31. COMPLEXITATEA STRUCTURILOR DE DATE

31.1 Notiunea de complexitate

In practica apare adeseori necesitatea compararii diversilor algoritmi
existenti pentru rezolvarea unei anumite probleme in functie de criterii de
performanta. Pentru evaluarea algoritmilor care lucreaza cu structuri de
date exista doua tipuri de criterii: statice si dinamice. Criteriile statice sunt
in general subiective si se refera la aspecte precum eleganta si simplitatea
algoritmului sau calitatea codului. Singurul criteriu static esential pentru un
algoritm este cel al corectitudinii, nerespectarea acestuia facand inutila orice
analiza ulterioara. Criteriile dinamice se refera la factori de comportament.
Cele mai importante criterii sunt cele legate de consumul de resurse: timp
de executie, spatiu de memorie si volumul operatiilor de I/E.

In lucrul cu structuri de date pentru modelarea proceselor social-
economice se folosesc modele complexe care presupun un consum foarte
mare de resurse pentru rezolvare. Metodele de evaluare a complexitatii
ofera posibilitatea depistarii componentelor care presupun un consum foarte
mare de timp de executie si permit simplificarea acestora prin reducerea
dimensiunii problemei sau a complexitatii calculelor (de exemplu prin
eliminarea elementelor neliniare si acceptarea unei pierderi de precizie).

Prezentul capitol prezinta fundamentele teoretice ale metodelor
folosite pentru analiza complexitatii algoritmilor. In cadrul capitolului sunt
prezentate modalitatile de evaluare a algoritmilor in functie de criteriile de
performantd, precum si aparatul matematic necesar. Pentru simplitate ne
vom referi in continuare numai la aspectele legate de timpul de executie;
cuantificarea utilizarii celorlalte tipuri de resurse se poate face prin analogie.

Pentru a putea compara algoritmii avem nevoie in primul rand de o
metodologie de masurare. O prima modalitate ar fi implementarea
algoritmilor si masurarea timpului necesar executiei folosind o baterie de
date de test. Desi foarte precisa, aceastda abordare are numeroase
dezavantaje: necesitda implementarea algoritmului, depinde de masina pe
care se executa si de datele de test si nu ofera nici o fundamentare formala
pentru determinarea comportamentului algoritmului pe alte date de test.
Pentru a rezolva aceste probleme putem sa folosim o abordare mai
riguroasa: construim un model al tehnologiei de implementare folosita in
care includem resursele utilizate si costul acestora, dupa care analizam
comportarea dinamica a algoritmului folosind acest model. Chiar si analiza
unui algoritm simplu folosind o astfel de abordare necesita utilizarea unor
mecanisme matematice complicate si un proces laborios de calcul. De
asemenea, datorita faptului ca un algoritm se poate comporta diferit pentru
diferite date de intrare, vom avea nevoie si de un mecanism de a consolida
informatiile obtinute din analiza in formule simple, folosibile in practica.

Pentru eliminarea acestor dificultati a fost propusa o abordare bazata
pe notiunea de complexitate asimptotica pentru evaluarea performantelor
algoritmilor. Spunem ca un algoritm este cu atat mai complex cu cat
consumul de resurse este mai mare. Analiza complexitatii isi propune sa
determine clasa de complexitate a algoritmului in functie de doi parametri
esentiali: operatiile critice efectuate de algoritm si talia problemei de
rezolvat.

Operatiile critice (sau elementare) sunt stabilite in functie de
specificul problemei de rezolvat; ele sunt acele operatii care prin natura lor
sau prin faptul ca sunt executate frecvent in cursul executiei programului
implica un consum mare de resurse. De exemplu, in cazul algoritmilor de
sortare, operatia critica este compararea a doua chei. Pentru un algoritm de
cautare intr-o baza de date operatia critica poate fi reprezenta de o citire de
pe disc. Prelucrarile considerate operatii elementare nu trebuie sa fie
neaparat omogene. Putem considera de exemplu ca orice operatie
aritmetico-logica este o operatie elementara. De asemenea putem considera
un grup de operatii ca fiind o operatie elementara.

