
35. MODELUL DE DATE XML

35.1 Documente XML

XML (eXtensible Markup Language) este un limbaj generic bazat pe
marcatori (taguri). Limbajul este considerat a fi extensibil deoarece permite
utilizatorilor să îşi definească propriile elemente. XML a fost creat în
principal pentru a facilita, prin intermediul Internetului, schimbul de date
între diferite aplicaţii.

În continuare, este prezentat un document XML ce conţine o parte
dintre angajaţii unei companii. Marcatorii poartă numele de elemente şi pot
fi identificaţi cu uşurinţă deoarece sunt incluşi între semnele <>, ca de
exemplu Angajat, Nume, Prenume. Marcatorii pot conţine şi o serie de
opţiuni numite atribute, cum ar fi Departament, Cod, Varsta. Alegerea
modului în care sunt reprezentate datele în cadrul documentului (sub formă
de elemente sau atribute) cade strict în sarcina dezvoltatorului.

<?xml version="1.0" standalone="yes"?>
<Angajati>
 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>
 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajat Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajat>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Enescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>
</Angajati>

Corectitudinea unui document XML poate fi privită din două

perspective diferite:
- din punct de vedere sintactic – fişierul trebuie să fie scris conform

regulilor de sintaxă ale limbajului. De exemplu, fiecărui marcator
de început trebuie sa-i corespundă un marcator de sfârşit;

- din punct de vedere semantic – conţinutul fişierului trebuie să fie
valid, adică acesta trebuie să satisfacă anumite restricţii definite în
schema documentului (DTD, XSD) sau chiar direct în fişier.

În cazul în care, pentru validare, se utilizează standardul DTD
(Document Type Definition), acesta din urmă va trebui să definească
structura documentului XML sub forma elementelor şi a atributelor
considerate a fi valide. Astfel, grupuri de utilizatori pot agrea să folosească
aceeaşi structură DTD pentru schimbul de date prin intermediul formatului

XML. De asemenea, pe baza DTD orice aplica�ie poate verifica validitatea
datelor primite în format XML.

Exemplu de fişier DTD:

<!-- DOCUMENT TYPE DEFINITION -->

<!ELEMENT Angajati (Angajat+)>
<!ELEMENT Angajat (Nume, Prenume)>
<!ATTLIST Angajat Cod CDATA #REQUIRED>
<!ATTLIST Angajat Departament CDATA #REQUIRED>
<!ATTLIST Angajat Varsta CDATA #IMPLIED>
<!ELEMENT Nume (#PCDATA)>
<!ELEMENT Prenume (#PCDATA)>

În documentul XML se va specifica numele fişierului DTD pe baza

căruia se va realiza validarea:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE Angajati SYSTEM "angajati.dtd">
<Angajati>
 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>
 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajat Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajat>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Enescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>
</Angajati>

 La fel de bine, descrierea DTD se poate include şi în cadrul
documentului XML:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE ANGAJATI [
<!ELEMENT Angajati (Angajat+)>
<!ELEMENT Angajat (Nume, Prenume)>
<!ATTLIST Angajat Cod CDATA #REQUIRED>
<!ATTLIST Angajat Departament CDATA #REQUIRED>
<!ATTLIST Angajat Varsta CDATA #IMPLIEDD>
<!ELEMENT Nume (#PCDATA)>
<!ELEMENT Prenume (#PCDATA)>
]>

<Angajati>
 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>

 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajat Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajat>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Enescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>
</Angajati>

 O altă modalitate de validare este reprezentată de folosirea unei
scheme XSD (Xml Schema Definition) care va conţine descrierea structurii
documentului XML.

