35. MODELUL DE DATE XML

35.1 Documente XML

XML (eXtensible Markup Language) este un limbaj generic bazat pe
marcatori (taguri). Limbajul este considerat a fi extensibil deoarece permite
utilizatorilor sa isi defineasca propriile elemente. XML a fost creat in
principal pentru a facilita, prin intermediul Internetului, schimbul de date
intre diferite aplicatii.

in continuare, este prezentat un document XML ce contine o parte
dintre angajatii unei companii. Marcatorii poarta numele de elemente si pot
fi identificati cu usurinta deoarece sunt inclusi intre semnele <>, ca de
exemplu Angajat, Nume, Prenume. Marcatorii pot contine si o serie de
optiuni numite atribute, cum ar fi Departament, Cod, Varsta. Alegerea
modului in care sunt reprezentate datele in cadrul documentului (sub forma
de elemente sau atribute) cade strict in sarcina dezvoltatorului.

<?xml version="1.0" standalone="yes"?>

<Angajati>
<Angajat Departament="IT" Cod="100" Varsta="'54">
<Nume>Popa</Nume>
<Prenume>Valeriu</Prenume>
</Angajat>

<Angajat Departament="DESFACERE" Cod='"200" Varsta='20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>

</Angajat>

<Angajat Departament="TRANSPORT" Cod='"300" Varsta='"65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="400" Varsta="'30"">
<Nume>Enescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament=""CONTABILITATE"™ Cod="'500" Varsta="'40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>

</Angajat>

</Angajati>

Corectitudinea unui document XML poate fi privita din doua
perspective diferite:

- din punct de vedere sintactic - fisierul trebuie sa fie scris conform
regulilor de sintaxa ale limbajului. De exemplu, fiecarui marcator
de inceput trebuie sa-i corespunda un marcator de sfarsit;

- din punct de vedere semantic - continutul fisierului trebuie sa fie
valid, adica acesta trebuie sa satisfaca anumite restrictii definite in

_ schema documentului (DTD, XSD) sau chiar direct in fisier.

In cazul in care, pentru validare, se utilizeaza standardul DTD
(Document Type Definition), acesta din urma va trebui sa defineasca
structura documentului XML sub forma elementelor si a atributelor
considerate a fi valide. Astfel, grupuri de utilizatori pot agrea sa foloseasca
aceeasi structura DTD pentru schimbul de date prin intermediul formatului

XML. De asemenea, pe baza DTD orice aplicaldie poate verifica validitatea
datelor primite in format XML.
Exemplu de fisier DTD:

<I-- DOCUMENT TYPE DEFINITION -->

<IVELEMENT
<IELEMENT
<IATTLIST
<ITATTLIST
<IATTLIST
<IVELEMENT
<VELEMENT

Angajati (Angajat+)>

Angajat (Nume, Prenume)>

Angajat Cod CDATA #REQUIRED>
Angajat Departament CDATA #REQUIRED>
Angajat Varsta CDATA #IMPLIED>

Nume (#PCDATA)>

Prenume (#PCDATA)>

In documentul XML se va specifica numele fisierului DTD pe baza
caruia se va realiza validarea:

<?xml version="1.0" standalone="'yes"?>
<IDOCTYPE Angajati SYSTEM "angajati.dtd">

<Angajati>
<Angajat Departament="IT" Cod="100" Varsta="'54">
<Nume>Popa</Nume>
<Prenume>Valeriu</Prenume>
</Angajat>

<Angajat Departament="DESFACERE"™ Cod='"200"" Varsta='"20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>

</Angajat>

<Angajat Departament="TRANSPORT" Cod='"300" Varsta='"65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="400" Varsta="'30">
<Nume>Enescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament=""CONTABILITATE"™ Cod="500" Varsta="'40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>

</Angajat>

</Angajati>

La fel de bine, descrierea DTD se
documentului XML:

poate include si in cadrul

<?xml version="1.0" standalone="'yes"?>
<IDOCTYPE ANGAJATI [

<TELEMENT
<TELEMENT
<TATTLIST
<IATTLIST
<IATTLIST
<TELEMENT
<TELEMENT

1>

Angajati (Angajat+)>

Angajat (Nume, Prenume)>

Angajat Cod CDATA #REQUIRED>
Angajat Departament CDATA #REQUIRED>
Angajat Varsta CDATA #IMPLIEDD>

Nume (#PCDATA)>

Prenume (#PCDATA)>

<Angajati>
<Angajat Departament="IT" Cod="100" Varsta="'54">
<Nume>Popa</Nume>

<Prenume>Valeriu</Prenume>

</Angajat>

<Angajat Departament="DESFACERE" Cod='"200" Varsta='20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>

</Angajat>

<Angajat Departament="TRANSPORT" Cod='300" Varsta="'65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="'400" Varsta="'30"">
<Nume>Enescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament=""CONTABILITATE"™ Cod="'500" Varsta="'40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>

</Angajat>

</Angajati>

O alta modalitate de validare este reprezentata de folosirea unei
scheme XSD (Xml Schema Definition) care va contine descrierea structurii
documentului XML.