Talia problemei este definita ca acel parametru sau acei parametri de
care depinde frecventa de executie a operatiilor critice. Modalitatile de
exprimare ale acesteia sunt foarte variate. Astfel, pentru algoritmii de
sortare sau pentru algoritmii de cautare cea mai naturald modalitate de
exprimare este numarul de elemente ale sirului de intrare. Pentru multe alte
probleme, cum ar fi inmultirea a doi intregi sau verificarea primalitatii unui
numar, cea mai buna masura a taliei problemei este numarul total de biti
necesar pentru reprezentarea numerelor in notatia binara. Uneori este mai
indicat sa descriem dimensiunea problemei de rezolvat in functie de mai
multi parametri. De exemplu, in cazul algoritmilor care fac prelucrari pe
grafuri, talia problemei este determinata de numarul de noduri si numarul
de arce.

Pentru a putea compara algoritmii din punctul de vedere al
performantelor avem nevoie de o metrica a complexitatii. Aceasta trebuie sa
permita atat o determinare corectd a resurselor folosite cat si o simplificare
a procesului analiza. In majoritatea cazurilor, analiza exacta a complexitatii
este dificila si chiar inutila. Nu avem nevoie de o valoare exacta a volumului
de resurse consumate de algoritm, ci doar de o estimare a acesteia astfel
incat algoritmul sa poata fi incadrat intr-o clasa de complexitate. Metrica
folosita este bazata pe notiunile de timp de executie si rata de crestere.

Timpul de executie al unui algoritm este definit ca numarul de
operatii critice sau “pasi” executati. Pentru simplitate se poate presupune ca
toate operatiile se executa in timp constant. Vom vedea mai departe ca
aceasta simplificare nu influenteaza rezultatul analizei. Singura restrictie
impusa in alegerea operatiei in functie de care se determina timpul de
executie este aceea de a nu depinde de dimensiunea problemei. Nu putem
considera un grup de n comparatii ca o operatie elementara in cazul unui
algoritm care sorteaza un sir de n numere naturale. Timpul de executie este
exprimat in general ca o functie de talia problemei. Pot exista cazuri in care
timpul de executie depinde gi de valorile efective ale datelor de intrare, nu
numai de volumul acestora. In aceste cazuri se vor determina, in functie de
specificul problemei, timpii de executie in cazul cel mai defavorabil si
eventual pentru cazul mediu.

Deoarece in majoritatea cazurilor timpul de executie este dificil de
determinat, in analiza complexitatii metrica folositda pentru clasificarea
algoritmilor este rata de crestere a timpului de executie. Aceasta masoara
valoarea asimptotica (cand talia problemei tinde catre infinit) a
performantei. Pentru determinarea comportamentului vom lua in
considerare numai termenul dominant al functiei care reprezinta timpul de
executie, ignorand coeficientul acestuia si termenii de rang inferior. Desi
pentru date de intrare de talie mica aceasta metrica poate conduce la

rezultate eronate, pentru valori suficient de mari permite o caracterizare
corecta si o clasificare consistenta a performantelor algoritmilor.

31.2 Modelarea matematica a complexitatii algoritmilor

Notiunilor intuitive prezentate in sectiunea anterioara le-a fost asociat
un set de notatii matematice. In continuare vom prezenta definitiile
matematice ale conceptelor utilizate, precum si proprietatile importante ale
acestora.

Presupunem ca functiile care descriu cantitativ timpul de executie al
algoritmului sunt de variabila intreaga, cu valori reale pozitive, deci de
forma f:N —> R, . Parametrul functiei reprezintda talia problemei, iar
valoarea functiei reprezinta numarul de operatii elementare necesare.