Exemplu de fişier XSD:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.tempuri.org/XMLSchema">

 <xs:element name="Angajati">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Angajat" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Angajat">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Nume" />
 <xs:element ref="Prenume" />
 </xs:sequence>
 <xs:attribute name="Varsta" type="xs:string"
use="optional" />
 <xs:attribute name="Departament" type="xs:string"
use="required" />
 <xs:attribute name="Cod" type="xs:string" use="required"
/>
 </xs:complexType>
 </xs:element>

 <xs:element name="Nume">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Prenume">
 <xs:complexType mixed="true" />
 </xs:element>

</xs:schema>

 Legătura dintre documentul XML si schema asociată se realizează
astfel:

<?xml version="1.0" standalone="yes"?>
<Angajati xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="angajati.xsd">
 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>
 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajat Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajat>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Enescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>
</Angajati>

 De asemenea, schema XSD poate fi inclusă şi în cadrul documentului
XML:

<?xml version="1.0" standalone="yes"?>
<Angajati>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Angajati">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Angajat" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Angajat">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Nume" />
 <xs:element ref="Prenume" />
 </xs:sequence>
 <xs:attribute name="Varsta" type="xs:string"
use="optional" />
 <xs:attribute name="Departament" type="xs:string"
use="required" />
 <xs:attribute name="Cod" type="xs:string" use="required"
/>
 </xs:complexType>
 </xs:element>

 <xs:element name="Nume">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Prenume">
 <xs:complexType mixed="true" />
 </xs:element>

</xs:schema>

 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>
 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajatt Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajatt>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Enescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>

</Angajati>

35.2 Modele XML

La prima vedere, modelul de date XML poate fi etichetat ca fiind unul
foarte simplu. Cu toate acestea, el este în acelaşi timp considerat a fi şi
foarte abstract deoarece oferă instrumentele necesare pentru construirea
unor modele noi de o complexitate sporită.

De cele mai multe ori, un document XML poate fi văzut ca
reprezentând liniarizarea unei structuri arborescente. Astfel, fişierul XML
conţine nu numai înregistrările din arbore dar şi descrierea structurii
acestuia, ca în figura 35.1.

Angajati

Angajat

Cod 100

Angajat

Cod 200

Angajat

Cod 300

Angajat

Cod 400

Angajat

Cod 500

Nume

Popa

Prenume

Valeriu

Nume

Ionescu

Prenume

Ion

Nume

Popescu

Prenume

Madalina

Nume

Enescu

Prenume

Adrian

Nume

Vasile

Prenume

Radu

Figura 35.1 Structura arborescentă corespunzătoare documentului XML

Principala problemă cu care se confruntă aplicaţiile ce utilizează date

de intrare structurate sub forma unor documente XML este aceea a
parcurgerii corecte a structurii şi a extragerii informaţiilor necesare.
Această operaţiune poartă numele de parsare şi poate fi realizată prin
raportarea la două modele de bază:

- Document Object Model, DOM – documentul XML este itegral
incărcat în memorie sub forma unui arbore ce poate fi parcurs şi
examinat de către aplicaţie;

- Simple API for XML, SAX – este un model bazat pe evenimente
(cum ar fi inceputul unui element sau atribut) ce sunt urmărite pe
măsură ce documentul este parcurs. Nu necesită încărcarea
întregului document în memorie iar datele sunt livrate pe măsură
ce se înaintează în cadrul structurii XML.

 Programul următor exemplifică încărcarea, parcurgerea şi afişarea
sub formă arborescentă a unui document XML utilizând modelul DOM.

// XML DOM Object Model

#include "stdafx.h"
#include "filestream.h"

#define RELEASE(p) {if (p) {(p)->Release(); p = NULL;}}

// verifica incarcarea documentului XML in memorie
HRESULT VerificaIncarcareDocumentXML(MSXML::IXMLDOMDocument* pDoc)
{
 MSXML::IXMLDOMParseError *pXMLErr = NULL;
 LONG errCode = E_FAIL;

 pDoc->get_parseError(&pXMLErr);
 pXMLErr->get_errorCode(&errCode);
 if (errCode != 0)
 {
 fprintf(stderr, "documentul XML nu a putut fi incarcat\n");
 }
 else
 {

 fprintf(stderr, "documentul XML a fost incarcat cu succes\n");
 }

 RELEASE(pXMLErr);
 return errCode;
}

// parcurgerea in memorie a documentului XML sub forma arborescenta
HRESULT ParcurgeArboreXML(MSXML::IXMLDOMNode* node, int level)
{
 MSXML::IXMLDOMNode* pChild, *pNext;
 BSTR nodeName;
 MSXML::IXMLDOMNamedNodeMap* pattrs;

 node->get_nodeName(&nodeName);