Exemplu de figier XSD:

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http://www.tempuri.org/XMLSchema'>

<xs:element name="Angajati’''>
<xs:complexType>
<XS:sequence>
<xs:element ref="Angajat'" maxOccurs=""unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="‘Angajat''>
<xs:complexType>
<XS:sequence>
<xs:element ref="Nume" />
<xs:element ref="Prenume" />
</Xs:sequence>
<xs:attribute name="Varsta" type="'xs:string"
use="‘optional” />
<xs:attribute name="Departament' type="'xs:string"
use="'required" />
<xs:attribute name="Cod" type="'xs:string" use="required"
/>
</xs:complexType>
</xs:element>

<xs:element name="Nume">
<xs:complexType mixed="true" />
</xs:element>

<xs:element name="Prenume">
<xs:complexType mixed=""true" />
</xs:element>

</xs:schema>

Legatura dintre documentul XML si schema asociata se realizeaza
astfel:

<?xml version="1.0" standalone="yes"?>
<Angajati xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi :noNamespaceSchemalLocation="angajati .xsd">
<Angajat Departament=""IT" Cod="100" Varsta='"54">
<Nume>Popa</Nume>
<Prenume>Valeriu</Prenume>
</Angajat>
<Angajat Departament="DESFACERE"™ Cod="200" Varsta=''20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>
</Angajat>
<Angajat Departament="TRANSPORT" Cod="300" Varsta="'65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="400" Varsta='"30">
<Nume>Enescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament="CONTABILITATE"™ Cod="500" Varsta="40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>
</Angajat>
</Angajati>

De asemenea, schema XSD poate fi inclusa si in cadrul documentului
XML:

<?xml version="1.0" standalone="yes"?>
<Angajati>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"">

<xs:element name="‘Angajati’''>
<xs:complexType>
<xs:sequence>
<xs:element ref="Angajat'" maxOccurs=""unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="‘Angajat''>
<xs:complexType>
<XS:sequence>
<xs:element ref="Nume" />
<xs:element ref="Prenume" />
</Xs:sequence>
<xs:attribute name="Varsta" type="'xs:string"
use="‘optional” />
<xs:attribute name='"Departament' type="'xs:string"
use="'required" />
<xs:attribute name="Cod" type="'xs:string" use="required"
/>
</xs:complexType>
</xs:element>

<xs:element name="Nume''>
<xs:complexType mixed=""true" />
</xs:element>

<xs:element name="Prenume">
<xs:complexType mixed=""true" />
</xs:element>

</xs:schema>

<Angajat Departament="IT" Cod="100" Varsta='"54">
<Nume>Popa</Nume>
<Prenume>Valeriu</Prenume>

</Angajat>

<Angajatt Departament="DESFACERE" Cod="200" Varsta="'20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>

</Angajatt>

<Angajat Departament="TRANSPORT"™ Cod="300" Varsta="'65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="400" Varsta='"30">
<Nume>Enescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>

</Angajat>

</Angajati>

35.2 Modele XML

La prima vedere, modelul de date XML poate fi etichetat ca fiind unul
foarte simplu. Cu toate acestea, el este in acelasi timp considerat a fi si
foarte abstract deoarece ofera instrumentele necesare pentru construirea
unor modele noi de o complexitate sporita.

De cele mai multe ori, un document XML poate fi vazut ca
reprezentand liniarizarea unei structuri arborescente. Astfel, fisierul XML
contine nu numai inregistrarile din arbore dar si descrierea structurii
acestuia, ca in figura 35.1.

de

Angajati

Angajat

Angajat

Angajat Angajat Angajat

Cod 100 Cod 200 Cod 300 Cod 400 Cod 500

Nume Prenume Nume Prenume Nume Prenume Nume Prenume Nume Prenume

Popa Valeriu lonescu lon Popescu Madalina Enescu Adrian Vasile Radu

Figura 35.1 Structura arborescenta corespunzatoare documentului XML

Principala problema cu care se confrunta aplicatiile ce utilizeaza date

intrare structurate sub forma unor documente XML este aceea a

parcurgerii corecte a structurii si a extragerii informatiilor necesare.
Aceasta operatiune poarta numele de parsare si poate fi realizata prin
raportarea la douda modele de baza:

- Document Object Model, DOM - documentul XML este itegral
incarcat in memorie sub forma unui arbore ce poate fi parcurs si
examinat de catre aplicatie;

- Simple API for XML, SAX - este un model bazat pe evenimente
(cum ar fi inceputul unui element sau atribut) ce sunt urmarite pe
masura ce documentul este parcurs. Nu necesitda incarcarea
intregului document in memorie iar datele sunt livrate pe masura
ce se inainteaza in cadrul structurii XML.