Pentru o functie data g(n) definim clasa @(g(n)) a algoritmilor ca

totalitatea algoritmilor cu de timpi de executie caracterizati de o functie f(n)
din multimea:

©(g(m)=1{f(M|@3c,c, € R,)@En, € N)(¥n=n,)[0<c,g(n) < f(n)<c,g(n)] |
O functie f(n) apartine multimii ®(g(n)) daci existd doud constante
pozitive ¢, si ¢, astfel incat, pentru un n suficient de mare, este incadrata
de c,g(n)si c,g(n). Desi ®este o multime, apartenenta se noteaza cu
f(n)=0(g(n)) si se citeste “f este in clasa ©(g(n))” sau “f are ordinul g(n)”.

In aceste conditii spunem ca g(n) este o limitd asimptoticd “stransd” pentru
f(n).

Notatia ©® este utilizabila numai atunci cénd functia care
caracterizeaza timpul de executie este unica. Pentru situatiile in care nu se
poate determina o astfel de functie se foloseste notatia O. Pentru o functie
data g(n), definim clasa O(g(n))a algoritmilor ca totalitatea algoritmilor cu

timpi de executie caracterizati de o functie f(n) din multimea
O(g(m)={f(M|@EceR,)@n, e N)(¥n=n)[0< f(n)<cg(n)]}.

Spre deosebire de ©, notatia O ofera doar o limita asimptotica
superioara, fara a face nici o precizare despre cat de stransa este aceasta
limita. Aceste caracteristici ale notatiei o fac potrivita pentru analiza
comportarii algoritmilor in cazul cel mai defavorabil. Notatia stabileste o
limita superioara a timpului de executie independenta de structura datelor
de intrare. Daca timpul de executie al unui algoritm este de ordin O(g(n)),

atunci, indiferent de valorile datelor de intrare de dimensiune n, timpul de
executie este cel mult egal cu cg(n). Similar se poate defini si o notatie
pentru determinarea limitei asimptotice inferioare.

Pentru o functie data g(n), clasa Q(g(n))a algoritmilor este formata

din totalitatea algoritmilor cu de timpi de executie caracterizati de o functie
f(n) din multimea:

Q(g(n)=1{f(n)|(Fc e R,)3n, € N)(¥n=n,)[0 < cg(m) < f(m)] }.

Aceasta notatie este folosita in special pentru a caracteriza

comportarea algoritmului in cazul cel mai favorabil.
Figura 31.1 prezinta interpretarea grafica a celor trei notatii.

cg(n) ¢,g(n)

f(n)

f(n)
c,9(n)

l
n

]
° f(n)=Q(g(n)) Ny f(n)=0(g(n))

n

" f(n)=0(g(n)
Figura 31.1 interpretarea grafica a notatiilor de complexitate

Se poate demonstra usor ca intre notatiile de complexitate exista
urmatoarele relatii:

[(f () =0(gm)) A (f () =Qg())] < (f(m) =0(g(n)) (31.1)
relatia de dualitate: (f(n)=0(g(n))) < (g(n)=Q(f(n)) (31.2)

Pentru a desemna limite inferioare sau superioare care nu sunt
asimptotic stranse se utilizeaza notatiile o si o, care sunt definite similar
notatiilor O, respectiv Q, astfel:

o(g(m)={f(m|(vceR,)@n, e N)(¥n=ny)[0< f(n)<cg(m]} (31.3)
respectiv:
o(g(n)={f(n|(vceR,)3n, e N)(Vn=ny)[0<cg(n < f(n)] | (31.4)

Diferenta fata de notatiile principale este ca inegalitatea este
verificata pentru orice constanta c pozitiva, ceea ce implica intuitiv ca
functia f(n) devine nesemnificativa in raport cu g(n) pentru n foarte mare

(In cazul notatiei 0), adica limw =0

i = g(n)

In cazul in care functia caracteristica a unui algoritm depinde de mai
multe variabile (exemplu: numarul de noduri si numarul de arce in cazul
unui graf) se pot analiza separat componentele folosind notatiile prezentate
sau se pot extinde notatiile pentru a lucra cu functii de tipul NxN — NxN..

