătoare unei sortări prin interclasare: 
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Pentru rezolvarea recurenţelor de acest tip putem folosi următoarea 

proprietate: Dacă o funcţie f este netedă ( ))(()( a.î. 2 nfObnfb  ),  şi 
există un întreg oarecare şi t o funcţie nedescrescătoare a.î.  
când n este o putere exactă a lui a, atunci 

2a
() fO )n(t

)()( fOnt   pentru oricare n.  
Vom considera pentru exemplul prezentat că n este o putere exactă a 

lui 2 şi obţinem: 
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    (31.8) 

 
deci T(n)=O(n log(n)) pentru n putere exactă a lui 2. Aplicând proprietatea 
anterioară obţinem  T(n)=O(n log(n)) pentru oricare n. 
Metoda Master 

Metoda Master se bazează pe teorema cu acelaşi nume şi oferă o 
soluţie directă pentru recurenţele de forma )()/()( nfbnaTnT  , unde  
şi  sunt constante, iar f(n) este o funcţie asimptotic pozitivă. Această 
recurenţă caracterizează timpul de execuţie al unui algoritm care divide 
problema in a sub-probleme de dimensiune n/b pe care le rezolvă recursiv, 
iar costul necesar divizării problemei si combinării soluţiei este f(n). Pentru 
corectitudine termenul  trebuie scris ca 

1a
1b

)/( bnT  )/( bnT  sau T  

(deoarece funcţia T este definită pe mulţimea numerelor naturale), dar 
acest lucru nu afectează rezultatul teoremei. 

 )/ bn(

Teorema Master: Dacă  şi  sunt constante, f(n) este o 
funcţie asimptotic pozitivă şi T(n) este o funcţie nenegativă definită de 

1a 1b



recurenţa  (unde a/b este interpretat ca  sau 

), atunci T(n) poate fi mărginit asimptotic astfel: 

)()/()( nfbnaTnT 

()( log abnOnf

 )/( bnT

 )/( bnT

1. dacă ) pentru o constantă 0 , atunci 

)( ; )( log abnnT 
)( log abnnf 

()( log  abnnf

2. dacă )( , atunci ))lg( ; ()( log nnnT ab 
3. dacă ) pentru o constantă 0  şi )(ncf  

pentru o constantă 1
)/( bnf a 

c  şi oricare n suficient de mare, atunci 
))(()( nfnT  . 

După cum rezultă din teoremă, nu orice recurenţă poate fi rezolvată 
folosind această metodă. Uneori teorema nu poate fi aplicată direct, iar 
alteori nu poate fi aplicată deloc, dar, atunci când este aplicabilă, ea 
înlocuieşte un calcul greoi cu verificarea unor condiţii între parametrii 
recurenţei. 

 Pentru exemplificare vom considera recurenţa nnTnT log2)( 

)2()( 2log nTmS 

. 
Observăm că teorema nu se poate aplica direct şi facem următoarea 
transformare (folosind relaţia  cu a=b=2): 

, unde, făcând substituţia , 
obţinem recurenţa echivalentă 

an bb na loglog 

mm

 nn T2 log2/loglog 2)2(2)  n22TnT ()( 
SmS  )2/(

n balog

2)( . În acest caz putem 

aplica teorema (cazul 2) cu a=b=2, f(n)=(n) şi  şi obţinem nn 2log2
   nnnba

22
log loglog nS )(  n .  

Revenind la recurenţa iniţială obţinem: 
 

    nnmm 2222 loglogloglog) mST nlog )()2( 2 nT (  (31.9) 
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