Programul urmator exemplifica Tncarcarea, parcurgerea si afisarea

sub forma arborescenta a unui document XML utilizand modelul DOM.

// XML DOM Object Model

#include "stdafx.h"
#include "filestream.h"

#define RELEASE(p) {if (p) {(p)->Release(); p = NULL;}}

// verifica incarcarea documentului XML in memorie
HRESULT VerificalncarcareDocumentXML(MSXML: : IXMLDOMDocument* pDoc)

{

MSXML: - IXMLDOMParseError *pXMLErr = NULL;
LONG errCode = E_FAIL;

pDoc->get_parseError(&pXMLErr);
pXMLErr->get_errorCode(&errCode);
if (errCode = 0)

{

}

else

{

fprintf(stderr, "documentul XML nu a putut Ffi incarcat\n);

fprintf(stderr, "documentul XML a fost incarcat cu succes\n');

}

RELEASE(pXMLErr);
return errCode;

// parcurgerea in memorie a documentului XML sub forma arborescenta
HRESULT ParcurgeArboreXML(MSXML: : IXMLDOMNode* node, int level)

{
MSXML: - IXMLDOMNode* pChild, *pNext;

BSTR nodeName;
MSXML : : IXMLDOMNamedNodeMap* pattrs;
node->get_nodeName(&nodeName) ;

BSTR nodeText;
node->get_text(&nodeText);

for (int i = 0; 1 < level; i++)
printf(" ');

}

it (nodeName[0] = "#" || level == 0)
printf('%S" ,nodeName) ;

}

else

{

b
SysFreeString(nodeName);

printfF('%S™, nodeText);

it (SUCCEEDED(node->get_attributes(&pattrs)) && pattrs = NULL)
{
pattrs->nextNode(&pChild);
while (pChild)
{
BSTR name;
pChi ld->get_nodeName(&name) ;
printf("" %S=""", name);
: :SysFreeString(name);

VARIANT value;
pChild->get_nodeValue(&value);
if (value.vt == VT_BSTR)

{

printf("'%S", V_BSTR(&value));
}
printf("'"");

VariantClear(&value);
pChild->Release();
pattrs->nextNode(&pChild);
pattrs->Release();
}
printf(''\n"");

node->get_firstChild(&pChild);

while (pChild)

{
ParcurgeArboreXML(pChild, level+1);
pChild->get_nextSibling(&pNext);
pChild->Release();
pChild = pNext;

}

return S_OK;

// incarca documentul in memorie sub forma arborescenta
HRESULT IncarcabDocumentXML(MSXML: : IXMLDOMDocument *pDoc, BSTR pBURL)

{
MSXML: : IXMLDOMParseError *pXMLError = NULL;

VARITANT VURL ;
VARIANT_BOOL vb;
HRESULT hr;

pDoc->put_async(VARIANT_FALSE);

// Load xml document from the given URL or file path
Variantlnit(&vURL);

VURL.vt = VT_BSTR;

V_BSTR(&VURL) = pBURL;

pDoc->load(VURL, &vb);

hr = VerificalncarcareDocumentXML(pDoc);
RELEASE(pXMLError);

return hr;

// conversie
BSTR ConversieAsciiCatreBSTR(const char* pszFName)

WCHAR wszURL[MAX_PATH] ;
> :MultiByteToWideChar(CP_ACP, 0, pszFName, -1, wszURL, MAX_PATH);
return SysAllocString(wszURL);

// functia main
int _cdecl main(int argc, char *argv[])
{
HRESULT hr = S_OK;
MSXML : - IXMLDOMDocument *pDoc = NULL;
MSXML : - IXMLDOMNode* pNode = NULL;
BSTR pBURL = NULL;
char* pszFileName = NULL;

// initializare
Colnitialize(NULL);

// document XML gol
CoCreatelnstance(MSXML: :CLSID_DOMDocument, NULL,
CLSCTX_INPROC_SERVER,

MSXML: : 11D_IXMLDOMDocument, (void**)&pDoc);

// argument - numele fisierului
if (argc > 1)
{

pszFileName = argv[1];
pBURL = ConversieAsciiCatreBSTR(pszFileName);
IncarcaDocumentXML(pDoc, pBURL);

hr = pDoc->QuerylInterface(MSXML: :11D_I1XMLDOMNode,
(void**)&pNode) ;

ParcurgeArboreXML(pNode,0);
}

RELEASE(pDoc);
SysFreeString(pBURL);
RELEASE(pNode) ;