31.3 Clase de complexitate

Se poate demonstra usor ca notatiile de complexitate au urmatoarele
proprietati relationale pe multimea functiilor N -> R :

Tranzitivitate:

- f(m)=0(g(n)) si g(n)=06(h(n)) implica g(n)=©O(h(n));

- f(n)=0(g(n) si g(n)=0(h(n)) implica g(n)=0(h(n));

- f(m=Q(g(n)) si g(n)=<(h(n) implica g(n)=<Q(h(n));

- f(m=o0(g(n) si g(n)=o(h(n)) implica g(n) =o(h(n));

- f(m=aw(g(M) si g(n) =aw(h(n) implica g(n) = a(h(n)).

Reflexivitate:

- fm=06(fn);

- f()=0(f(n);

- f(m)=Q(f()).

Simetrie: f(n) =©(g(n)) daca si numai daca g(n) =0(f(n)).

Antisimetrie:

- f(n)=0(g(n)) daca si numai daca g(n)=Q(f(n));

- f(n)=o0(g(n)) daca si numai daca g(n)=aw(f(n)).

Notatiile O si Q, care sunt tranzitive, antisimetrice si tranzitive,
formeaza relatii de ordine partiala peste multimea functilor N > R, , iar @,
care este reflexiva, simetrica si tranzitiva, formeaza o relatie de echivalenta.
Aceste relatii pot fi asimilate cu relatiile de ordine de pe multimea
numerelor reale astfel: f(n)=0(g(n)~a=b, f(n)=0(g(n)~a<h,
f(n)=Q(g(n)~a=>b, f(n)=o(g(n)~a<b si f(n)=w(@nh)=a>b. O
singura proprietate a numerelor reale nu este valabila si pentru notatiile de
complexitate trihotomia (pentru oricare nhumere reale a si b exact una dintre
relatiile a<b, a>b sau a=b este adevarata). Aceasta arata ca exista functii
care nu pot fi comparate asimptotic (de exemplu n si n'*"™),

Faptul ca ®, O si Q pot fi vazute ca relatii de ordine, chiar si partiale,
ajuta la compararea algoritmilor caracterizati de functii din clasele
respective de complexitate. De asemenea, acestea pot fi folosite pentru a
construi clase de performanta pentru algoritmi. Tabelul 31.1 prezinta
principalele clase de complexitate ale algoritmilor care apar in lucrul cu
structuri de date.

Tabelul nr. 31.1 Clase de complexitate

Numar de operatii

Clasa Exemple n=3 n=10 n=100

o) Operatii aritmetice simple, 1 1 1
cautare folosind tabele de
dispersie

O(In(n)) | Cautare binara =1 =2 =5

O(n) Cautare secventiala, suma unui 3 10 100
Sir

O(nIn(n)) | Sortarile rapide (interclasare, = =23 =460
sortare rapidag, ...)

o(n?) Sortarile “naive”(metoda bulelor, 9 100 10000
insertie, ...), parcurgeri de
matrice patratice de ordin n

o(n?) Inmultirea clasica a matricelor 27 1000 | 1000000

02" Generare aranjamente 8 1024 ~10°°

Pentru o problema data, cautam mereu sa gasim un algoritm care sa
se situeze intr-o clasa de complexitate cat mai micda. Dupa cum se observa
si din numarul de operatii necesar diferitelor clase de complexitate, in cazul

in care lucram cu un volum mare de date clasa algoritmului devine foarte
importanta.

Pentru volume mari de date, diferentele dintre diferite masini de
calcul si dintre compilatoare devin neesentiale in comparatie cu diferentele
dintre clasele de algoritmi. Pentru edificare vom considera urmatoarele
implementari ale unei solutii informatice destinate sortarii unui volum mare
de inregistrari:

- implementare a algoritmului de sortare prin insertie (O(n’)) pe
un supercalculator capabil sa execute 100 de milioane de
instructiuni pe secunda; presupunem ca implementarea a fost
facuta si optimizata folosind un limbaj de asamblare, obtinandu-
se astfel un timp de executie 2n?;

- implementare a algoritmului de sortare prin interclasare
(O(nlg(n))) pe un calculator personal capabil sa execute numai 1
milion de instructiuni pe secunda; presupunem ca implementarea
a fost facuta folosind un limbaj de nivel inalt cu un compilator
ineficient, obtinandu-se astfel un timp de executie de 50nlign.