 BSTR nodeText;
 node->get_text(&nodeText);

 for (int i = 0; i < level; i++)
 {
 printf(" ");
 }
 if (nodeName[0] != '#' || level == 0)
 {
 printf("%S",nodeName);
 }
 else
 {
 printf("%S", nodeText);
 }
 SysFreeString(nodeName);

 if (SUCCEEDED(node->get_attributes(&pattrs)) && pattrs != NULL)
 {
 pattrs->nextNode(&pChild);
 while (pChild)
 {
 BSTR name;
 pChild->get_nodeName(&name);
 printf(" %S='", name);
 ::SysFreeString(name);

 VARIANT value;
 pChild->get_nodeValue(&value);
 if (value.vt == VT_BSTR)
 {
 printf("%S", V_BSTR(&value));
 }
 printf("'");
 VariantClear(&value);
 pChild->Release();
 pattrs->nextNode(&pChild);
 }
 pattrs->Release();
 }
 printf("\n");

 node->get_firstChild(&pChild);

 while (pChild)
 {
 ParcurgeArboreXML(pChild, level+1);
 pChild->get_nextSibling(&pNext);
 pChild->Release();
 pChild = pNext;
 }

 return S_OK;
}

// incarca documentul in memorie sub forma arborescenta
HRESULT IncarcaDocumentXML(MSXML::IXMLDOMDocument *pDoc, BSTR pBURL)
{
 MSXML::IXMLDOMParseError *pXMLError = NULL;
 VARIANT vURL;
 VARIANT_BOOL vb;
 HRESULT hr;

 pDoc->put_async(VARIANT_FALSE);

 // Load xml document from the given URL or file path
 VariantInit(&vURL);
 vURL.vt = VT_BSTR;
 V_BSTR(&vURL) = pBURL;
 pDoc->load(vURL, &vb);

 hr = VerificaIncarcareDocumentXML(pDoc);

 RELEASE(pXMLError);

 return hr;
}

// conversie
BSTR ConversieAsciiCatreBSTR(const char* pszFName)
{
 WCHAR wszURL[MAX_PATH];
 ::MultiByteToWideChar(CP_ACP, 0, pszFName, -1, wszURL, MAX_PATH);
 return SysAllocString(wszURL);
}

// functia main
int _cdecl main(int argc, char *argv[])
{
 HRESULT hr = S_OK;
 MSXML::IXMLDOMDocument *pDoc = NULL;
 MSXML::IXMLDOMNode* pNode = NULL;
 BSTR pBURL = NULL;
 char* pszFileName = NULL;

 // initializare
 CoInitialize(NULL);

 // document XML gol
 CoCreateInstance(MSXML::CLSID_DOMDocument, NULL,
 CLSCTX_INPROC_SERVER,

 MSXML::IID_IXMLDOMDocument, (void**)&pDoc);

 // argument - numele fisierului
 if (argc > 1)
 {
 pszFileName = argv[1];

 pBURL = ConversieAsciiCatreBSTR(pszFileName);

 IncarcaDocumentXML(pDoc, pBURL);

 hr = pDoc->QueryInterface(MSXML::IID_IXMLDOMNode,
(void**)&pNode);

 ParcurgeArboreXML(pNode,0);
 }

 RELEASE(pDoc);
 SysFreeString(pBURL);
 RELEASE(pNode);

 CoUninitialize();
 return 0;
}

 Folosind ca parametru de intrare fişierul XML prezentat anterior,
rezultatete obţinute în urma rulării programului sunt următoarele:

D:\>xmlDOM angajati.xml
documentul XML a fost incarcat cu succes
#document
 xml version='1.0' standalone='yes'
 Angajati
 Angajat Departament='IT' Cod='100' Varsta='54'
 Nume
 Popa
 Prenume
 Valeriu
 Angajat Departament='DESFACERE' Cod='200' Varsta='20'
 Nume
 Ionescu
 Prenume
 Ion
 Angajat Departament='TRANSPORT' Cod='300' Varsta='65'
 Nume
 Popescu
 Prenume
 Madalina
 Angajat Departament='IT' Cod='400' Varsta='30'
 Nume
 Georgescu
 Prenume
 Adrian
 Angajat Departament='CONTABILITATE' Cod='500' Varsta='40'
 Nume
 Vasile
 Prenume
 Radu

 Următoarea funcţie este utilă în situaţia în care se doreşte salvarea
sub forma unui fişier a documentului XML deja încărcat în memorie.
Denumirea fişierului este transmisă sub formă de parametru.