CoUninitialize();
return O;

Folosind ca parametru de intrare fisierul XML prezentat anterior,
rezultatete obtinute in urma ruladrii programului sunt urmatoarele:

D:\>xmIDOM angajati .xml
documentul XML a fost incarcat cu succes
#document
xml version="1.0" standalone="yes"
Angajati
Angajat Departament="IT" Cod="100" Varsta="54"
Nume
Popa
Prenume
Valeriu
Angajat Departament="DESFACERE" Cod="200" Varsta="20"
Nume
lonescu
Prenume
lon
Angajat Departament="TRANSPORT" Cod="300" Varsta="65"
Nume
Popescu
Prenume
Madalina
Angajat Departament="IT" Cod="400" Varsta="30"
Nume
Georgescu
Prenume
Adrian
Angajat Departament="CONTABILITATE" Cod="500" Varsta="40"
Nume
Vasile
Prenume
Radu

Urmatoarea functie este utila in situatia in care se doreste salvarea
sub forma unui fisier a documentului XML deja incarcat in memorie.

Denumirea fisierului este transmisa sub forma de parametru.

// salveaza documentul XML aflat in memorie
HRESULT SalveazaDocumentXML(MSXML: : IXMLDOMDocument *pDoc, BSTR
pBFName)
{
HRESULT hr = S 0K;
VARIANT vName;

vName.vt = VT_BSTR;
V_BSTR(&vName) = pBFName;
hr = pDoc->save(vName);

return hr;

Parcurgerea fisierului XML utilizand modelul SAX este exemplificata
prin urmatorul program:

// SAX (Simple APl for XML)

#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/util/TransService.hpp>
#include <xercesc/parsers/SAXParser._hpp>
#include "SAXPrint.hpp"

#include <xercesc/util/OutOfMemoryException.hpp>

static const char* tipCodificare
static XMLFormatter: :UnRepFlags unRepFlags
XMLFormatter: :UnRep_CharRef;

static char* numeFisierXML = 0;

static SAXParser: :ValSchemes schemaVal idare

“"LATIN1™;

int main(int argc, char* argv[])

{
// initializare
XMLPlatformUtils::Initialize();

// preluare nume fisier
// (parametru de intrare)
numeFisierXML = argv[1];

// obiectul SAX
SAXParser* parser = new SAXParser;
parser->setValidationScheme(schemavalidare);

// parsare document XML (din fisier)

int errorCode = O;

int errorCount = O;

try

{
SAXPrintHandlers handler(tipCodificare, unRepFlags);
parser->setDocumentHandler(&handler);
parser->setErrorHandler(&handler);
parser->parse(numeFisierxML);
errorCount = parser->getErrorCount();

SAXParser::Val Auto;

catch (const OutOfMemoryException&)

XERCES_STD QUALIFIER cerr << "Memorie insuficiental!l” <<
XERCES_STD_QUALIFIER endl;
errorCode = 1;
}

catch (const XMLException& toCatch)

{
XERCES_STD _QUALIFIER cerr << '"\nEroare!\n Descriere: "
<< StrX(toCatch.getMessage())
<< "\n" << XERCES_STD_QUALIFIER endl;
errorCode = 1;

}

if(errorCode) {
XMLPlatformUtils: :Terminate();
return errorCode;

}

// stergere obiect
delete parser;

XMLPlatformUtils: :Terminate();

return errorCount;

Rularea programului conduce la urmatoarele rezultate:

D:\>xmISAX angajati .xml
<?xml version="1.0" encoding=""LATIN1"?>

<Angajati>
<Angajat Departament="IT" Cod="100" Varsta=""54"">
<Nume>Popa</Nume>
<Prenume>Valeriu</Prenume>
</Angajat>

<Angajat Departament="DESFACERE" Cod='"200" Varsta='20">
<Nume>lonescu</Nume>
<Prenume>lon</Prenume>

</Angajat>

<Angajat Departament="TRANSPORT" Cod='"300" Varsta=''65">
<Nume>Popescu</Nume>
<Prenume>Madal ina</Prenume>

</Angajat>

<Angajat Departament="IT" Cod="400" Varsta="'30">
<Nume>Georgescu</Nume>
<Prenume>Adrian</Prenume>

</Angajat>

<Angajat Departament=""CONTABILITATE"™ Cod="500" Varsta="'40">
<Nume>Vasi le</Nume>
<Prenume>Radu</Prenume>

</Angajat>

</Angajati>

Indiferent de modelul ales (DOM sau SAX), efortul de programare
ramane considerabil deoarece dezvoltatorii trebuie sa realizeze constructii
care sa faca legatura intre continutul documentului XML si modul de
reprezentare a acestuia la nivelul aplicatiilor care il folosesc.