Pentru a sorta o serie de un milion de inregistrari vor fi necesari
urmatorii timpi:
2 . . .
2'(106) mstructiuni
10® instructiuni/secunda
calculator;
2-10° -1g(10°) instructiuni
10° instructiuni / secunda
Se observa ca, folosind un algoritm dintr-o clasa de complexitate mai
mica, calculatorul personal, chiar si folosind un compilator ineficient, a fost
de 20 de ori mai rapid decat supercalculatorul. Acest exemplu arata ca
alegerea algoritmului este determinanta pentru performantele sistemelor.
Optimizarea implementarii si alegerea echipamentelor hardware devin
importante numai dupa ce a fost ales un algoritm eficient.

o T= =20000secunde = 6 ore pentru un super

° T:

=1000 secunde = 17 minute pentru un PC.

31.4 Metode de calcul pentru indicatorii de complexitate

Nu exista nici o formula generala pentru determinarea complexitatii.
Aceasta se face de la caz la caz, tinand cont de particularitatile problemei.
In general se urmeaza urmatorii pasi:

- determinarea parametrilor de care depinde talia problemei
(acestia vor fi parametrii functiei care caracterizeaza timpul de
executie si implicit ai functiei caracteristice a clasei de
complexitate in care va fi incadrat algoritmul);

- alegerea operatiilor elementare (aceasta alegere va determina
valoarea functiei pentru o valoare a parametrilor);

- determinarea formulei functiei care caracterizeaza timpul de
executie ;

- incadrarea algoritmului intr-o clasa de complexitate si/sau

_ compararea lui cu alti algoritmi care rezolva aceeasi problema.

In legatura cu determinarea functiei caracteristice trebuie facute
unele precizari:

nu este necesara determinarea precisa a acesteia; este suficient
sa se determine numai termenul dominant al acesteia;

in cazul in care depinde si de valorile particulare ale datelor de
intrare (nu numai de volumul acestora) se vor determina functiile
in cazul cel mai favorabil si in cazul cel mai defavorabil pentru a
se stabili limitele asimptotice si, daca se considera necesar, se vor
determina functii si pentru valori intermediare pentru stabilirea
unui comportament mediu.

Metode generale

Pentru calculul functiei caracteristice si pentru incadrarea acesteia
intr-o clasa de complexitate putem folosi urmatoarele proprietati de baza
ale notatiilor:

Compunerea:

daca avem un algoritm compus din doua secvente cu timpii de
executie caracterizati de functiile f(n), respectiv g(n), atunci
algoritmul va fi de ordinul max(f,g): O(f +g)=0(max(f,q));

relatia este valabila si pentru celelalte notatii; se poate generaliza
[

ca @[Z fk(n)J = @[max(fk(n))j , k — constanta;
o1 k=1,k

daca un algoritm apeleaza o secventa de ordin f(n) de k ori (k -
constanta), atunci algoritmul va avea tot ordinul f(n):
O(kf (n)) =6(f () ;

daca un algoritm apeleaza o secventa de ordin f(n) intr-un ciclu
care se executa de g(n) ori, atunci algoritmul va avea ordinul

©(g(n)- f(n)).