// salveaza documentul XML aflat in memorie
HRESULT SalveazaDocumentXML(MSXML::IXMLDOMDocument *pDoc, BSTR
pBFName)
{
 HRESULT hr = S_OK;
 VARIANT vName;

 vName.vt = VT_BSTR;
 V_BSTR(&vName) = pBFName;
 hr = pDoc->save(vName);

 return hr;
}

 Parcurgerea fişierului XML utilizând modelul SAX este exemplificată
prin următorul program:

// SAX (Simple API for XML)

#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/util/TransService.hpp>
#include <xercesc/parsers/SAXParser.hpp>
#include "SAXPrint.hpp"
#include <xercesc/util/OutOfMemoryException.hpp>

static const char* tipCodificare = "LATIN1";
static XMLFormatter::UnRepFlags unRepFlags =
XMLFormatter::UnRep_CharRef;
static char* numeFisierXML = 0;
static SAXParser::ValSchemes schemaValidare = SAXParser::Val_Auto;

int main(int argc, char* argv[])
{
 // initializare
 XMLPlatformUtils::Initialize();

 // preluare nume fisier
 // (parametru de intrare)
 numeFisierXML = argv[1];

 // obiectul SAX
 SAXParser* parser = new SAXParser;
 parser->setValidationScheme(schemaValidare);

 // parsare document XML (din fisier)
 int errorCode = 0;
 int errorCount = 0;
 try
 {
 SAXPrintHandlers handler(tipCodificare, unRepFlags);
 parser->setDocumentHandler(&handler);
 parser->setErrorHandler(&handler);
 parser->parse(numeFisierXML);
 errorCount = parser->getErrorCount();
 }

 catch (const OutOfMemoryException&)
 {
 XERCES_STD_QUALIFIER cerr << "Memorie insuficienta!!!" <<
XERCES_STD_QUALIFIER endl;
 errorCode = 1;
 }
 catch (const XMLException& toCatch)
 {
 XERCES_STD_QUALIFIER cerr << "\nEroare!\n Descriere: "
 << StrX(toCatch.getMessage())
 << "\n" << XERCES_STD_QUALIFIER endl;
 errorCode = 1;
 }
 if(errorCode) {
 XMLPlatformUtils::Terminate();
 return errorCode;
 }

 // stergere obiect
 delete parser;

 XMLPlatformUtils::Terminate();

 return errorCount;
}

 Rularea programului conduce la următoarele rezultate:

D:\>xmlSAX angajati.xml
<?xml version="1.0" encoding="LATIN1"?>
<Angajati>
 <Angajat Departament="IT" Cod="100" Varsta="54">
 <Nume>Popa</Nume>
 <Prenume>Valeriu</Prenume>
 </Angajat>
 <Angajat Departament="DESFACERE" Cod="200" Varsta="20">
 <Nume>Ionescu</Nume>
 <Prenume>Ion</Prenume>
 </Angajat>
 <Angajat Departament="TRANSPORT" Cod="300" Varsta="65">
 <Nume>Popescu</Nume>
 <Prenume>Madalina</Prenume>
 </Angajat>
 <Angajat Departament="IT" Cod="400" Varsta="30">
 <Nume>Georgescu</Nume>
 <Prenume>Adrian</Prenume>
 </Angajat>
 <Angajat Departament="CONTABILITATE" Cod="500" Varsta="40">
 <Nume>Vasile</Nume>
 <Prenume>Radu</Prenume>
 </Angajat>
</Angajati>

Indiferent de modelul ales (DOM sau SAX), efortul de programare

rămâne considerabil deoarece dezvoltatorii trebuie să realizeze construcţii
care să facă legătura între conţinutul documentului XML şi modul de
reprezentare a acestuia la nivelul aplicaţiilor care îl folosesc.