Utilizarea limitelor pentru determinarea apartenentei la o clasa
(implicatiile inverse sunt adevarate, dar numai in cazul in care exista

limitele):

daca limf—nz atunci f(n)=o(g(n)) (f(n)=0(g(n)) si

e g(n
f(n) = 6(n)

- daca limwe R, , atunci f(n)=0(g(n))

e g(n)

daca %irg%zwo, atunci f(n)=w(g(n)) (f(N)=Q(g(n)) si

f(n)=06(n))

Folosind limitele se pot demonstra imediat urmatoarele proprietati:

- complexitatea functiilor polinomiale: daca f(n):Zaini, atunci

i=0
f(n)=0n");
pentru orice constante reale a si b, b>0 avem (n+a)’ =0®(n°);
pentru orice constantda reald a>1, daca f(n)=0(g(n)) avem

Proprietatile sumelor si produselor:

- din proprietatea de liniaritate a seriilor avem

> o(f () - @(Z f(k)} ;

n(n+1)

n
- serii aritmetice:) k = =0(n?);
k=1
n Xn+1 _1
- serii geometrice: » x“ = =0O(x"), x>1;
k=1 X—
n]
- serii armonice: M =1In(n)+0(1);
k=1

n

n
- transformarea produselor in suma: ln(HakJ= In(a,) si
k=1

k=1
O(f)=0(9) < O(In(f)) =06(n(g)).
Pentru sume complexe se pot utiliza tehnici precum inductia
matematica, marginirea termenilor, despartirea sumelor sau aproximarea
prin integrale.

Metode pentru functii recursive

Fie T(n) functia care caracterizeaza timpul de executie al unui
algoritm. In multe situatii avem de-a face cu functii recursive. In sectiunile
urmatoare vom prezenta trei tehnici de rezolvare a recurentelor de
complexitate: metoda iteratiei, metoda substitutiei si metoda Master.
Aceste tehnici pornesc de la observatia ca nu este importanta forma exacta
a functiei ci doar clasa de complexitate din care face parte. De asemenea
putem omite conditiile de oprire ale recurentei deoarece putem presupune
ca T(n)=0() pentru un n suficient de mic.

Metoda substitutiei. Metoda presupune “ghicirea” formei solutiei si
dupa aceea folosirea inductiei matematice pentru a gasi constantele si a
demonstra ca solutia este corectd. Numele metodei vine de la substituirea
raspunsului ghicit atunci cand ipoteza de inductie este aplicata valorilor
mici. Metoda este foarte puternica, dar este aplicabila doar in cazurile in
care se poate intui forma solutiei.

T(n/2) ,n>1

1 ,n=1
corespunzatoare unei cautari binare, pentru care presupunem ca ordinul de
complexitate va fi O(logn). Pentru a demonstra aceasta afirmatie vom folosi

inductia matematica.
Presupunem ca avem T(Ln/2J)§clog(n/2) pentru o constanta ¢ >0

aleasa convenabil. Vom demonstra ca afirmatia este valabila si pentru T(n).
Avem T(n)=T(n/2))+1<clog(n/2)+1=cllogn+log2™)+1=clogn+(1-c), de
unde obtinem T(n)<clogn pentru c>1. Pentru ca demonstratia sa fie
completda trebuie sa aratam ca este respectatda conditia si pentru cazul
initial: T(n,)<clogn,. Se observda ca nu este necesara demonstrarea
afirmatiei pentru cazul limita n=1, deoarece, din definitia complexitatii,
cunoastem faptul ca este suficient ca afirmatia se"g fie valida pentru toti
n>n,, unde no este o constanta pozitiva oarecare. In cazul de fata, pentru

Pentru exemplificare vom analiza functia T(n)={

n,=2 avem T(2)=2<clog2 pentru oricare c¢>2. In concluzie avem
T(n)<clogn pentru oricare n>n, =2 si oricare constanta c>2.

Procesul de demonstrare a unei recurente de complexitate folosind
metoda substitutiei are urmatorii pasi:

- intuirea unei solutii f(n);

- verificarea relatiei T(n) <cf(n) prin substituirea lui T(n) cu f(n);

- verificarea cazului limita T(n,) <cf(n,).

Metoda substitutiei poate fi folosita atat pentru determinarea unei
limite superioare, cat si pentru determinarea unei limite inferioare sau a
unei incadrari exacte a timpului de executie al algoritmului (caz in care
inegalitdtile vor fi substituite cu egalitdti). in cazul in care expresia este
prea complexa si nu se poate intui usor o solutie se pot demonstra limite
superioare si inferioare largi pentru algoritm, care vor fi apoi restranse
progresiv.

Chiar si atunci cand este gasita o limita asimptotica buna, pot aparea
probleme |la demonstrarea prin inductie. De obicei, problema este
considerarea unei ipoteze de inductie prea slabe si poate fi rezolvata prin
scaderea unor termeni de rang inferior. De exemplu, pentru recurenta
T(n)=2T(n/2)+1 fincercam sa aratam ca T(n)=0(n) demonstrand ca
T(n)<en. Vom avea T(n)<2c(n/2)+l=cn+1, care nu implica
T(n)<cnpentru oricare c. Pentru depdsirea acestei probleme, vom
considera o ipoteza de inductie mai puternica: T(n)<cn-b, unde b este o

constanta pozitiva. Folosindu-ne de aceasta ipoteza obtinem:
n o .
T(n)ﬁz(ca—b)+1:cn—2b+1§cn—b pentru b>1. Principiul aplicat este

acela ca pentru a demonstra o conditie mai stransa pentru valori mari
trebuie sa pornim de la ipoteze mai puternice.

O alta posibilitate de a simplifica recurentele in vederea aplicarii
metodei este schimbarea de variabila. De exemplu, in recurenta
T(n):2T(\/ﬁ)+logn facdand schimbarea de variabila m=logn obtinem
recurenta echivalenta S(m)=2S(m/2)+m care se poate rezolva usor,
obtinandu-se solutia S(m)=0(mlogm), de unde rezulta
T(n) = O(logn -log(logn)).

Metoda iteratiei

Aceasta metoda transforma recurenta intr-o suma si se bazeaza pe
folosirea tehnicilor de marginire a sumelor pentru rezolvare. Conversia
recurentei in suma se face prin expandarea recurentei si exprimarea ca o
suma de termeni dependenti numai de n si de conditiile initiale.

Pentru exemplificare vom considera problema turnurilor din Hanoi
care are un timp de executie caracterizat de urmatoarea recurenta:

T(n):{T(n—1)+l+T(n—l):2T(n—l) ,n>1 (31.5)

1 ,n=1

Prin expandarea expresiei se obtine:

TM=2T(Nn-D+1=2QT(N=2)+1)+1=4T(N-1)+2+1=
—4QT(N=2)+1)+2+1=8T(N=2)+4+2+1= .= (31.6)

=\)i

i=0
care este o progresie geometrica cu solutia 2" —1, deci avem T(n)=0(2").

In general, aplicarea metodei conduce la calcule algebrice complicate
si necesita o atentie sporita la exactitatea relatiilor. Punctele cheie care
trebuie urmarite in analiza sunt numarul de iteratii necesare pentru
atingerea conditiilor limita si suma de termeni existenta pe fiecare nivel.
Uneori, in procesul de iterare, solutia poate fi “vazuta” fara a efectua toate
calculele; in acest caz se poate abandona metoda si se va recurge la
metoda substitutiei care este mai putin laborioasa.

O problema mai deosebita in aplicarea metodei care poate aparea in
cazul in care functia care trebuie analizata contine functiile parte intreaga
inferioara sau superioara (_j sau]_1) In general, aceste cazuri pot fi

rezolvate usor numai daca se iau in considerare numai puterile exacte ale
lui n. Pentru exemplificare vom considera urmatoarea recurenta
corespunzatoare unei sortari prin interclasare:

fm) :{T(Ln/2J)+T(]_n/2_\)+n n>1 (31.7)

1 ,n=1

Pentru rezolvarea recurentelor de acest tip putem folosi urmatoarea
proprietate: Daca o functie f este neteda (3b>2a.i. f(bn)=0(f(n))), a>2 si
exista un intreg oarecare si t o functie nedescrescatoare a.i. t(n)=0(f)
cand n este o putere exacta a lui a, atunci t(n)=0O(f) pentru oricare n.

Vom considera pentru exemplul prezentat ca n este o putere exacta a
lui 2 si obtinem:

(L _
T(M=2T(n/2)+n=2(T(n/4)+n/2)+n=2 T(22j+2n—--- (31.8)

=2":" +Jog (N)-n=n+log,(n)-n

deci T(n)=0(n log(n)) pentru n putere exacta a lui 2. Aplicand proprietatea
anterioara obtinem T(n)=0(n log(n)) pentru oricare n.
Metoda Master

Metoda Master se bazeaza pe teorema cu acelasi nume si ofera o
solutie directa pentru recurentele de forma T(n)=aT(n/b)+ f(n), unde a>1
si b>1 sunt constante, iar f(n) este o functie asimptotic pozitiva. Aceasta
recurenta caracterizeaza timpul de executie al unui algoritm care divide
problema in a sub-probleme de dimensiune n/b pe care le rezolva recursiv,
iar costul necesar divizarii problemei si combinarii solutiei este f(n). Pentru
corectitudine termenul T(n/b) trebuie scris ca T(n/b)) sau T(n/b]

(deoarece functia T este definita pe multimea numerelor naturale), dar
acest lucru nu afecteaza rezultatul teoremei.

Teorema Master: Dacd a>1 si b>1 sunt constante, f(n) este o
functie asimptotic pozitiva si T(n) este o functie nenegativa definita de

recurenta T(n)=aT(n/b)+ f(n) (unde a/b este interpretat ca T(_n/bj) sau
T(]_n/b—\)), atunci T(n) poate fi marginit asimptotic astfel:

1. dacd f(n)=0(n"**“)pentru o constantd &>0, atundci
T(n)=0M*™?);

2. dacd f(n)=0O(n"®*), atunci T(n)=0O(n"**.1g(n));

3. dacd f(n)=Q(n"***)pentru o constantd ¢>0 si a-f(n/b)<cf(n)
pentru o constanta c<1 si oricare n suficient de mare, atunci
T(n)=0(f(n)).

Dupa cum rezultd din teorema, nu orice recurenta poate fi rezolvata

folosind aceasta metoda. Uneori teorema nu poate fi aplicata direct, iar
alteori nu poate fi aplicata deloc, dar, atunci cand este aplicabila, ea

inlocuieste un calcul greoi cu verificarea unor conditii intre parametrii
recurentei.

Pentru exemplificare vom considera recurenta T(n):ZT(\/ﬁ)Hogn.
Observam ca teorema nu se poate aplica direct si facem urmatoarea
transformare (folosind relatia alo®" = plow? cu a=b=2):
T(n)=T@2":")=2T(2"e""2) 422" unde, ficand substitutia S(m)=T(2"="),
obtinem recurenta echivalentd S(m)=2S(m/2)+m. In acest caz putem
aplica teorema (cazul 2) cu a=b=2, f(n)=0(n) si n=" =n"=? =n si obtinem
S(n) = ©(n"=" log, n)=©(nlog, n).

Revenind la recurenta initiala obtinem:

T(n)=T(2"=")=S(m) = O(mlog, m)=0O(log, nlog, (log, n)) (31.9)

	31. COMPLEXITATEA STRUCTURILOR DE DATE
	31.1 Noţiunea de complexitate
	31.2 Modelarea matematică a complexităţii algoritmilor
	31.3 Clase de complexitate
	31.4 Metode de calcul pentru indicatorii de complexitate
	Metode generale
	Metode pentru funcţii recursive
	Metoda substituţiei. Metoda presupune “ghicirea” formei soluţiei şi după aceea folosirea inducţiei matematice pentru a găsi constantele şi a demonstra că soluţia este corectă. Numele metodei vine de la substituirea răspunsului ghicit atunci când ipoteza de inducţie este aplicată valorilor mici. Metoda este foarte puternică, dar este aplicabilă doar in cazurile in care se poate intui forma soluţiei.
	Metoda iteraţiei
	Metoda Master

